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1 TO instal and run Dynare

To install it:

1. Go to the Dynare website: http://www.dynare.org .

2. In the Main Menu go to Download.

3. Choose Dynare for Matlab/Octave [Windows].

4. Download version 4.4.0 (all the programs should work with it) and save

it in Dynare directory in the C drive. Unpack the zip �le in this directory.

5. Start Matlab. Click in the File menu on Set Path.



6. Click on the button Add with Subfolders. Now select the Dynare

directory. Click on Save and close the dialog window.

To run it:

1. In the Matlab main window change the directory to the one in which

you have stored your Dynare program.

2. To run the program my�le.mod type the command: Dynare my�le.mod



1.1 What is Dynare?

- It is an interface to Matlab/Octave (also to C++).

- It takes a user-supply the �le (which looks very much like what you write

on a piece of paper), transforms it into a series of Matlab �les and runs it.

- Dynare is a collection of routines, written by various people (economists)

and some connecting programs, written by computer programmers.



2 Perturbation methods: a review

We want to obtain an approximate policy function that satis�es the �rst

order conditions.

Let �t be a n� 1 vector of state (exogenous and predetermined) variables
and yt a m � 1 vector of endogenous variables. The �rst order (linear)
approximation is

yt � �y = (�t � ��)0a (1)

where a bar indicates steady state values. For a simple consumption/saving

model (1) is

ct � �c = ac;k(kt�1 � �k) + ac;z(zt � �z) (2)

where kt is the capital stock and zt a technology shock.



The FOCs of a DSGE model are of the form:

Etf(y; �; �) = 0 (3)

Let y = h(�; �) be the unknown policy function.

First order (perturbation) method: Find the coe�cients of the linear ap-

proximation to the h(�; �) function, i.e. h(�; �) = h0(�) + h1(�)(�� ��).

Higher order (perturbation) method: Find the coe�cients of the higher

order approximation to the h(�; �) function. i.e.h(�; �) = h0(�)+h1(�)(��
��) + h2(�)(�� ��)2 + h3(�)(�� ��)3 + : : :.



3 A simple growth model in Dynare

Level model

max
fct;ktg

Et

1X
t=0

�t(
c
1��
t � 1
1� �

) (4)

subject to

ct + kt = ztk
�
t�1 + (1� �)kt�1 (5)

zt = �zt�1 + �t; �t � (1; �2e) (6)

FOCs:

c
��
t = �Et[c

��
t+1(�zt+1k

��1
t + (1� �))] (7)

ct + kt = ztk
�
t�1 + (1� �)kt�1 (8)

zt = �zt�1 + �t (9)



Log model

max
fct;ktg

Et

1X
t=0

�t(
c
1��
t � 1
1� �

) (10)

subject to

ct + kt = exp(~zt)k
�
t�1 + (1� �)kt�1 (11)

~zt = �~zt�1 + �t; �t � (0; ~�2e) (12)

~zt is the log of TFP. Note that the constraints of the two problems are

identical; they are simply written in a di�erent way.



FOCs:

c
��
t = �Etc

��
t+1[�exp(~zt+1)k

��1
t + (1� �)] (13)

ct + kt = exp(~zt)k
�
t�1 + (1� �)kt�1 (14)

~zt = �~zt�1 + �t; (15)

Transform the FOCs so that also ct; kt are measured in log

(exp(~ct))
�� = �Et[(exp(~ct+1))

��(�exp(~zt+1)(exp(~kt))
��1 + (1� �))] (16)

exp(~ct) + exp(~kt) = exp(~zt)(exp(~kt�1))
� + (1� �)exp(~kt�1) (17)

~zt = �~zt�1 + �t (18)

Note exp(~ct) = ct and exp(~kt) = kt if ~c = log c and ~k = log k.



Then rewrite equations as:

exp(��~ct) = �Et[exp(��~ct+1)(�exp(~zt+1 + (�� 1)~kt) + (1� �))] (19)

exp(~ct) + exp(~kt) = exp(~zt + �~kt�1) + (1� �)exp(~kt�1) (20)

~zt = �~zt�1 + �t (21)

(7)-(9) are the optimality conditions for the level of (ct; kt; zt); (19)-(21)

are the optimality conditions for (~ct; ~kt; ~zt).

-Equations are slightly di�erent.

- States (exogenous and predetermined) xt = [kt�1; zt].

- Controls yt = [ct; kt; zt] (some redundancy here).



- First order approximate solution will be of the form

ct = �c+ ac;k(kt�1 � �k) + ac;z(zt � �z) (22)

kt = �k + ak;k(kt�1 � �k) + ak;z(zt � �z) (23)

zt = �z + �(zt�1 � �z) + �t (24)

Depending on how you write the model, xt = [ct; kt; zt] could be the level

or the (natural) log of the variables.

