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Preface

The first papers that used Bayesian techniques to estimate dynamic stochastic general equi-

librium (DSGE) models were published about fifteen years ago: DeJong, Ingram, and White-

man (2000), Schorfheide (2000), and Otrok (2001). The DSGE models at the time were

relatively small in terms of the number of parameters and hidden states, and were estimated

with, by today’s standards, fairly simple versions of Metropolis-Hastings (MH) or impor-

tance sampling algorithms. Since then, DSGE models have grown in size, in particular the

ones that are used by central banks for prediction and policy analysis. The celebrated Smets

and Wouters (2003, 2007) has more than a dozen hidden states and thirty-six estimated

parameters. The Smets-Wouters model forms the core of the latest vintage of DSGE models

which may add a housing sector, search frictions in the labor market, or a banking sector

and financial frictions to the basic set of equations. Each of these mechanisms increases the

state space and the parameter space of the DSGE model.

The goal of this book is to assess the accuracy of the “standard” Bayesian computational

techniques that have been applied in the DSGE model literature over the past fifteen years

and to introduce and explore “new” computational tools that improve the accuracy of Monte

Carlo approximations of posterior distributions associated with DSGE models. The reader

will quickly notice that the tools are not really new (which is why we used quotation marks):

they are imported from the engineering and statistical literature and tailored toward DSGE

model applications. The book is based on a series of lectures on Recent Theory and Ap-

plications of DSGE Models which were presented as the Tinbergen Institute Econometrics

Lectures at the Erasmus University Rotterdam in June 2012, but the material has evolved

significantly since then.

The book is consists of three parts. The first part consists of an introduction to DSGE

modeling and Bayesian inference. We present a small-scale New Keynesian model, show how

it can be solved and turned into a state-space model that is amenable to Bayesian estima-

tion. We also provide a primer on Bayesian inference for readers unfamiliar with Bayesian

xi



xii

econometrics. While this primer is not a substitute for a thorough textbook treatment, it

tries to explain the key ideas in the context of a linear Gaussian regression model. More-

over, we provide an introduction to important computational techniques: direct sampling,

importance sampling, and Metropolis-Hastings algorithms.

The second part of the book is devoted to Bayesian computations for linearized DSGE

models with Gaussian shocks. Thus, we focus on models for which the likelihood function

can be evaluated with the Kalman filter. Starting point is the Random-Walk MH algorithm,

which is the most widely-used algorithm for Bayesian estimation of DSGE models in the

literature. We discuss several refinements to this algorithm before proceeding with Sequential

Monte Carlo (SMC) methods. While popular in the statistical literature, there are hardly

any applications to the estimation of DSGE models. We provide a detailed discussion of

how to tune these algorithms for DSGE model applications and examine their accuracy.

The performance of MH and SMC algorithms is compared in three empirical applications.

The last part of the book focuses on computations for DSGE models solved with nonlinear

techniques. The main difference is that the likelihood function can no longer be evaluated

with the Kalman filter. It requires a sequential Monte Carlo filter (also called particle filter),

instead. To avoid any disappointments, we hasten to point out that we are actually not

estimating any nonlinear DSGE models in this book. Instead, we are using various versions

of particle filters to evaluate the likelihood function of linear DSGE models. This has the

advantage that we can easily compare results from procedures that utilize particle filters to

procedures that use the exact Kalman filter and thereby assess the accuracy of the particle

filter approximation. We begin with likelihood evaluations conditional on a fixed parameter

vector and subsequently embed the particle filter approximations of the likelihood function

into MH and SMC algorithms to conduct posterior inference for the DSGE model parameters.

Edward Herbst

Frank Schorfheide

Whenever, 2014
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Introduction to DSGE Modeling and

Bayesian Inference
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Chapter 1

DSGE Modeling

Estimated dynamic stochastic general equilibrium (DSGE) models are now widely-used by

academics to conduct empirical research macroeconomics as well as by central banks to

interpret the current state of the economy, analyze the impact of changes in monetary or

fiscal policy, and to generate predictions for key macroeconomic aggregates. The term DSGE

model encompasses a broad class of macroeconomic models that span the real business cycle

models of Kydland and Prescott (1982) and King, Plosser, and Rebelo (1988) as well as the

New Keynesian models of Rotemberg and Woodford (1997) or Christiano, Eichenbaum, and

Evans (2005), which feature nominal price and wage rigidities and a role for central banks to

adjust interest rates in response to inflation and output fluctuations. A common feature of

these models is that decision rules of economic agents are derived from assumptions about

preferences and technologies by solving intertemporal optimization problems. Moreover,

agents potentially face uncertainty with respect to total factor productivity, for instance, or

the nominal interest rate set by a central bank. This uncertainty is generated by exogenous

stochastic processes that shift technology, for example, or generate unanticipated deviations

from a central bank’s interest-rate feedback rule.

