
Dynamic programming

Andrew Gimber, European University Institute∗

Tuesday, 6 December 2011

The sequence problem

Consider a generic infinite-horizon maximisation problem:

V ∗ (s0) = max
{ct}∞t=0

∞∑
t=0

βtσ̃ (st, ct) (1)

subject to:

ct ∈ C (st) ∀t (2)

st+1 = τ (st, ct) ∀t (3)

s0 given. (4)

The agent is trying to maximise the discounted value of his lifetime payoffs
V ∗ (s0) by choosing an infinite sequence of control variables {ct}∞t=0. (In general,
the agent may have control over several variables in each period, so ct may be
a vector.) The payoff σ̃ (st, ct) the agent gets in period t may depend on both
his choices ct and the state of the world st. (Since there may be multiple state
variables, st may also be a vector.) The agent may face feasibility constraints
on his choice of the control variables. Equation 2 says that his choice ct must be
in the feasible set C (st), which itself may depend on the state of the world. The
state of the world evolves according to a law of motion (equation 3, also known as
a transition equation), which says that the state tomorrow may depend both on
the state today and on the agent’s choices. Finally, equation 4 gives us the initial
condition, which is the state of the world the agent finds himself in when he faces
this problem.

Let’s consider a specific example of a problem of this kind: a Ramsey growth
model with fixed labour supply and full depreciation. The decision-maker here is a
social planner who chooses consumption amounts for each period to maximise the
discounted lifetime utility of a representative agent:

∗These notes draw heavily upon Nicola Pavoni’s notes for the Macroeconomics II course taught
at the EUI in Spring Term 2011.

1

V ∗ (k0) = max
{ct}∞t=0

∞∑
t=0

βtu (ct) (5)

subject to:

ct ∈ [0, f (kt)] ∀t (6)

kt+1 = f (kt)− ct ∀t (7)

k0 given. (8)

The recursive formulation

What we are going to show is that there is an equivalent (and sometimes more
convenient) formulation of the problem. In general, it takes the following form:

V (s) = max
c∈C(s)

σ̃(s, c) + βV (s′) (9)

subject to:

s′ = τ(s, c) (10)

V (s) is what we refer to as the value function. It answers the question: What
is the discounted lifetime utility of an agent who faces the sequence problem char-
acterised by equations 1–4 (with s0 = s), given that he will solve the problem
optimally? This seems like a strange question to ask, but in the process of answer-
ing it we will find the answer to another, much more intuitive, question: What is
the optimal choice of c for an agent who finds himself in state of the world s?

Equation 9 is known as the Bellman (functional) equation. The essence
of dynamic programming is writing down and solving equations of this type. The
Bellman equation implicitly defines a policy function c = φ(s) that maps the cur-
rent realisations of the state variables into optimal choices for each of the control
variables.

Going back to our Ramsey example, we have:

V (k) = max
c∈[0,f(kt)]

u(c) + βV (k′) (11)

subject to:

k′ = f(k)− c, (12)

which implicitly defines a policy function c = φ(k).
From the transition equation (10), we know that the agent may be able to affect

the future state s′ through his current choice c. This means we can think of him as
choosing s′ directly, and so we can rewrite the Bellman equation as:

V (s) = max
s′∈Γ(s)

σ (s, s′) + βV (s′) , (13)

2

where Γ(s) is the constraint set that contains all feasible values of s′ given s.1

Since we are thinking of the agent as choosing s′, the policy function takes the form
s′ = g(s).

For our Ramsey example, the rewritten Bellman equation would be:

V (k) = max
k′∈[0,f(k)]

u (f(k)− k′) + βV (k′) , (14)

with policy function k′ = g(k).

Showing that the two problems are equivalent

Bellman’s Principle of Optimality (which we will use in the proof of Proposition 1
below) is as follows:

“An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.” (Bell-
man, 1957)

Let’s relate this to the generic sequence problem characterised by equations 1–4
above. Suppose we have an optimal sequence {ct}∞t=0 that solves the problem. The
initial state is s0 and the initial decision is c0, so from the transition equation (3)
we know that the state resulting from the first decision will be s1 = τ (s0, c0). The
agent is now faced with a new problem in which the initial condition is s1 and he
must choose a new optimal sequence {c̃t}∞t=1. The Principle of Optimality states
that the remaining sequence {ct}∞t=1 that was chosen optimally in period 0 must
solve this new problem, that is, it must be the case that {ct}∞t=1={c̃t}∞t=1.