Typically �z = 0. How do we write these two models in Dynare?



3.1 Preliminaries

i) All variables known at time t must be dated t � 1 (that is, kt is a

choice variables, kt�1 is a predetermined variable). Can change this timing
convention using the "predetermined variables" command.

ii) Dynare looks for predetermined and exogenous variables. Is a technology

shock zt a predetermined or an exogenous variable? Dynare arti�cially

splits zt into a predetermined component and an exogenous component.

Thus, policy rules are:



ct = �c+ ac;k(kt�1 � �k) + ac;z�(zt�1 � �z) + ac;z�t (25)

kt = �k + ak;k(kt�1 � �k) + ak;z�(zt�1 � �z) + ak;z�t (26)

zt = �z + �(zt�1 � �z) + �t (27)

iii) Conditional expectations are omitted. Future variables are denoted by

y(+1); y(+2), etc.; lagged variables by y(�1); y(�2), etc.

iv) For all variables dated at t � k; k > 1, Dynare creates a fake star

variable e.g. y�t+1 = yt+2,substitutes y
�
t+1 wherever yt+2 appears and

adds an identity to the system of equations.



v) First and second order solutions look like:

yt = �y +A(yt�1 � �y) +B�t (28)

yt = �y + 0:5�2 +A(yt�1 � �y) +B�t + 0:5C[(yt�1 � �y)
 (yt�1 � �y)]

+ 0:5D(�t 
 �t) + F [(yt�1 � �y)
 �t] (29)

where �2 is the variance covariance matrix of the innovations in the shocks

and A;B;C;D; F are matrices.

- The output is di�erent from those of Klein, Uhlig or Sims. Careful!!!!

- Main di�erence between �rst and second order solution is that in the

latter the standard deviation of the shocks � has e�ects on the (level) of

yt.



vi) Dynare automatically produces a series of MATLAB �les. The �les pro-

gramname.m, programname static.m, and programname dynamic.m pro-

duce main program and the static and the dynamics equations of the

model.

Once you have these �les you do not need Dynare any longer. You can

run them in MATLAB if you wish.

vii) The output is visible on the screen and saved in the �le program-

name.log. The variables and matrices created solving the model are stored

in the �le programname result.mat (a matlab storage �le).

viii) Figures is saved in *.eps, *.�g, and *.pdf formats.



3.2 Dynare programming blocks

� Labelling block:

i) "var" are the endogenous variables

ii) "varexo" are the exogenous variables

iii) "predeterminated variables" are the predeterminated variables

iv) "parameters" are the parameters of the model.

� Parameter block: gives the values of the parameters.



� Model block: starts with "model" and ends with "end". It contains the
equations of the model. If the model has been already (log-)linearized by

hand use the option "linear" ("loglinear") in the model command

The following two set of statements are equivalent:

var y, k, i; var y, k, i;
predetermined variables k;

parameters alpha, delta; parameters alpha, delta;
alpha= 0.36; alpha= 0.36;
delta=0.025; delta=0.025;
model; model;
y=k(-1)^alpha; y=k^alpha;
k= i +(1-delta) k(-1); k(+1)= i +(1-delta) k;
end; end;



� Initialization block: starts with "initval" and ends with "end" . It sets
the initial conditions for the variables. It is important to choose these well

because they may in
uence the calculation of the steady states (which is

a non-linear problem).

initval;

k=1.5;

y=1.3;

i=1.0;

end;

In some cases, rather than initial conditions, you want to �x terminal

conditions. For terminal conditions use the "endval" command.



How do you choose initial conditions? Use steady states or the steady solu-

tion to simpli�ed versions of the model (if the model is very complicated).

Example 3.1 When � = � = 1:0 (full capital depreciation, log utility).

The analytic solution to the log model is:

~kt = ln(��) + �~kt�1 + ~zt (30)

~ct = ln(1� ��) + �~kt�1 + ~zt (31)

- Policy rules are linear in the log of the variables

- Consumption and investment are constant fractions of output.



Steady States

Setting ~kt = ~kt�1 = ks and ~zt = 0 we have

~ks =
ln(��)

1� �
(32)

~cs = ln(1� ��) + �
ln(��)

1� �
(33)

If � = 0:36; � = 0:99, then ~ks = �1:612; ~cs = �1:021. These could

be used as initial values in the computations of the steady states of the

general model.



