
Likelihood methods for DSGE models

Fabio Canova

EUI and CEPR

January 2014



Outline

• State space models and the Kalman Filter.

• Prediction error decomposition of the likelihood.

• Numerical routines.

• ML estimation of DSGE models.

• Three examples.
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1 Why full information ML and not GMM (SMM)?

• GMM typically used in limited information settings (only a few equations

of the model considered).

• Important small sample distortions (especially in estimate of weighting
matrix, J-tests).

• GMM and SMM not designed for model comparison.

• Fail to satisfy likelihood principle (all information in an experiment is
contained in the likelihood of parameters).



2 State Space Models

 = 01 + 021 1 ∼  N(0Σ1) (1)

 = D0 + D1−1 + D22 2 ∼  N(0Σ2) (2)

01 is × 1 
0
2 is × 2; D0 is 1× 1 D1 is 1× 1 D2 is 1× 3.

Assume: (1
0
2) = 0 and (1

0
0) = 0 ∀  .

(1) is a measurement equation and  are the observables. (2) is a transi-

tion (state) equation and  is an unobserved state.

Why normality of the errors? If

"
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2

#
∼ (
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̄1
̄2

#
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Σ11 Σ12
Σ21 Σ22

#
), then

1|2 ∼ ((̄1 +Σ12Σ
−1
22 (2 − ̄2)); (Σ11 −Σ12Σ

−1
22 Σ21)].



State space framework is very general. Many popular time series models
and many interesting economic models with latent variables fit (1)-(2).

i) Any ARMA(1 2) fits (1)-(2).

Example 1  = 1−1 +2−2 +  +1−1 can be written as:

 = [1 0]

"


2−1 +1

#
"


2−1 +1

#
=

"
1 1
2 0

# "
−1

2−2 +1−1

#
+

"
1
1

#


which fits (1)-(2) for  =

"


2−1 +1

#
 D1 =

"
1 1
2 0

#


D2 =
"
1
1

#
 D0 = 0 01 = [1 0] Σ1 = 0 Σ2 = 2.



ii) Any VAR(p) fits (1)-(2) (with or without TVC)

Example 2  = ()−1 + . Use companion form representation Y =
AY−1 + E where E = [ 0    0]0 and

A =

⎡⎢⎢⎢⎣
1 2       

 0       0
              
0 0     0

⎤⎥⎥⎥⎦
Trivially fits (1)-(2) for 01 = [ 0    0]  = [

0
 

0
−1     

0
−] D1 =

A Σ1 = 0 2 = E D2 = D0 = 0.

Example 3

 = −1 + 1 (3)

 = −1 + 2 (4)



iii) Any latent variable specifications fits (1) and (2).

Example 4 Ex-ante real rate of interest:  ≡  −  = −1 + 2.

Observed real rate:  ≡  −  =  + 1, where 1 is an expectation

error.

Example 5 Potential output::  = −1 + 2. Measured output:  =

 + 1, 1 is the output gap.

Example 6 Trend/cycle decomposition. Trend:  = −1 + 2 . Ob-

servable data:  = 1 + 21. 
0
1 = 01 is the loadings on the trend

and 02 = 02 the loading on the cycle 1



3 Kalman Filter

Can be used to compute optimal forecasts of  and recursive estimates of

the latent state  with time  information for models like (1)-(2).

Let | be the optimal (MSE) estimator of  with information up to ;

and Ω| the MSE of . Assume 
0
1 = 01 02 = 02D1 = D1D2 =

D2D0 = D0 are known;  = 1     observations.

Five Steps:

• Choose initial conditions. If all eigenvalues of D1 are less then one in
absolute value, 02Σ12 02Σ22 positive semidefinite and symmetric,

set 1|0 = (1) and Ω1|0 = D1Ω1|0D01 + D2Σ2D02 or



(Ω1|0) = ( − (D1 ⊗ D01)−1)(D2Σ2D02), i.e. set initial conditions
equal to the unconditional mean and variance of the process. Otherwise,

1|0 = 0, Ω1|0 =  ∗ ,  large. OK because Ω1|0 symmetric positive
semidefinite.

• Forecast  and mean square of the forecast error (with − 1 info):
|−1 = 01|−1 (5)

( − |−1)( − |−1)
0 = (01( − |−1)( − |−1)

01) + 02Σ12

= 01Ω|−11 + 02Σ12 ≡ Σ|−1 (6)

• Update state estimate: (with  information)

| = |−1 +Ω|−1
0
1Σ
−1
|−1( − 1|−1) (7)

Ω| = Ω|−1 −Ω|−11Σ
−1
|−1

0
1Ω|−1 (8)

Note: Ω|−1
0
1 = ( − |−1)( − |−1)  is updated using linear

OLS projection of  − |−1 on  − |−1 multiplied by the prediction



error. Similarly, Ω| = ( − |−1)( − |−1)
0 updated using co-

variance between forecast errors in the two equations and the MSE of the

forecasts.