Proposition 1. The “true” value function V ∗ generated by solving the sequence
problem solves the Bellman functional equation.

Proof.

V ∗(s0) = max
c0∈C(s0)

{
max

{ct∈C(st)}∞t=1

∞∑
t=0

βtσ̃ (st, ct)

}
subject to st+1 = τ (st, ct) ∀t

= max
c0∈C(s0)

{
max

{ct∈C(st)}∞t=1

σ̃ (s0, c0) + β

∞∑
t=0

βtσ̃ (st+1, ct+1)

}
subject to st+1 = τ (st, ct) ∀t

= max
c0∈C(s0)

σ̃ (s0, c0) + β max
{ct∈C(st)}∞t=1

∞∑
t=0

βtσ̃ (st+1, ct+1) subject to st+1 = τ (st, ct) ∀t

= max
c0∈C(s0)

σ̃ (s0, c0) + βV ∗ (s1) subject to s1 = τ (s0, c0)

This is exactly the same as (9) and (10), just with different notation (s0, c0 and s1

instead of s, c and s′ respectively).

1We switch the notation for the objective function from σ̃ to σ to reflect the change in its
arguments.

3

Proposition 2. If V solves the Bellman functional equation and for all feasible
sequences {st+1 ∈ Γ (st)}∞t=0 we have

lim
T→∞

βTV (sT) = 0, (15)

then V is the “true” value function, that is, V = V ∗, and any sequence generated
by the associated policy function s′ = g(s) starting from s0 is optimal.

Proof.

V (s0) = max
s1∈Γ(s0)

σ (s0, s1) + βV (s1)

= max
{st+1∈Γ(st)}1t=0

σ (s0, s1) + βσ (s1, s2) + β2V (s2)

...

= max
{st+1∈Γ(st)}T−1

t=0

T−1∑
t=0

βtσ (st, st+1) + βTV (sT)

T→∞
= max

{st+1∈Γ(st)}∞t=0

∞∑
t=0

βtσ (st, st+1)

= max
{ct∈C(st)}∞t=0

∞∑
t=0

βtσ̃ (st, ct) subject to st+1 = τ (st, ct) ∀t

= V ∗ (s0)

The contraction mapping theorem

Consider our simplified generic Bellman equation (13). As shown in Russell Cooper’s
“Overview of Dynamic Programming” notes, there are some specific cases (such as
the cake-eating problem and the Ramsey model with fixed labour supply, log utility
and full depreciation) where we can use the “guess and verify” approach to find
closed-form solutions for the value function V and the policy function s′ = g(s).
However, the usefulness of the dynamic programming approach is not limited to
these special cases.

For cases where we cannot find a closed-form solution for V , it would be nice to
have a fool-proof procedure for approximating it. (Having approximated V , we can
then infer an approximate policy function.) Fortunately, such a procedure exists. It
involves making an initial guess V0 for the value function and repeatedly applying
(usually with the help of a computer) something called the Bellman operator (not
to be confused with the similar-looking Bellman equation) to generate an iterative
sequence {Vn}n=1,2,.... The Bellman operator, which we will label T , maps functions
into functions as follows:

TVn = max
s′∈Γ(s)

σ (s, s′) + βVn (s′) (16)

4

Starting with V0 and applying T repeatedly, we get:

V1 = TV0 = max
s′∈Γ(s)

σ (s, s′) + βV0 (s′)

V2 = TV1 = T 2V0

...

Vn = TVn−1 = T nV0

We refer to this procedure as value function iteration. What we would like is
for this iterative procedure to converge to the “true” value function V that solves
the Bellman equation (and, by Proposition 2, is the value function of the original
sequence problem). It would be even better if this were to happen regardless of
how wrong our initial guess V0 was. The contraction mapping theorem tells us the
conditions we need for this to be the case. Before we get to the theorem itself, let’s
recall some definitions (all of which should have featured in Antonio Villanacci’s
Background Course in Mathematics).