The focus of this book is the Bayesian estimation of DSGE models. Conditional on distri-

butional assumptions for the exogenous shocks, the DSGE model generates a joint probability

distribution for the endogenous model variables such as output, consumption, investment,

and inflation. In a Bayesian framework, this likelihood function can be used to transform a

prior distribution for the structural parameters of the DSGE model into a posterior distribu-

tion. This posterior is the basis for substantive inference and decision making. Unfortunately,

it is not feasible to characterize moments and quantiles of the posterior distribution analyti-
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cally. Instead, we have to use computational techniques to generate draws from the posterior

and then approximate posterior expectations by Monte Carlo averages.

In Section 1.1 we will present a small-scale New Keynesian DSGE model and describe

the decision problems of firms and households and the behavior of the monetary and fiscal

authorities. We then characterize the resulting equilibrium conditions. This model is sub-

sequently used in many of the numerical illustrations. Section 1.2 briefly sketches two other

DSGE models that will be estimated in subsequent chapters.

1.1 A Small-Scale New Keynesian DSGE Model

We begin with a small-scale New Keynesian DSGE model that has been widely studied in

the literature (see Woodford (2003) or Gali (2008) for textbook treatments). The particular

specification presented below is based on An and Schorfheide (2007a). The likelihood func-

tion for a linearized version of this model can be quickly evaluated, which makes the model

an excellent showcase for the computational algorithms studied below.

1.1.1 Firms

The perfectly competitive, representative, final good producing firm combines a continuum

of intermediate goods indexed by j ∈ [0, 1] using the technology

Yt =

(∫ 1

0

Yt(j)
1−νdj

) 1
1−ν

. (1.1)

Here 1/ν > 1 represents the elasticity of demand for each intermediate good. The firm

takes input prices Pt(j) and output prices Pt as given. Profit maximization implies that the

demand for intermediate goods is

Yt(j) =

(
Pt(j)

Pt

)−1/ν

Yt. (1.2)

The relationship between intermediate goods prices and the price of the final good is

Pt =

(∫ 1

0

Pt(j)
ν−1
ν dj

) ν
ν−1

. (1.3)

Intermediate good j is produced by a monopolist who has access to the following linear

production technology:

Yt(j) = AtNt(j), (1.4)
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where At is an exogenous productivity process that is common to all firms and Nt(j) is the

labor input of firm j. Labor is hired in a perfectly competitive factor market at the real

wage Wt. Firms face nominal rigidities in terms of quadratic price adjustment costs

ACt(j) =
φ

2

(
Pt(j)

Pt−1(j)
− π

)2

Yt(j), (1.5)

where φ governs the price stickiness in the economy and π is the steady state inflation rate

associated with the final good. Firm j chooses its labor input Nt(j) and the price Pt(j) to

maximize the present value of future profits

Et

[
∞∑
s=0

βsQt+s|t

(
Pt+s(j)

Pt+s
Yt+s(j)−Wt+sNt+s(j)− ACt+s(j)

)]
. (1.6)

Here, Qt+s|t is the time t value of a unit of the consumption good in period t + s to the

household, which is treated as exogenous by the firm.

1.1.2 Households

The representative household derives utility from real money balances Mt/Pt and consump-

tion Ct relative to a habit stock. We assume that the habit stock is given by the level of

technology At. This assumption ensures that the economy evolves along a balanced growth

path even if the utility function is additively separable in consumption, real money balances,

and leisure. The household derives disutility from hours worked Ht and maximizes

Et

[
∞∑
s=0

βs
(

(Ct+s/At+s)
1−τ − 1

1− τ
+ χM ln

(
Mt+s

Pt+s

)
− χHHt+s

)]
, (1.7)

where β is the discount factor, 1/τ is the intertemporal elasticity of substitution, and χM

and χH are scale factors that determine steady state real money balances and hours worked.