• Forecast the state next period:

+1| = D1| + D0 = D1|−1 + D0 + K (9)

Ω+1| = D1Ω|D01 + D2Σ2D
0
2 (10)

where  =  − 01|−1 is the one-step ahead forecast error, and K =

D1Ω|−11Σ
−1
|−1 is the Kalman gain.

• Repeat previous steps until  =  .

Note: we use properties of bivariate normal to construct updated mean

and variance of  in (7) and (8).



• Smoothing equations: (working backward from  )  =  − 1     1.

| = | + (Ω|D01Ω
−1
+1|)(+1| − D1|) (11)

Ω| = Ω| − (Ω|D01Ω
−1
+1|)(Ω+1| −Ω+1|)(Ω|D01Ω

−1
+1|)

0(12)

Equations (11)-(12) define the Kalman smoother.

• IMPORTANT: The Kalman smoother is used for extraction of time series
components (cycles, trends) not to estimate parameters of a structural

model.

Example 7  = 1−1 + 2−2 + . Then  = [ −1]0 2 =

[ 0] D1 =
"
1 2
1 0

#
 Σ2 =

"
2 0
0 0

#
 D0 = 1 = 0 

0
1 = [1 0].

KF Forecasts: −1 = 1−1 +2−2; ( −−1)2 = 2.

KF Updates: | = |−1+Ω|−1
−2
 2;Ω| = Ω|−1+Ω|−1

−2
 Ω|−1.



• Innovation representation of state space models:

|−1 = D1−1|−1 + D0 + K−1 (13)

 = 01|−1 +  (14)

 = one-step ahead forecast error and (
0
) ≡ Σ|−1. (13)-(14) is a

reduced rank system of equations!

Hansen and Sargent (1998, p. 126-128): Ω| = D1Ω−1|−1D01+D2Σ2D02−
D1Ω−1|−11(

0
1Ω−1|−11+02Σ12)

−101Ω−1|−1D1) (matrix Riccati
equation).

If coefficients are constant, under regularity conditions:

lim→∞Ω| = Ω; lim→∞K = K lim→∞Σ| = 01Ω1 + 02Σ12 = Σ.

ΩKΣ are asymptotically equivalent to those obtained with a recursive
least square estimator.



Example 8 GDP potential is  = −1; observable GDP is  = + 1,

1  N(0 21). Then

Ω| = Ω|−1 −Ω|−1(Ω|−1 + 21)
−1Ω|−1 =

Ω|−1

1+
Ω|−1
21

=
Ω−1|−1

1+
Ω−1|−1

21

;

+1|+1 = | +

Ω̄0
21

1+
Ω̄0
21

( − |) and lim→∞ +1|+1 = | = ̄.

Hence, when state is a constant, the KF asymptotically produces a con-

stant.



• KF can be applied to models with time varying coefficients, so long as
they are linear in parameters e.g.

 = −1 + 1

 = −1 + 2

• KF can be used in special non-linear state space models e.g.  =  +

1 +1 = +2 and interest is in  (both  and  are unobservable).

| = |−1|−1 + K1( − |−1)

| = |−1 + K2( − |−1) (15)

K1 =
|−11+|−12

1+21
K2 =

2
1+21

and 1 and 2 involve linear and

quadratic terms in |−1 and |−1 and in past Kalman gains (see Liung
and Soderstroem (1983), p. 39-40).



• If initial conditions and innovations are normal, Kalman filter best pre-
dictor (linear or nonlinear) of . Else, it gives best linear predictor.

Example 9 Suppose  is driven by a two state Markov process (which
switches, e.g. in expansions/recessions), i.e  = 0 + 1+ −1. A two
state Markov process can be written as

 = (1− 2) + (1 + 2 − 1)−1 + 1 (16)

where 1 can take values [1 − 1−1−(1 − 2) 2] with probabilities
[1 1− 1 2 1− 2].

- 1 is non-normal. (it is binomial)

- Corr(1 −   0) = 0, but 1 − are not independent

KF applied to this model is suboptimal: there are other approaches which
give forecasts of  with smaller MSE.



4 Prediction error decomposition

Basic idea: If (1     ) is the joint density of   = 1     . Then:

(1     ) = (  |−1    1)(−1    1)
= (  |−1    )(−1|−2    1)(−2    1)
  

=
Y

=0

(− |−−1    1)(1) (17)

and ln (1      ) ∝
P
 ln (− |−−1    1) + ln (1).