� Shock block: starts with "shocks" and ends with "end". It de�nes

what variables are the stochastic shocks, their standard deviation and,

potentially, the correlation between shocks.

shocks;

var e1;

stderr sig1;

var e2;

stderr sig2;

corr e1, e2 = 0.8

end;



� The steady state block: it contains the commands to calculate the steady
states and to check for stability of the solution.

steady(options);

The options of steady are:

1) solve algo=number; it select which algorithm is used to solve the system

of non-linear equations; 0 (fsolve.m); 1 (dynare own nonlinear solver); 2 (

default: recursive block splitting) 3 (Sims' solver). Try other options only if

these fail (these use homotophy methods and Sparse Gaussian elimination).

2) homotomy mode= number; homotomy steps=number.

This last option should used when other algorithms fail (see Dynare manual

for details)



- To avoid time consuming repetitions steady states can be loaded into the

program with a �le.

- The �le must have the same name as the main �le and the extension

" steadystate.m'. e.g. if the program is called rbc.mod the steady state

can be loaded into the program using the �le rbc steadystate.m �le



check;

- It examine the conditions for existence of a solution to the system.

- Necessary condition: number of eigenvalues greater than one equal to

the number of forward looking variables.

- There is a stronger rank condition (see dynare manual) that can also be

checked.



� Solution block: it contains the commands to solve the model

First order solution : stoch simul(order=1,nocorr,nomoments,IRF=0)

Second order solution: stoch simul(order=2,nocorr,nomoments,IRF=0)

Third order solution: stoch simul(order=3,nocorr,nomoments,IRF=0)

� Properties block: to calculate interesting statistics using the solution.



Some options with stoch simul (default)

order: order of Taylor approximation (1, 2, 3)

k order solver: use a C++ solver (more complicated, check manual).

aim solver: triggers the use of the nonlinear perfect foresight solver used

in the AIM program

HP �lter=number: sets the smoothing parameter of the HP �lter (128000

for monthly, 1600 for quarterly, 6.25 for annual data).

ar = number: sets the number of autocorrelations to be computed (5)



irf=number: sets the number of responses to be computed; if number=0

suppresses plotting of impulse response functions.

relative irf: computes normalized impulse responses.

periods: speci�es the number of periods to use in simulations.

Note: periods triggers the computation of moments and correlation using

simulated data rather than the population solution.



nocorr: correlation matrix is not printed

nofunctions: coe�cients of approximated solution not printed

nomoments: moments of endogenous variables not printed

noprint: suppresses all printing (useful for loops)

Example: stoch simul(order=1, irf=60) y k

computes impulse responses for y and k only, for 60 periods, using a �rst

order approximation.



3.3 Where is the solution output stored?

- The output of steady is stored into oo .steady state. Endogenous vari-

ables are ordered as you have declared them.

- Output of check is stored in: oo .dr.eigeval.

- Coe�cients of the decision rules are stored in oo .dr.xxx where xxx is

i) ys: steady state values

ii) ghx, ghu: the matrices A, B.



iii) ghxx, ghuu, ghxu : the matrices C, D, F

iv) ghs2 : the matrix �2.

Summary statistics are stored in oo .yyy where yyy is mean (mean values),

var (variances) autocorr (autocorrelations), irf (impulse responses, with

the convention variable shock).

Example: oo .irfs.gnp ea contains the responses of gnp to a shock in ea.



A Dynare program for the level model

var c, k, z;

varexo e;

parameters beta, rho, alpha, phi, delta, sig;

alpha= 0.36; beta =0.99;

rho=0.95; phi=1.0;

delta=0.025; sig=0.007;

model;

c^(-phi)=beta*c(+1) ^(-phi)*(alpha*z(+1)*k^(alpha-1)+(1-delta))

c+k=z*k(-1)^alpha+(1-delta)*k(-1);

z=rho*z(-1)+e;

end;



initval;

k=6.35; c=1.31; z=0;

end;

shocks;

var e;

stderr sig;

end;

steady;

check;

stoch simul(order=1,nocorr, nomoments, IRF=0);



Dynare equations for the log model

model;

exp(-phi*lc)=beta*exp(-phi*lc(+1))*(alpha*exp(lz(+1)+(alpha-1)*lk))

+1-delta);

exp(lc)+exp(lk)=exp(lz+alpha*lk(-1))+(1{delta)*exp(lk(-1);

lz=rho*lz(-1)+e;

end;

where lc= log consumption, lk = log capital, lz = log TFP.