We will set χH = 1. The household supplies perfectly elastic labor services to the firms

taking the real wage Wt as given. The household has access to a domestic bond market

where nominal government bonds Bt are traded that pay (gross) interest Rt. Furthermore,

it receives aggregate residual real profits Dt from the firms and has to pay lump-sum taxes

Tt. Thus, the household’s budget constraint is of the form

PtCt +Bt +Mt −Mt−1 + Tt = PtWtHt +Rt−1Bt−1 + PtDt + PtSCt, (1.8)

where SCt is the net cash inflow from trading a full set of state-contingent securities. The

usual transversality condition on asset accumulation applies, which rules out Ponzi schemes.
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1.1.3 Monetary and Fiscal Policy

Monetary policy is described by an interest rate feedback rule of the form

Rt = R∗ 1−ρR
t RρR

t−1e
εR,t , (1.9)

where εR,t is a monetary policy shock and R∗t is the (nominal) target rate:

R∗t = rπ∗
( πt
π∗

)ψ1
(
Yt
Y ∗t

)ψ2

. (1.10)

Here r is the steady state real interest rate, πt is the gross inflation rate defined as πt =

Pt/Pt−1, and π∗ is the target inflation rate, which in equilibrium coincides with the steady

state inflation rate. Y ∗t in (1.10) is the level of output that would prevail in the absence of

nominal rigidities.

The fiscal authority consumes a fraction ζt of aggregate output Yt, where ζt ∈ [0, 1] follows

an exogenous process. The government levies a lump-sum tax (subsidy) to finance any

shortfalls in government revenues (or to rebate any surplus). The government’s budget

constraint is given by

PtGt +Rt−1Bt−1 = Tt +Bt +Mt −Mt−1, (1.11)

where Gt = ζtYt.

1.1.4 Exogenous Processes

The model economy is perturbed by three exogenous processes. Aggregate productivity

evolves according to

lnAt = ln γ + lnAt−1 + ln zt, where ln zt = ρz ln zt−1 + εz,t. (1.12)

Thus, on average technology grows at the rate γ and zt captures exogenous fluctuations of

the technology growth rate. Define gt = 1/(1− ζt). We assume that

ln gt = (1− ρg) ln g + ρg ln gt−1 + εg,t. (1.13)

Finally, the monetary policy shock εR,t is assumed to be serially uncorrelated. The three

innovations are independent of each other at all leads and lags and are normally distributed

with means zero and standard deviations σz, σg, and σR, respectively.
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1.1.5 Equilibrium Relationships

We consider the symmetric equilibrium in which all intermediate goods producing firms make

identical choices so that the j subscript can be omitted. The market clearing conditions are

given by

Yt = Ct +Gt + ACt and Ht = Nt. (1.14)

Since the households have access to a full set of state-contingent claims, Qt+s|t in (1.6) is

Qt+s|t = (Ct+s/Ct)
−τ (At/At+s)

1−τ . (1.15)

It can be shown that output, consumption, interest rates, and inflation have to satisfy the

following optimality conditions

1 = βEt

[(
Ct+1/At+1

Ct/At

)−τ
At
At+1

Rt

πt+1

]
(1.16)

1 =
1

ν

[
1−

(
Ct
At

)τ]
+ φ(πt − π)

[(
1− 1

2ν

)
πt +

π

2ν

]
(1.17)

−φβEt

[(
Ct+1/At+1

Ct/At

)−τ
Yt+1/At+1

Yt/At
(πt+1 − π)πt+1

]
.

In the absence of nominal rigidities (φ = 0) aggregate output is given by

Y ∗t = (1− ν)1/τAtgt, (1.18)

which is the target level of output that appears in the output gap rule specification.