Suppose  = (1     ) ∼ N(̄Σ). Let  = (̄Σ).

lnL(1      |) = −


2
ln(2)− ln |Σ|)

2
)− 1

2
(− ̄)0Σ−1 (− ̄) (18)



Brute force approach. Problem: Σ is  ×  matrix. Alternative:

Let lnL(1     |) = lnL(1     −1|) lnL(|−1     0|). Since
 is normal, both components are normal.

Define:

- |−1: best predictor of , given information up to − 1.

-  =  − |−1 =  −(|−1    1) +(|−1    1)− |−1.

- MSE=(−())2 = (−(|−1    1))2+((|−1    1)−
|−1)

2 . MSE minimized if (|−1    1) = |−1, since first term
does not include |−1. Then  ≡ 2 = (|−1     1).



Density of (|−1   ) for any   1 is:

lnL(|−1     0 ) = −
1

2
ln(2)− ln()−

1

2

( − |−1)
2

2
(19)

lnL(1     |) =
X
=2

lnL(|−1     1 ) + lnL(1 )

= − − 1
2

ln(2)−
X

=2

ln −
1

2

X
=2

( − |−1)
2

2

− 1

2
ln(2)− ln1 −

1

2

(1 − ̄1)
2

21
(20)

• (20) can be computed recursively: it only involves one step ahead pre-
diction errors and their optimal MSE; both are scalars.



• |−1 and 2 vary with time; in original model they were time invariant.

• If (1) is constant, prediction errors = innovations in , and 2 =

2  ∀  1.

Example 10  = −1 +  ||  1,  ∼  N(0 2). Let  =

( 2). Assume that the process has started far in the past but it has

been observed only from  = 1 on. For any , |−1 ∼ (−1 2).
Hence,  =  − |−1 =  − −1 =  and 2 = 2 for  ≥ 2. The

unconditional of 1 is 1 ∼ N(0 2
1−2). Setting 1 = 1:



L(1      |) =
X
=2

L(|−1     1 ) + L(1|)

= −
2
(ln(2) + ln(2))−

1

2

X
=2

( −−1)2

2

+
1

2
(ln(1−2)− (1−2)21

2
) (21)

Hence  is a constant and  ≥ 2, and 21 =
2
1−2.



• Conditioning on initial observations eliminates nonlinearities. Conditional
decomposition useful to estimate models with MA terms (typically difficult
to deal with). As  → ∞, contribution of the first observation to the
likelihood negligible and exact and conditional ML coincide.

• If model has constant coefficients, the errors normally distributed and
initial observations given, maximum likelihood and OLS estimators coincide
(not if the model has MA terms).

• Multivariate decomposition ( is × 1).

L(1      ) = −
2
ln(2)− 1

2

X
=1

ln |Σ|−1|

− 1

2

X
=1

( − |−1)Σ
−1
|−1( − |−1) (22)

where  =  − |−1 ∼ N(0Σ|−1) and 1 ∼ N(̄1Σ1); 1 = 1 − ̄1.



• The Kalman filter can be used to compute the likelihood function (it
produces  and Σ|−1) for any model with a state space representation.

• Maximization/filtering (EM) algorithm.

Let  = [(1) (2) (D1) (D0) (D2)]

1) Choose 0. To choose the initial values of : run an OLS regression on

the constant coefficient version of the model (consistent for average),

or on the sample [ 0].

2) Run KF for each .



3) Save  = − |−1 and Σ|−1. Construct the likelihood (22) each t.
(For large scale models, use Choleski factor Σ|−1 = PP0).

4) Update 0 using any of the methods described in next section.

5) Repeat steps 2) through 4) until |−−1| ≤ ; |L()−L(−1)|  ;

or (
L()
 )|

=
 , or all of them,  small.

Once converged, standard errors of estimates are obtained from square

root of the diagonal elements of Hessian ().



-  consistent;

-  05( − 0)
→ N(0 −1I−1); I = −(P

2 lnL
0 |=0).

For this to occur we need:

i) the state equation defines a covariance stationary process. For constant

coefficient models: sufficient that the roots of D1  1.

ii) The exogenous variables are covariance stationary, linearly regular.

iii) 0 is not on the boundary of the parameter space

iv) The likelihood is, roughly, quadratically.



• If distribution of errors misspecified: KF estimates still consistent. (In-
tuition: if  large, assuming normality not bad).

• Estimates of asymptotic covariance matrix:
i) 1() = −2 lnL()

0 |=
.

ii) 2() = −
P
(
 lnL()

 |=
)(
 lnL()

 |=
)0.

iii) (QML) 3() =
1
 ((

1
 1())(

1
 2())

−1( 1 1()))
−1



• Hypothesis testing:

- t-tests

- LR tests, e.g. −2(L − L) ∼ 2()

- LM test: 1
 [
P

 lnL()

 ]0(I)−1[P
 lnL()

 ] ∼ 2(),  = number of

restrictions.