Definition (Metric space). A metric space (X, d) is a set X, together with a metric
(or distance function) d : X ×X → R such that for all x, y, z ∈ X, we have:

1. d(x, y) ≥ 0

2. d(x, y) = 0 if and only if x = y

3. d(x, y) = d(y, x)

4. d(x, z) ≤ d(x, y) + d(y, z)

Definition (Convergence). Let (X, d) be a metric space. The sequence {xn}∞n=0

converges to the limit y ∈ X (with respect to the metric space (X, d)) if for each
real number ε > 0 there exists a natural number N such that for any n ≥ N we
have d (xn, y) < ε.

Less formally, if a sequence converges to a point, then you can always get arbi-
trarily close to that point by going far enough along the sequence.

Definition (Cauchy). A sequence {xn}∞n=0 is Cauchy if for each real number ε > 0
there exists a natural number N such that for any l,m ≥ N we have d (xl, xm) < ε.

In a Cauchy sequence, the elements of the sequence are getting closer and closer
together as you move along the sequence. Any convergent sequence is necessarily
Cauchy, but the reverse is not always true. This brings us to our next definition.

Definition (Complete metric space). A metric space (X, d) is complete if every
Cauchy sequence is a convergent sequence.

Definition (Contraction mapping). Let (X, d) be a metric space and let T̃ : X → X
be a function mapping X into itself. T̃ is a contraction mapping (with modulus β̃)
on (X, d) if for some β̃ ∈ [0, 1), we have

d(T̃ x, T̃ y) ≤ β̃d(x, y)

for all x, y ∈ X.

5

Now we are ready to present the theorem itself.

Theorem 1 (Contraction mapping theorem (Banach fixed-point theorem)). If (X, d)
is a complete metric space and T̃ : X → X is a contraction mapping with modulus
β̃, then:

1. T̃ has exactly one fixed point in X, that is, ∃! x∗ ∈ X such that T̃ x∗ = x∗.

2. For any x0 ∈ X, the sequence {xn}∞n=1 where xn = T̃ xn−1 converges to x∗.

Proof. See Section 3.2 of Stokey, Lucas and Prescott (1989), or the Wikipedia entry
for “Banach fixed-point theorem”.

So now we know the conditions under which the value function iteration ap-
proach “works”, that is, converges to the true value function regardless of the initial
guess. Notice the similar notation used for the Bellman operator T and the generic
contraction mapping T̃ ; and for the discount factor β and the generic modulus β̃.
To be able to apply the contraction mapping theorem, we need to show that we have
a complete metric space and that the Bellman operator T is indeed a contraction
mapping (with modulus β). The following theorems will help.

Theorem 2. Let X ⊂ Rn. Then the set C(X) of bounded and continuous functions
f : X → R, together with the supremum metric d∞(f, g) ≡ supt|f(t) − g(t)| is a
complete linear metric space (Banach space).

Theorem 3 (Blackwell’s sufficient conditions). Let X ⊂ Rn, let B(X) be the set of
bounded functions f : X → R and let (B(X), d∞) be the metric space composed of
this set B(X) and the supremum metric d∞(f, g) ≡ supt|f(t) − g(t)|. Let T̃ be an
operator satisfying:

1. Monotonicity: For any pair of functions f, g ∈ B(X) such that f(x) ≤
g(x) ∀x ∈ X, we have

(
T̃ f
)

(x) ≤
(
T̃ g
)

(x) ∀x ∈ X.

2. Discounting: There exists some β̃ ∈ [0, 1) such that ∀f ∈ B(X), a ≥ 0, x ∈ X
we have: [

T̃ (f + a)
]

(x) ≤
(
T̃ f
)

(x) + βa.

(Note that (f + a)(x) = f(x) + a.)

Then T̃ is a contraction mapping with modulus β̃.

So if we can argue that the value functions {Vn}n=0,1,2,... we are considering are
bounded and continuous, and that the Bellman operator T associated with our
problem satisfies both monotonicity and discounting, then we know we can apply
the contraction mapping theorem and therefore that we can solve our problem using
value function iteration.

6