Since the non-stationary technology process At induces a stochastic trend in output and

consumption, it is convenient to express the model in terms of detrended variables ct = Ct/At

and yt = Yt/At. The model economy has a unique steady state in terms of the detrended

variables that is attained if the innovations εR,t, εg,t, and εz,t are zero at all times. The steady

state inflation π equals the target rate π∗ and

r =
γ

β
, R = rπ∗, c = (1− ν)1/τ , and y = g(1− ν)1/τ . (1.19)

Let x̂t = ln(xt/x) denote the percentage deviation of a variable xt from its steady state x.
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Then the model can be expressed as

1 = βEt
[
e−τ ĉt+1+τ ĉt+R̂t−ẑt+1−π̂t+1

]
(1.20)

1− ν
νφπ2

(
eτ ĉt − 1

)
=

(
eπ̂t − 1

) [(
1− 1

2ν

)
eπ̂t +

1

2ν

]
(1.21)

− β Et
[(
eπ̂t+1 − 1

)
e−τ ĉt+1+τ ĉt+ŷt+1−ŷt+π̂t+1

]
eĉt−ŷt = e−ĝt − φπ2g

2

(
eπ̂t − 1

)2
(1.22)

R̂t = ρRR̂t−1 + (1− ρR)ψ1π̂t + (1− ρR)ψ2 (ŷt − ĝt) + εR,t (1.23)

ĝt = ρgĝt−1 + εg,t (1.24)

ẑt = ρz ẑt−1 + εz,t. (1.25)

1.2 Other DSGE Models

In addition to the small-scale New Keynesian DSGE model, we consider two other models:

the widely-used Smets-Wouters (SW) model, which is a more elaborate version of the small-

scale DSGE model that includes capital accumulation as well as wage rigidities, and a real

business cycle model with a detailed characterization of fiscal policy.

1.2.1 The Smets-Wouters Model

The second DSGE model considered in this book is the Smets and Wouters (2007) model.

The SW model is a more elaborate version of the small-scale DSGE model presented in the

previous section. Capital is a factor of intermediate goods production, and in addition to

price stickiness the model also features wage stickiness. In order to generate a richer auto-

correlation structure, the model also includes investment adjustment costs, habit formation

in consumption, and partial dynamic indexation of prices and wages to lagged values. The

model is based on work by Christiano, Eichenbaum, and Evans (2005), who added various

forms of frictions to a basic New Keynesian DSGE model in order to capture the dynamic re-

sponse to a monetary policy shock as measured by a structural vector autoregression (VAR).

In turn, Smets and Wouters (2003) augmented the Christiano-Eichenbaum-Evans model by

additional shocks to be able to capture the joint dynamics of Euro Area output, consump-

tion, investment, hours, wages, inflation, and interest rates. The Smets and Wouters (2003)

paper was highly influential, not just in academic circles but also in central banks because it
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demonstrated that a modern DSGE model that is useable for monetary policy analysis can

achieve a time series fit that is comparable to a less restrictive vector autoregression (VAR).

The 2007 version of the SW model contains a number of minor modifications of the 2003

model in order to optimize its fit on U.S. data. We will use the 2007 model exactly as it is

presented in Smets and Wouters (2007) and refer the reader to that article for details. The

log-linearized equilibrium conditions are reproduced in Appendix A.1.

1.2.2 A DSGE Model For the Analysis of Fiscal Policy

In the small-scale New Keynesian DSGE DSGE model and in the SW model fiscal policy is

passive and non-distortionary. The government raises lump-sum taxes (or distributes lump-

sum transfers) to ensure that the budget constraint is satisfied in every period. The level of

government spending as a fraction of GDP evolves exogenously, an implicit money demand

equation determines the amount of seignorage generated by the interest rate feedback rule,

and the quantity of government bonds is not uniquely determined. These models were explic-

itly designed for the analysis of monetary policy and abstract from a realistic representation

of fiscal policy.

In order to study the effects of exogenous changes in government spending and tax rates

a more detailed representation of the fiscal sector is necessary. An example of such a model

is the one studied by Leeper, Plante, and Traum (2010). While the authors abstract from

monetary policy, they allow for capital, labor, and consumption tax rate that react to the

state of the economy, in particular the level of output and debt, and are subject to exogenous

shocks, which reflect unanticipated changes in fiscal policy. In addition to consumption,

investment, and hours worked, the model is also estimated based on data on tax revenues,

government spending, and government debt to identify the parameters of the fiscal policy

rules. The estimated model can be used to assess the effect of counterfactual fiscal policies.
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Chapter 2

Turning a DSGE Model into a

Bayesian Model

Formally, a Bayesian model consists of a joint distribution of data Y and parameters θ.