Example 11 For an ARMA(2,1) model, if 1 = 0, conditional ML esti-

mates of  = [1 2]
0 solve 0 = 0, where  = [−1 −2]  =

[1    ]
0. If 1 6= 0, the equations are nonlinear and no closed form

solution exists. Impose 1 = 0 in estimation and test if restriction holds.



5 Methods to maximize functions

Grid search

- Feasible when the dimension of  is small.

- Advantage: no derivatives needed.

- Disadvantage: if function not globally concave, multiple peaks, may

stop at local maximum.

Use as initial conditions for other algorithms.



Simplex method

- If lnL() = max=1+1 lnL() replace  by + (1− )̄,

where ̄ is the centroid of (m+1) points.

- Advantage: fact, no derivatives needed, use when gradient methods

fail.

- Disadvantage: no standard errors are available.



Gradient methods:

a) Steepest ascent:  = −1 + 1
2(

) where () =
 lnL(=)

 ,

 is the Lagrangian multiplier of the problem

max

lnL() subject to ( − −1)0( − −1) = .

If  ≈ −1 () = (−1) then  = −1 + (−1)  ≈
10−5. Problem: it requires a lot of iterations.



b) Newton-Raphson: applicable if
2 lnL()
0 exists and lnL() is con-

cave (i.e.
2 lnL()
0 positive definite).

lnL() = lnL(0) + (0)(− 0)

− 05(− 0)0
2 lnL()
0

(0)(− 0) (23)

Maximizing lnL() with respect to  leads to:

 = −1 + (
2 lnL()
0

())−1() (24)

If likelihood quadratic (24) generates MLE in one step. If close

to quadratic → good properties. If far from quadratic worse than

steepest ascent.



c) Hybrid:  = −1 + (
2 lnL()
0 (

))−1(),   0.

d) Modified Newton-Raphson: (b) requires inversion of
2 lnL()
0 .

Modified method uses
()
 ≈ 2 lnL()

0 . Let Σ
 be an estimate of

2 lnL()
0 at iteration .

(Σ) = (Σ−1)−1− (Σ
−1)−1(∆)(∆)0(Σ−1)−1

(∆)0(Σ−1)−1(∆)
+
(∆)(∆)0

(∆)0(∆)
(25)

where ∆ =  − −1, ∆() = () − (−1). If likelihood
is quadratic and  large, lim→∞  =  and lim→∞Σ =

(
2 lnL()

0 )−1. Standard error= diagonal elements of Σ evalu-

ated at .



e) Scoring Method. Uses the information matrix
2 lnL()
0 in place of

2 lnL()
0 where the expectation is evaluated at −1. Information
matrix approximation convenient: simpler than Hessian.

f) Gauss-Newton method. Approximates
2 lnL()
0 with a function

of (|)
0(|), where  is the value of  at iteration  and

 are the errors in the model. For constant state space models,

the approximation is proportional to the vector of regressor con-

structed using the right hand side variables of both the state and

the measurement equations. If the model is linear in parameters:

Gauss-Newton= Scoring.



Numerical Methods.

Work in situations where gradient methods fail. In particular, when

the objective function is not smooth, not continuous, can have local

maxima or large flat areas. Need only the function to be bounded

(otherwise no maximum).

• Simulated Annealing. Procedure has two loops. Internal loop to
explore the function you want to maximize. External loop to zoom-

in in the area where the first loop has found local maxima to find

the global one.

Idea:

1) Given a parameter vector, a new vector of candidates is gener-

ated with a Random Walk Metropolis algorithm using a uniform

distribution on the jump and the value of the objective function



is found at the old and new parameter values. Given a T (a

parameter to be chosen by the investigator) accept the move if

(−∆ ) is larger than a uniform random variable drawn

from a (0,1) distribution, otherwise reject and make a new draw.

2) Repeat step 1, J times, starting from different initial conditions.

3) Let  =   ∈ (0 1). Repeat steps 1)-2).
4) Repeat steps 1)-3) starting at the optimnal parameter values

found in 1)-2). Since T is smaller, the probability to reject a draw

is larger. Continue until |− ∗|   where ∗ indicates the
maximum at the previous iteration.



Problems:

i) The algorithm does not work on non-convex sets so need to put

an upper and lower bound on the generation of candidates in 1)

and if a candidate goes outside the bounds, pick a random point

in the interval.

ii) Time consuming.

iii) Lots of parameters needs to be set by investigator. Needs trials

and errors (see Andreasan, 2010).