Example 3.2 (Behind the scenes: solving a RBC model)

Social planner problem:

max
fct;Kt;Ntg

E0
X
t

�t(log ct + log(1�Nt)) (34)

subject to

ct +Kt = e�tK�
t�1N

1��
t + (1� �)Kt�1 (35)

�t = ��t�1 + et (36)



Lagrangian:

max
fct;Kt;Ntg

E0
X
t

�t[log ct + log(1�Nt) �

�t(ct +Kt � e�tK�
t�1N

1��
t � (1� �)Kt�1)] (37)

The �rst order conditions (with respect to ct; Nt;Kt) and the resource

constraints are

1

ct
= �t (38)

1

1�Nt
= �t(1� �)e�tK�

t�1N
��
t (39)

�t = �Et�t+1[(�e
�t+1K��1

t N1��t+1 + (1� �)] (40)

ct +Kt = e�tK�
t�1N

1��
t + (1� �)Kt�1 (41)



Eliminating � we have

ct

1�Nt
= (1� �)e�tK�

t�1N
��
t (42)

1

ct
= �Et

1

ct+1
[�e�t+1K��1

t N1��t+1 + (1� �)] (43)

ct +Kt = e�tK�
t�1N

1��
t + (1� �)Kt�1 (44)

� Three equations in three unknowns (ct;Kt; Nt). These equations are
nonlinear and involve expectations. Compute an approximate solution.



Strategy

1) Find the steady states.

2) Take a �rst order expansion of the optimality conditions evaluated at

steady state values.

3) Solve the approximation using the " guess and verify" method.

4) Compute second order approximation.

5) General variable transformation.



1) Computation of the steady states.

Assuming �e = 0 and eliminating time subscripts

c

1�N
= (1� �)K�N�� (45)

1 = �[(�K��1N1�� + (1� �)] (46)

c+ �K = K�N1�� (47)

The solution is:



- Ks = z1=(z2 + z3z1).

- Ns = z3K
s.

- cs = z2K
s.

where z3 = (
1
�(
1
� � 1 + �))1=(1��), z2 = z1��3 � �, z1 = (1� �)z��3 .

- We can compute output and prices using the production function ys =

(Ks)�(Ns)1�� and the FOC of the �rm's problem ws = ys=Ns and rs =

ys=Ks.



2) Linearize the optimality conditions and the low of motion of the shocks
around (cs; Ns;Ks).

(ct � cs) = m5�t +
�cs

Ks
(Kt�1 �Ks) +m6(Nt �N s) (48)

m1(ct � cs) = Et[m1(ct+1 � cs) +m2�t+1 +m3(Kt �Ks) +m4(Nt+1 �N s)](49)

(ct � cs) = �(Kt �Ks) +m7�t +m8(Kt�1 �Ks) +m9(Nt �N s) (50)

�t = ��t�1 + et (51)

where m1 = �(1=cs);m2 = �(1� �)�(ys=Ks);m3 = �(�� 1)�(ys=(Ks)2);

m4 = m2=N;m5 = (1� �)c;m6 = �(�=Ns + 1=(1�N s))c;

m7 = (1� �)ys;m8 = �(ys=Ks) + (1� �);m9 = (ys=N s)(1� �).



Solving for (ct � cs) from(48) we rewrite the system as:

A(Kt �Ks) +B(Kt�1 �Ks) + C(Nt �Ns) +D�t = 0 (52)

Et[G(Kt �Ks) +H(Kt�1 �Ks) + J(Nt+1 �Ns) +

I(Nt �Ns) + L�t+1 +M�t] = 0 (53)

Et�t+1 = N�t (54)

Two equations in (Kt �Ks) and (Nt �Ns); both driven by �t.

The matrices A;B; : : : ;M;N are function of the parameters of the model.



3) Guess policy functions (solutions) of the form

(Kt �Ks) = P1(Kt�1 �Ks) + P2�t

(Nt �Ns) = R1(Kt�1 �Ks) +R2�t

Plugging these guesses in (52)-(53) and eliminating expectations we have

A(P1(Kt�1 �Ks) + P2�t) +B(Kt�1 �Ks) +

C(R1(Kt�1 �Ks) +R2�t) +D�t = 0 (55)

G(P1(Kt�1 �Ks) + P2�t) +H(Kt�1 �Ks) +

J(R1(P1(Kt�1 �Ks) + P2�t) +R2N�t) +

I(R1(Kt�1 �Ks) +R2�t)(LN +M)�t] = 0 (56)



These equations must hold for any (Kt�1 �K); �t. Therefore:

AP1 +B + CR1 = 0 (57)

GP1 +H + JR1P1 + IR1 = 0 (58)

AP2 + CR2 +D = 0 (59)

(G+ JR1)P2 + JR2N + IR2 + LN +M = 0 (60)

� Four equations, four unknowns P1; P2; R1; R2.



From (57), we have R1 = � 1
C(AP1 +B). Using it in (58), we have

P 21 + (
B

A
+
I

J
+
GC

JA
)P1 +

IB �HC

JA
= 0 (61)

This is a quadratic equation in P1: there are two solutions.