Throughout this book we will represent distributions by densities and denote the joint dis-

tribution by p(Y, θ). The joint distribution can be factored into a distribution of the data

given the parameters, p(Y |θ), and a prior distribution p(θ). The density p(Y |θ), interpreted

as function of θ is called likelihood function. It plays a central role in both Bayesian and

frequentist inference. In order to turn the DSGE models of Chapter 1 into Bayesian mod-

els, we need to specify a probability distribution for the innovations of the exogenous shock

processes, solve for the equilibrium law of motion, develop an algorithm that evaluates the

likelihood function, and specify a prior distribution. We will illustrate these steps in the

context of the small-scale New Keynesian DSGE model introduced in Section 1.1.

The solution of the DSGE model is sketched in Section 2.1. In this chapter, we will assume

that the shock innovations are normally distributed and use a log-linearization (or first-order

perturbation) to construct an approximate model solution. We will use the DSGE model

solution as state-transition equations in a state-space representation of our empirical model.

The measurement equations simply relate the (potentially unobserved) state variables of the

DSGE model to observations on macroeconomic and financial time series. The evaluation

of the likelihood function associated with the state-space representation of the DSGE model

requires a filter that integrates out the hidden state variables of the DSGE model. We present

a general characterization of the filtering algorithm. If the DSGE model is solved by a linear

approximation technique and the innovations to the exogenous shock processes are Gaussian,
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the filtering problem simplifies considerably. The likelihood function can be evaluated with

the Kalman filter. The Kalman filter recursions are summarized for linear Gaussian state-

space models are summarized in Section 2.2. Finally, we discuss the specification of prior

distributions p(θ) in Section 2.3.

2.1 Solving a (Linearized) DSGE Model

Linearization and straightforward manipulation of Equations (1.20) to (1.22) yield

ŷt = Et[ŷt+1] + ĝt − Et[ĝt+1]− 1

τ

(
R̂t − Et[π̂t+1]− Et[ẑt+1]

)
(2.1)

π̂t = βEt[π̂t+1] + κ(ŷt − ĝt)

R̂t = ρRR̂t−1 + (1− ρR)ψ1π̂t + (1− ρR)ψ2 (ŷt − ĝt) + εR,t

where

κ = τ
1− ν
νπ2φ

. (2.2)

Equations (2.1) combined with the law of motion of the exogenous shocks in (1.24) and (1.25)

form a linear rational expectations system in

xt = [ŷt, π̂t, R̂t, εR,t, ĝt, ẑt]
′.

The linear rational expectations system can be cast in the canonical form used in Sims

(2002):

Γ0st = Γ1st−1 + Ψεt + Πηt, (2.3)

where εt = [εz,t, εg,t, εR,t]
′. The vector ηt captures one-step-ahead rational expectations fore-

cast errors. To write the equilibrium conditions of the small-scale New Keynesian model in

the form of (2.3), we begin by replacing Et[ĝt+1] and Et[ẑt+1] in the first eqation of (2.1)

with ρgĝt and ρz ẑt, respectively. We then introduce forecast errors for inflation and output.

Let

ηy,t = yt − Et−1[ŷt], ηπ,t = πt − Et−1[π̂t], (2.4)

and define ηt = [ηy,t, ηπ,t]. Finally, define the expectation augmented n× 1 state vector

st =
[
x′t,Et[ŷt+1],Et[π̂t+1]

]′
.

Using these definitions, the set of equations (2.1), (1.24), (1.25), and (2.4) can be written

as (2.3). The system matrices Γ0, Γ1, Ψ, and Π are functions of the DSGE model parameters

θ.
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For the linearized equilibrium conditions (2.1) to characterize a solution to the underlying

dynamic programming problems of the households and firms in the DSGE model, a set of

transversality conditions needs to be satisfied. These conditions are satisfied, if the law of

motion is non-explosive. This stability requirement restricts the set of solutions to (2.3).