• Genetic algorithm. Tries to approximate the countours of the func-
tion you want to maximize numerically and get better and better

approximation with iterations.

Idea:

1) Start from 0 = 1 0 = .

2) Generate M points in generation +1: +1 ∼ ( ()2)  =

1    . Can put bounds on +1. If draws are outside the

bounds, resample until draws are inside. Compute the objective

function at these points.

3) Compute 
+1
 =

P1
=1 

+1
 , i.e. use a weighted av-

erage of a subset of the points you have drawn. Update ()2

and  using the previous estimate plus a piece which depends on

the correlation among generations and a piece correcting for the

dimensionality of .



4) Repeat steps 2)-3). Continue until the value of the objective

function at the new set of points from generation  + 1 is not

different than the value in the previous generation (or particular

average across previous generations). Here take the sup across

dimensions.

Problems:

i) Many free parameters to be chosen (for some standard choices

see Andreasan (2010).

ii) Could be very computationally intensive.

iii) Works also if the objective function is not convex but better to

convexify the space by resampling.



6 ML estimation of DSGE models

• Log linearized solution of a DSGE model is

2 = A22()2−1 +A21()3 (26)

1 = A1()2 = A11()2−1 +A12()3 (27)

2 = states and the driving forces, 1 = controls, 3 shocks. A()

  = 1 2 are time invariant (reduced form) matrices which depend on ,

the structural parameters of preferences, technologies, policies, etc. There

are cross equation restrictions since   = 1      appears in more than

one entry of these matrices.

- (27) is a singular state space system.



Example 12 (Sticky price model) Assume () = ln  + ln(1 −
) +

1−

1− , and the production function  =  

1−
 . Set 

 =

033  = 1005  = 099 ( 
 )

 = 07,  = 7 (consumption
elasticity of money demand),  = 075 (on average firms change prices
every three quarters). Persistence of technology disturbances=0.95; per-
sistence of monetary policy shocks=0.75 Parameters of policy rule: 1 =
05;2 = 16. Then the decision rules are:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bbbbbbbb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

012 002
136 090
080 053
1695 −051
2649 −137
080 053
1007 −025
130 −011

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∙ b−1b−1

¸
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−003 001
020 −001
044 −001
273 −019
270 −031
044 −001
136 090
012 012

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∙ b1b3

¸

b1 = technological disturbance; b3 = monetary disturbance.



• (26)-(27) is general; certainty equivalence not required, needs not be
the solution to the model; can be used also in partial equilibrium models

(Watson (1989))

Example 13 +1 = + where  = −1+ , 0 given. (e.g. in

a New-Keynesian Phillips curve:  = , valuation equation:  = ).

Note that  = −1 +    = −1 + 

 where +1 =  =

(−1 +  ) and +1 = (−1 + 

 ) + (−1 +  ).

To fit the model into (27) set 1 = [ ] 2 = [−1 −1] 3 =
[  ], where  = 


 − ( | ) = 


 −  , A11() =  A12() ="

1 0
 1

#
A22() =

"
 0
1 

#
A21() =

"
 0

1 +  

#
. Here  =

(   2 
2
).



• DSGE-ML algorithm:

i) Pick  = 0 3 = 03 20.

ii) Solve the model and run the Kalman filter.

iii) Compute the likelihood and maximize it with respect to  3.

iv) Repeat i)-iii) until convergence. Read standard errors off the Hessian.



Difficult issues:

• Parameters need to be identifiable. Difficult to say if all are, and if they are not, which
are identifiable if () large - some parameters may enter only the steady states (not

taken into account in the likelihood) or in combination with others (Iskrev (2008)).

In practice, arbitrarily choose one set (1) and estimate others (2). Problem of con-

sistency and asymptotic distribution of 2. Better: jointly estimate 1 2 using scores

and moments (add conditions).

• (27) is the solution to a DSGE model. Since solution mixes up the information content
of all equations, all parts of the model must true for ML estimation to be consistent. Can

we assume that?

• Unconstrained maximization often leads to estimates on boundary. Transform parame-

ter space so that support is the real line or do constrain maximization (see later on).



• Singularity problem: shock vector smaller than endogenous variables
vector.

Solution 1: add serially uncorrelated, contemporaneously correlated mea-
surement errors to some variables (see e.g. Altug (1989), Kim (2000)).
Ireland (2003): VAR(1) measurement error.

Solution 2: drop variables. Which ones? Need to make sure that kept ones
have information (they are ancillary to the parameters). Same problem
when there are too many potential instruments - IV estimates may be
different, all of them inefficient.

Two ways of doing this: a) write likelihood of equations (hopefully some
variables are non-observables); b) reduce solution to a -equations model.