P1 = �0:5(�
B

A
� I

J
+
GC

JA
� ((B

A
+
I

J
+
GC

JA
)2 � 4IB �HC

JA
)0:5) (62)

One value gives you a stable solution; one an unstable one. Pick the stable

solution, plug it into the solution for R1. Also from (59)-(60):

P2 =
�D(JN + I) + CLN + CM

AJN +AI � CG� CJR1
(63)

R2 =
�ALN �AM +DG+DJR1
AJN +AI � CG� CJR1

(64)



� In general, the solution for P1 can not be found analytically since P1 is
a matrix.

� In this case P1 is found by solving a generalized eigenvalue problem (QZ

decompostion), see e.g. Uhlig, 1999 or Klein, 2001.

General form of the solution (X=states, Y= controls, Z= shocks)

Xt = P1Xt�1 + P2Zt (65)

Yt = R1Xt�1 +R2Zt (66)



3.1) If want a log-linear solution (rather than a linear one), use:

cs � (ct � cs)=cs = m5�t + (�c
s)(Kt�1 �Ks)=Ks + (m6 �N)(Nt �N s)=N s (67)

(ct � cs)=cs = Et[(ct+1 � cs)=cs +m2�t+1 + (m3 �Ks)(Kt �Ks)=Ks

+ (m4 �N s)(Nt+1 �N s)=N s] (68)

cs � (ct � cs)=cs = �Ks � (Ks
t �Ks)=Ks +m7�t + (m8 �Ks)(Kt�1 �Ks)=Ks

+ (m9 �N s)(Nt �N s)=N s (69)

and solve for ĉt = (ct�cs)=cs; N̂t = (Nt�Ns)=Ns; K̂t = (Kt�Ks)=Ks.

The solution procedure is unchanged.



4) To �nd a second order approximation, guess policy functions (solutions)
of the form

(Kt�Ks) = P1(Kt�1�Ks)+P2�t+P3(Kt�1�Ks)2+P4(Kt�1�Ks)�t+P5�
2
t +P6�

2

(Nt �N s) = R1(Kt�1 �Ks) +R2�tR3(Kt�1 �Ks)2 +R4(Kt�1 �Ks)�t +R5�
2
tR6�

2

- Plug these guesses in (52)-(53) and eliminate expectations.

- Solve sequentially (i.e. �rst order approximation �rst and then once

P1; P2; R1; R2 are found, solve for P3; P4; P5; P6; R3; R4; R5; R6).

- For details see Schmitt-Grohe and Uribe (2004).



5) General variable transformations. Look for solutions of the form:

K


t �K



0 =  1(K

�
t�1 �K�

0 ) +  2�t (70)

N
�
t �N

�
0 =  3(K

�
t�1 �K�

0 ) +  4�t (71)

where K0; N0; c0 are pivotal points.

- If �; 
; �; � = 1 linear approximation. If �; 
; �; � ! 0 log-linear approx-

imation

- How do we choose �; 
; �; �? Use a grid. Find the values that minimize

the Mean square of the error in the Euler equation

Generally 
 � � is optimal in this model. Thus, a linear policy function

for Kt is close to the best.



3.4 Running Dynare

- Save the �le with the code with extension *.mod (e.g. RBC.mod)

- After you have installed dynare, and made sure to have added the dynare

path to matlab, in the matlab window type:

dynare RBC.mod

- This runs the program and creates a bunch of matlab �les you can use

to check what the program is doing and use later on. The Matlab �le that

Dynare creates will have the same name as you original �le but with the

extension *.m (i.e. rbc.m).



3.5 Making sense of dynare output

Suppose � = 0:36; � = 0:99; � = � = 1:0. Then the log model delivers:

POLICY AND TRANSITION FUNCTIONS

k z c
constant -1.612034 0 -1.021010
k(-1) 0.36 0 0.36
z(-1) 0.95 0.95 0.95
e 1 1 1



- Recall that the policy functions that dynare generates are of the form

~kt = ln(��) + �(~kt�1 � ln(��)) + �(~zt�1 � �z) + � (72)

~ct = ln(1� ��) + �(~kt�1 � ln(��)) + �(~zt�1 � �z) + � (73)

~zt = �z + �(~zt�1 � �z) + �t (74)

- "Constant" is the steady state of the variables.

- k(�1) is really (~k(�1) � �~k) and z(�1) is really (~z(�1) � �~z) (note that

�� = 0 by assumption)

- Not the best way to write solution since what matters is ~zt.



3.6 Fine tuning

- In the level and the log solutions, both the equations for consumption

and investment are linearized.

- Makes life easy, especially in large systems, but creates unneeded approx-

imation errors.

- Alternative: use the budget constraint to solve for ct from the Euler

equation and approximate only the decision rule for kt. Decision rule for

ct is found (nonlinearly) from the budget constraint.