In (27), if both 2 and 1 are used, solution is also a restricted VAR(1)).
If reduced to only 1, how the solution looks like?



i) If A12 is invertible

3 = A−112 (1 −A112−1)

2 = A222−1 +A21A−112 (1 −A112−1)

(1− (A22 −A21A−112 A11))2 = A21A
−1
12 1

If A22 −A21A−112 A11 has all eigenvalues less than 1

2 = (1− (A22 −A21A−112 A11))
−1A21A−112 1

and

1 = A11(1− (A22 −A21A−112 A11))
−1A21A−112 1−1 +A123 (28)

(26)-(27) produce a VAR(∞) for 1.



ii) If A11 is invertible

2−1 = A−111 (1 −A123)

A−111 (1+1 −A123+1) = A22A
−1
11 (1 −A123) +A213

1+1 = A11A22A−111 1 + (A11A21 −A11A22A
−1
11 A12)3 +A123+1)

1+1 = A11A22A−111 1 + ( + (A11A21A
−1
12 −A11A22A

−1
11 ))4+1

where 4 ∼ (0A012A12)

(26)-(27) produce a VARMA(1,1) for 1.



iii) Final form computations. From ii) 1 = 11−1 +  + 1−1.

For any two elements 11 
2
1

"
1− 11 −12
−21 1− 22

# "
11
21

#
=

"
1− 11 12
21 1 + 22

# "
1
2

#
;

(()) = (1 + 11)(1 + 22)− 1221
2

∙
1 + 22 −21
−12 1 + 11

¸ ∙
1− 11 −12
−21 1− 22

¸ ∙
11
21

¸
= (())

∙
1
2

¸

(26)-(27) produce a VARMA(2,2) for (11 
2
1).



If rank of () is reduced, write

() =

"
1 + 11 11
21 1 + 21

#
some .

Then (()) = 1+ (11 + 21) and (26)-(27) produces VARMA(2,1)

for (11 
2
1).



• Model Validation (i), Statistical tests:

(a) t-test, stability tests, Likelihood ratio test (restricted VAR (model) vs

unrestricted VAR (data)), forecasting tests (see Ireland (2001, 2004)).

(b) Cross equation restrictions.



Example 14 Hybrid Philips curve (Gali and Gertler (1999))

 = 1+1 + 2−1 + 3 + 

 measurement error. Let Y = AY−1 +  be the companion form

where Y be of dimension  × 1 ( variables with  lags each). Since

(+ |Y) = S1AY and (+ |Y) = S2AY where S1 and S2 are
selection matrices, model implies  restrictions of the form

S2[A− 1A2 − 2] = 3S2A

If  = 1, Y = (, labor share) and  are VAR parameters:

12 − 11211 − 12212 = 311

22 − 12112 − 1
2
22 − 2 = 321 (29)

Four unknown and two equations: solve for, e.g., 21 and 22 as a function

of 11 and 12.



Idea:(29) requires that expectations of real marginal costs and inflation

given by a VAR to be consistent with the dynamics of the model. To

impose (29) express VAR coefficients of the inflation equation as a function

of the remaining ( − 1) VAR coefficients and the parameters of the

theory.

Restricted likelihood is L ∝ −
2 [ln |Σ|+ where Σ =

1


P
 ̂()̂()

0 is
the variance covariance matrix of the VAR errors,  =  −

P
 ()−

and where the constrained parameters necessary to compute ̂ are obtained

for each  from (29).

To tests restrictions: compare likelihood of restricted (VAR) model and

unrestricted VAR.



Cross equation restriction tests are limited information tests:

- other relationships disregarded (e.g. Euler equation).

- depend on VAR representation for the data.

- expectations must be the same as linear projections.

• Model Validation (ii); Economic tests. Given  :

(a) compute conditional moments (impulse responses/variance decompo-
sitions/historical decompositions) and standard errors.

(b) compute unconditional moments (variability, cross correlations) and
standard errors.

(c) compute welfare measures, costs due to stochastic policy, etc. and
standard errors.



7 Frequency domain maximum likelihood

- Kalman filter is convenient but there are other methods to compute the

likelihood which are equally convenient.

- For DSGE models one may want to estimate the parameters at business

cycle frequencies (rather than all frequencies).

- A way to do so is to express the likelihood of the model in frequency do-

main. The frequnecy domain approximation to the likelihood can be com-

bined with a prior to yield a posterior distribution in a standard Bayesian

analysis.



Recall: the (log-) linearized solution of a DSGE model is

2 = A22()2−1 +A21()3 (30)

1 = A1()2 = A11()2−1 +A12()3 (31)

2 are states and the driving forces, 1 are observable controls, 3 shocks.

A()

  = 1 2 are time invariant (reduced form) matrices which depend on ,

the structural parameters.

The log-likelihood of the observable 1’s is

(|) = −(2)(ln(2)− ln |Σ3|)

− 1

2
(1 −A1()(1−A22())−1A21()3)0(Σ3)

−1

× (2 −A1()(1−A22())−1A21()1) (32)



The spectral density of 1 is

1() =
1

2
A1()(1−A22()−)−1A21()Σ3

× A21()0(1−A22()0)−1A1()0 (33)

Following Sargent and Hansen (1993) we can approximate using log-likelihood
using the spectral density in the the following way:

(|1) = 1() +2() (34)

1() =
1



X


log det1() (35)

2() =
1



X
0

trace [1()]
−1 () (36)

where  =
2
   = 0 1      − 1 are Fourier frequencies, 1() is

defined above and  () is the data based spectral density of 1



- The first term is the one-step ahead forecast error matrix (sum of the

prediction errors across frequencies);

- The second term is a penalty function. It measures deviations of the

model-based spectral density from the data-based spectral density at var-

ious frequencies (frequency 0 is excluded).

Since  () is not available we estimate it with the periodogram ()

which is a consistent estimator (as T grows). The periodogram is com-

puted as

() =
1


()()

0 (37)

where () =
P
 1

−



Note that in case the steady states are included in the representation, i.e.

the model is for the level of 1 there is a third term to the likelikood

approximation which is given by:

3() = (()− ())1(0)
−1(()− ()) (38)

where () the model based mean of 1 and (1) the unconditional mean

of the data. This term is another penalty function, weighting deviations

of model-based from data-based means, with the spectral density matrix

of the model at frequency zero.

The elements in 1() and 2() are asymptotically uncorrelated. Thus,

one can include only the elements associated to the frequencies of interest



- Can also estimate the model using different frequencies and check how

the choice impact on parameter estimates. In this case 1() and 2()

become

1()
† =

1



X


() log det1() (39)

2()
† =

1



X
0

()trace[1()]
−1 () (40)

where () is an indicator function, equal to 1 for the frequencies included

and equal to 0 for the frequencies which are excluded.



Example 15 Christiano-Viggfusson, JME, 2003. Estimate a number of

RBC models with frequency domain ML.



8 Examples

8.1 Example 1: Gali (1999, AER)

∆ = 3−1 − (1− )1−1 (41)

∆ = ∆3 + 1 − (1− )1−1 (42)

 =
1


3 −

1− 


1 (43)

∆ = (1− 1


)∆3 + (

1− 


+ )1 + (1− )(1−

1


)1−1

(44)

where  =  −  and  = 1(2 + (1− 2)
1+
1+

).



1= technology shock, 3= monetary shock,  = response to money to

technology, 1 = exponent of effort and hours in intermediate production

function, 2 = weight on hours in Cobb-Douglas,  exponent on effort

and hours in utility.

• two shocks (1 3); four variables (∆∆∆ );

• 11 free parameters (1 2    21 22,    ). Only 

and  identifiable together with 21 and 
2
2.



• State space representation:  = [1 1−1 3 3−1 1 2], (1 and
2 measurement errors); Σ1 = 0

1 =

⎡⎢⎢⎢⎢⎢⎣
0  − 1 0 1 0 0
 1−  1 −1 1 0
−1
 0 1

 0 0 0
1−
 + 

(1−)(−1)


−1
 −−1

 0 1

⎤⎥⎥⎥⎥⎥⎦,

D1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, D2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦



ML estimates, Canada 1980-2002
Data set   21 22 likelihood
(∆ ) 0.5533 0.9998 1.06e-4 6.69e-4 704.00
(∆ ) -7.7336 0.7440 6.22e-6 1.05e-4 752.16
(∆∆) 3.2007 1.26e-5 1.57e-4 847.12

  21 22 21 22 likelihood
(∆∆∆) -0.9041 1.2423 5.82e-6 4.82e-6 0.02360.0072 1336
p-values  = 0  = 1  = 1  = −10 = 12
(∆ ) 0.03 0.97 0.01 0.00
(∆ ) 0.00 0.00 0.00 0.00
(∆∆∆) 0.00 0.001 0.00 0.87

 = 0 = 1  = −10
(∆∆) 0.00 0.00 0.00
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Cross covariances
Moments/Data (∆ ) (∆ ∆∆) Actual data
cov(∆ ) 6.96e-04 4.00e-06 1.07e-05
cov(∆∆) 5.86e-05 1.56e-06 1.36e-05
cov(∆) -4.77e-05 1.80e-06 -4.95e-05
cov(∆∆) 6.48e-04 2.67e-06 -2.48e-05
cov(∆∆−1) 6.91e-04 3.80e-06 3.443-05
cov(∆∆−1) -1.51e-04 1.07e-06 -2.41e-05



8.2 Example 2: Is Government expenditure procyclical?

Agents max 
P
 

(log − ) subject to

 +  +  = 

 ()

1− =  (45)

+1 = (1− ) +  (46)

log = (1− ) log+  log−1 + 1 (47)

log = (1− ) log+  log−1 + −1 + 2 (48)

Parameters:          .