FOC

c
��
t = �Et[c

��
t+1(�exp(~zt+1)k

��1
t + (1� �))] (75)

ct + kt = exp(~zt)k
�
t�1 + (1� �)kt�1 (76)

~zt = �~zt�1 + �t (77)

New FOC (solving ct from (76) and plug it into (75)).

(exp(~zt)k
�
t�1 + (1� �)kt�1 � kt)

�� = (78)

�Et[(exp(~zt+1)k
�
t + (1� �)kt � kt+1)

��(�exp(~zt+1)k
��1
t + (1� �))]

~zt � �~zt�1 � �t = 0 (79)



4 Two exercises

Exercise 4.1 (rosen.mod) Write a Dynare code to solve the following four equations
(non-optimizing) model

st = a0 + a1Pt + est (80)

Nt = (1� �)Nt�1 + st�k (81)

Nt = d0 � d1Wt + edt (82)

Pt = (1� �)�Pt+1 + �4Wt+4 (83)

The �rst equation is the 
ow supply of new engineers,; the second time to school for

engineers; the third the demand for engineers and the last the present value of wages of

an engineer.

The parameters are (a0; a1; �; d0; d1; �). The endogenous variables are (st; Nt, Pt;Wt)

and the exogenous variables are (est ; e
d
t ).

Pick (reasonable) values for the parameters, for the standard deviation of the shocks and

choose initial conditions. Simulate 500 data points (and save them) and compute impulse

responses to the two shocks.



Exercise 4.2 (growth wls log.mod) In a basic RBC model agents maximize:

maxEt
X
t

�t(
c1��t � 1
1� �

+
h
1+1=�
t

1 + 1=�
) (84)

subject to

ct + kt = exp(~zt)k
�
t�1h

1��
t + (1� �)kt�1 (85)

where ln zt � ~zt = �~zt:�1 + �t; �t � (0; �2e).

Note when � = 0, utility does not depend on ht; when � = 1, utility is linear in ht
(Hansen utility).

Calculate the FOC conditions, the steady states and write a Dynare code for solving

the model using as the endogenous variables are (lnct; lnkt; lnht; lnzt), as the exogenous

innovation is et and as parameters (�; �; �; �; �; �; �e).

Pick reasonable values for the parameters and the initial conditions and solve the model

using a linear and a quadratic approximation. Compare the decision rules.



5 Some Tips

� Solution programs (e.g. Uhlig, Klein, sims) not very transparent. May as
well use Dynare - can input FOC directly without(log-)linearizing by hand.

� Better to �nd the decision rules for states and then use the model equa-
tions to compute other variables, e.g. it = kt � (1� �)kt�1 or yt = ztk

�
t ;

once you have simulated kt and zt. Approximation error is smaller.

� Dynare can be nested into Matlab programs. Careful because Dynare
clear the memory before starting (so if there are some matlab calculations

before, the results will be cancelled). To avoid this use

dynare rbc.mod noclearall



� Matlab commands can be inserted into Dynare �les

Example 5.1 load ypr.dat;

[nobs,nvar] = size(ypr);

y = ypr(:,1);

p = ypr(:,2);

r = ypr(:,3);

// detrend y, remove linear trend

tr = (1:nobs)';

cr = ones(nobs,1);

yt = ols(y,[cr tr]);

x = y-yt.beta(1)*tr;

// statistics on the time series

stats r = [mean(r) std(r) min(r) max(r)];



inv.cnames = strvcat('mean','std','min','max');

inv.rnames = strvcat('series','r');

disp('*** Summary Statistics of time series ***')

disp('|||||||||||||- ')

mprint([stats r],inv)

var r x p g u eer;

varexo eg eu er;

parameters phi betta nu psir psix psip rhog rhou sigg sigu sigr;
...



Repetitive work

� Dynare is not setup to do repeated experiments with di�erent parameter
values to check, e.g., how certain responses change with the parameters.

- From version 4.2 there is a possibility of running the same model for a

number of countries (if needed) but it is a bit cumbersome and does not

cover all the cases of interest.

- Essentially you would have to run the program many times if you need

to do sensitivity analysis. One alternative is to nest the dynare program

inside a MATLAB loop. An example of how this is done is the following:



Example 5.2 (examining the sensitivity of the results to changes in the

persistence of the technology shocks)

for n = 1:n draws;

var c, k, lnz;

varexo e;

low rho = 0.90; up rho = 0.99;

rho = low rho + rand.*(up rho-low rho);

parameters beta, rho, alpha, phi, delta, sig;

alpha = 0.36; beta = 0.99; delta = 0.10; sig = 0.01; phi=3.0 ; rho=rho ;
...

end;



Summary statistics

� Dynare produces a lot of output. If you just care about the decision rules
use the options: nocorr, nomoments, IRF=0 in stoch simul command.

� Dynare is set up to produce conditional and unconditional moments of
the data, as generated by the decision rules. These moments are computed

analytically, unless you specify the HP �lter option in stoch simul.

In particular it will produce the following unconditional moments:

- Mean and standard deviation of the endogenous variables.

- Contemporaneous correlation of the endogenous variables.



- Autocorrelation function (ACF) of the endogenous variables.

If you want the ACF of a variable like output which is not solved for in the

model you will have to compute it by hand. The alternative is to include

another equation in the model with the production function to compute

output moments directly



Dynare also produce, if requested, impulse responses to each of the shocks

and the variance decomposition. The current version is not yet set to do

historical decompositions (which would allow you to see, for example, if

the current level of consumption in di�erence form the steady state is due

to one shock or another).

- Impulse responses are typically calculated as the di�erence of two paths,

one where �t = 0; 8t, one where �1 = 1; �t = 0; 8t > 1 . This is OK

for �rst order approximations. It is not the right way to compute impulse

responses in higher order approximations.

- There an option in stoch simul command called "replication=number"

which computes impulse responses correctly for higher order approxima-

tions.



5.1 Computing impulse responses

- In �rst order approximation, the initial condition, the sequence of shocks,

their sign and size does not matter. Thus

i) set the initial condition at the steady state,

ii) set the shocks to zero in one run,

iii) set the shocks to zero except the �rst period (normalized to 1) in the

second run.

iv) take the di�erence between the path of the variables of interest gener-

ated in iii) and ii).



When you consider a second order approximation responses must be com-

puted as follows. Dynare gives you the decision rules (say for kt; zt).

Part I

- Draw n initial conditions for k0 and z0.

- Draw a m sequences of shocks �Tt=0 for each k0; z0

- Construct paths for zt; kt for each k0; z0 and each �t sequence using the

decision rules.

- Average the paths for zt; kt



Part II

- Draw n initial conditions for k0 and z0.

- Set �Tt=0 = 0 for each k0; z0.

- Construct paths for zt; kt for each k0; z0.

- Average the paths for zt; kt.

Take the di�erence in the paths for zt; kt you have in part I and part II



- This procedure is valid for both �rst and second order approximations.

- Dynare takes the initial conditions as �xed (I guess at the steady state, if the steady com-

mand precedes stoch simul). Thus the replication=number option refers to the number

of paths for �t generated in part I.

- Impulse responses computed with second order approximations are tricky. Paths may

explode if the �t sequence contains, by chance, large numbers (non-negligible probability).

Typically you either you throw away exploding paths or you use a simulation procedure

called "pruning".

- Pruning simulates components of high order approximation by steps, i.e. �rst simulates

�rst order terms, then second order, etc. If we put enough restrictions on the simulated

realization of �rst order terms, then second order terms are not exploding (see Kim, Kim,

Schaumburg and Sims (2008)). Dynare uses pruning to compute impulse responses.



5.2 Variance decompositions

- The variance decomposition is computed with the option

conditional variance decomposition=number of stoch simul. You need to

specify the horizon where you want the decomposition via ��number��.

- What this option produces is var(yt+jjIt) where It is the information set
available at t. When j is large, the variance decomposition is unconditional.

- If you are interested in the variance decomposition at di�erent horizons

you can specify the option as conditional variance decomposition=[number1,

number2].



6 Accuracy of the solution

- There are situations when second order approximations are needed (e.g.

welfare calculations).

- In other cases, one has to decide which approximation to take and whether

level or log approximations should be used.

- Check 1: Run dynare for both approximations. Simulate a path for the

endogenous variables. Are the paths similar? Are they di�erent? In what

are they di�erent?

- Check 2: Run formal accuracy tests (Den Haan and Marcet (1994) or

Judd (2004)).



Informal approach

- Understand properties of model/ algorithm.

- Change parameter values, see how output changes.

- Change approximation methods. Solve all the variables inside Dynare.

Compare with solution obtained solving only for the states.

- Needs a lot of time. But it is worthy - especially if you want to calibrate

or later estimate the model.



Basic idea of accuracy tests

Theory E(f(xt; xt�1; yt; yt+1)jIt) = 0.
Then E(f(xt; xt�1; yt; yt+1)h(zt)0jIt) = 0 where zt 2 It and h(z) a con-
tinuous function of zt.

Test: f(xt; xt�1; yt; yt+1) should be white noise, i.e. for any simulated
path for (zt; xt; yt) correlation between f(xt; xt�1; yt; yt+1) and anything
in the info set should be zero.

This test should be tried for many drawing of shocks - the path of zt; xt; yt
depends on �t.