Interest: sign and magnitude of 

Use linearly detrended US data, 1948-2002 for (  ), add two mea-

surement errors.



Parameter Estimate St. Err.
 0.99 NA
 3.196 0.011
 0.098 0.0001
 1.026 NA
 0.045 0.034
 3.001 72.77
 0.994 0.127
 32.02 0.021
 1.047 0.024
 0.685 0.001
 28.56 0.657
 -2.012 0.032
1 54.85 0.827
2 62.56 0.992

Detrended data is not stationary!!!



8.3 Example 3: Does money matter for business cycles?

- Use a basic New-Keynesian model without capital.

- Allow

i) external habits in consumption:  =  − −1,

ii) real balances and consumption non-separable in utility: (  )− ();

iii) the growth rate of nominal balances enters the nominal interest rate

determination:  = (− −∆−) ≥ 0.



The log-linearized conditions

̂ =
1

1 + 
̂+1 +



1 + 
̂−1 −

1

1 + 
((̂ −̂+1)− (̂ −̂+1))

+
2

1 + 
((m̂t − êt)− (Etm̂t+1 −Etêt+1)) (49)

̂ = 1(̂ − ̂−1)− 2̂ + (1− ( − 1)2)̂ (50)

̂ = ̂+1 + (
1

1
(̂ − ̂−1)− ̂ −

2

1
(m̂t − êt)) (51)

̂ = ̂−1 + (1− )̂− + (1− )̂−
+ (1− ρr)ρm∆(m̂t−p + π̂t−p) + ̂ (52)



where

1 = −
1(




)

11(



)

(53)

2 = −



12(




)

11(



)

(54)

2 =


( − 1)()
(

2(



)

( − 1)12( 



)−22(




)
) (55)

1 = ( − 1 +2



)(
2
1
) (56)

 =
 − 1


(57)



Data

- 1959:1 to 2008:2 for the US (FRED Data base)

- 1970:1 to 2007:4 for the Euro area (ECB)

- 1965:1 to 2008:2 for the UK (Bank of England)

- 1980:1 to 2007:4 for Japan (IMF and OECD data bases)

- Inflation = GDP deflator; Money = M2 (in UK M4), to be consistent

with literature; Interest rates = 3 months rate.



Full sample estimates

Parameter US Japan EU UK
2 -0.511 -0.225 -0.290 0.174

(0.482) (0.135) (0.058) (0.034)
 1.578 1.047 1.071 -0.365

(0.195) (0.447) (0.267) (0.475)
p 1 0 0 0

LR test p-value 0.00 0.00 0.00 0.00
Log Bayes factor 17.53 22.95 26.56 42.72

- 2 :direct role of money.  the long run indirect effects of money.

-  = 0 contemporaneous rule,  = 1 lagged rule.

- Standard errors in parenthesis. LR test and Log Bayes factor test jointly 2 = 0  = 0.

The LR test uses 2(log − log), the log Bayes factor is approximated by (log −
log) − 05( − ) ∗ log( ), where  is the number of parameters in  =  . Log

Bayes factor strongly significant if value  10, weakly significant if value [2,10].



What is the economic relevance of money?
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Monetary
Preference a
Preference e
Technology

One step ahead historical decomposition of EU inflation

- Most of the fall is predictable in both cases.

- Without money: technology shocks much less important and monetary policy shocks

relatively more important.



Tips

- Likelihood of DSGE models badly behaved. Start optimization many

times from different initial conditions. Map the shape of the likelihood

function to find the maximum.

- Use a ”good” optimizer (e.g. csminwell.m is good, fminunc.m is bad).

- Explore well flat regions: there may be a spike somewhere.

- Check model misspecification. Likelihood bad if model is poorly specified

in some dimensions.

- Small samples cause the likelihood to be flat.



9 Exercises

1) Suppose  =  + 1 and  = 1 if   0 and  = 2  1 if  ≥ 0. Show

what is the Kalman filter estimate of . Is the Kalman filter optimal here? Why?

2) Suppose  = +−1. Write down the prediction error decomposition for this model.

Can I find  treating 1 as given? Why? Why not?

3) Can I estimate the parameters  of a DSGE model using the following two step

approach? Estimate A with the Kalman filter from the data; find  to minimize || bA−
A()||. Why? How does this compare to maximum likelihood estimate?