Example 6.1 Euler equation with CRRA utility:

c
��
t = �Et[c

��
t+1(�ztk

��1
t + (1� �))]

Euler error

ut = c
��
t � �c

��
t+1(�ztk

��1
t + (1� �))

Then, for example,
P
t
1
Tutct�1 should be closed to zero using simulated

paths for (ct; kt; zt).

Formally, you can compare Q = ( 1T
P
t utct�1)

2 to a �2(1)



- Paths very similar.

- Main di�erent is magnitude of recessions.



Alternatives

- Euler equation errors approach: compute Etf(xt; xt�1; yt; yt+1)h(zt)0

numerically using (many) simulated paths

If you repeat experiment for many �t could construct a distribution of

Q and compare it with a �2 distribution using the Kolmogorov-Smirnov

statistic.

- Welfare based approximations: compute welfare assuming kt = ks and

the optimal policy. Careful: the numbers here are typically small.



7 Forecasting

� You can do two types of forecasting in Dynare

- Unconditional forecasting, with the command forecast.

The options are the horizon of the forecasts( periods=number); and the

con�dence intervals of the forecasts (conf sig=number).

The command forecast must follow stoch simul command.

- If the steady command precedes stoch simul command then the initial

conditions of the forecasts are the steady state. If the steady command

is not used, the initial conditions of the forecast are the initval you use.



Note that the two need not to produce the same forecasts since in the

second case, you may be simply tracing out the dynamics out of the

steady states.

- Forecasts are stored in oo .forecast.xxx.variablename. xxx is the Mean,

HPDinf, HPDsup, where the last two are the upper and lower limits given

in conf sig option.



- Conditional forecasts can be computed with three sequential commands:

conditional forecast paths; conditional forecasts; plot conditional forecast.

- Conditional forecast paths specify the variables which are constrained,

the constrained value and the number of periods the variable is constrained.

Example 7.1 var y k c;

varexo e u;
...

stoch simul;

conditional forecast paths;

var y;

periods 1:3 ;

values 2;

end;



The conditional forecast command computes the conditional forecasts.

Options are:

- parameter set: tells dynare which set of parameters can be used. Here

we will use parameter set=calibration (This option is working only in the

versions above 4.2.3);

- controlled varexo tells dynare which exogenous variable needs to change

to insure that the path for the endogenous variable is the required one (in

the above example it could be either e, or u, or both);

- replic controls how many Monte Carlo replications will be computed (de-

fault=5000); the other two options (period=number, conf sig=number)

are the same as in the forecast command.



- The results of the conditional forecasting exercise are not automatically

plotted. If you want to see them use the command plot conditional forecast.

You can control how many periods you want to plot using the option pe-

riods = number.

Example 7.2 conditional forecast(parameter set = calibration,

controlled varexo = (e), replic = 3000, conf sig=0.95, periods=40);

plot conditional forecast(periods = 10) e c;



Alternatives to Dynare:

- IRIS (J. Benes, IMF); http://www.iris-toolbox.com/

- YADA (A. Warne, ECB); http://www.texlips.net/yada/



Solution to exercise 4.2

FOC

c��t = �Et[c
��
t+1(�exp(~zt+1)(

kt

ht+1
)��1 + (1� �))] (86)

h
1=�
t = c��t (1� �)exp(~zt)(

kt�1

ht
)� (87)

ct + kt = exp(~zt)k
�
t�1h

1��
t + (1� �)kt�1 (88)

~zt = �~zt�1 + �t (89)

In the steady states (�z = 0) the FOC are

�c�� = ��c��(�(
�k
�h
)��1 + 1� �) (90)

�h1=� = �c��(1� �)(
�k
�h
)� (91)

�c+ �k = �k��h1�� + (1� �)�k (92)

From the �rst equation we have a solution for
�k
�h
as a function of the parameters.



The other two equations determine �c and �h

�c = �h(
�k
�h
)� � ��k) (93)

�h1=� = (1� �)(�c)��(
�k
�h
)� (94)

The equations to put into Dynare are:

exp(��lnct) = �(exp(��lnct+1)) � (exp(lnzt+1)�
� exp((�� 1)(lnkt � lnht+1)) + 1� �) (95)

exp(lnht=�) = exp(��lnct)(1� �) � exp(lnzt) + �(lnkt�1 � lnht) (96)

exp(lnct) + exp(lnkt) = exp(lnzt + �lnkt�1 + (1� �)lnht)

+ (1� �)exp(lnkt�1) (97)

lnzt = �lnzt�1 + e (98)

where the endogenous variables are lnct; lnkt; lnht; lnzt, the exogenous innovation is et

and the parameters �; �; �; �; �; �; sige.