Depending on the system matrices Γ0, Γ1, Ψ, and Π the system may have no non-explosive

solution (non-existence), exactly one stable solution (uniqueness), or many stable solutions

(indeterminacy). Sims (2002) provides a general method to construct stable solutions for

the canonical system (2.3).1 The system can be transformed through a generalized complex

Schur decomposition (QZ) of Γ0 and Γ1. There exist n × n matrices Q, Z, Λ, and Ω, such

that Q′ΛZ ′ = Γ0, Q′ΩZ ′ = Γ1, QQ′ = ZZ ′ = I, and Λ and Ω are upper-triangular. Let

wt = Z ′st and pre-multiply (2.3) by Q to obtain:[
Λ11 Λ12

0 Λ22

][
w1,t

w2,t

]
=

[
Ω11 Ω12

0 Ω22

][
w1,t−1

w2,t−1

]
+

[
Q1.

Q2.

]
(Ψεt + Πηt). (2.5)

The second set of equations can be rewritten as:

w2,t = Λ−1
22 Ω22w2,t−1 + Λ−1

22 Q2.(Ψεt + Πηt) (2.6)

Without loss of generality, we assume that the system is ordered and partitioned such that

the m× 1 vector w2,t is purely explosive, where 0 ≤ m ≤ n.

A non-explosive solution of the LRE model (2.3) for st exists if w2,0 = 0 and for every l×1

vector of structural shock innovations εt, one can find a k× 1 vector of rational expectations

errors ηt that offsets the impact of εt on w2,t:

Q2.Ψ︸ ︷︷ ︸
m×l

εt︸︷︷︸
l×1

+Q2.Π︸ ︷︷ ︸
m×k

ηt︸︷︷︸
k×1

= 0︸︷︷︸
m×1

. (2.7)

If m = k and the matrix Q2.Π is invertible, then the unique set of expectational errors that

ensure the stability of the system is given by

ηt = −
(
Q2.Π

)−1
Q2.Ψεt.

However, in general, the vector ηt, however, need not be unique. For instance, if the number

of expectation errors k exceeds the number of explosive components m, Eq. (2.7) does not

provide enough restrictions to uniquely determine the elements of ηt. Hence, it is possible

1There exist many alternative solution methods for linear rational expectations systems, e.g., Blanchard

and Kahn (1980), Binder and Pesaran (1997) Anderson (2000), Klein (2000), Christiano (2002), and King

and Watson (1998).
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to introduce expectation errors (martingale difference sequences) ζt that are unrelated to

the fundamental uncertainty εt without destabilizing the system. Using a singular value

decomposition of Q2.Π of the form:

Q2.Π = U.1︸︷︷︸
m×r

D11︸︷︷︸
r×r

V ′.1︸︷︷︸
r×k

,

we can express

ηt = (−V.1D−1
11 U

′
.1Q2.Ψ + V.2M1)εt + V.2M2ζt, (2.8)

where V.2 is a matrix composed of orthonormal columns that are orthogonal to V.1 (this

matrix is a by-product of the singular value decomposition of Q2.Π), M1 is an arbitrary

(k− r)× l matrix and M2 is an arbitrary (k− r)× p matrix. The matrices M1 and M2 and

the vector of so-called sunspot shocks ζt capture the potential multiplicity of non-explosive

solutions (indeterminacy) of (2.7). A derivation of (2.8) is provided in Lubik and Schorfheide

(2003).

The overall set of non-explosive solutions (if it is non-empty) to the linear rational expec-

tations system (2.3) can be obtained from st = Zwt, (2.5), and (2.8). If the system has a

unique stable solution, then it can be written as a VAR in st:

st = Φ1(θ)st−1 + Φε(θ)εt. (2.9)

Here the coefficient matrices Φ(s) and Φ(ε) are functions of the structural parameters of the

DSGE model. The vector autoregressive representation in (2.9) forms the basis for our

empirical model.

2.2 The Likelihood Function

In order to construct a likelihood function, we have to relate the model variables st to a

set of observables yt. Thus, the specification of the empirical model is completed by a set

of measurement equations. For our small-scale New Keynesian model, We assume that the

time period t in the model corresponds to one quarter and that the following observations are

available for estimation: quarter-to-quarter per capita GDP growth rates (YGR), annualized

quarter-to-quarter inflation rates (INFL), and annualized nominal interest rates (INT). The

three series are measured in percentages and their relationship to the model variables is given
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by the following set of equations:

Y GRt = γ(Q) + 100(ŷt − ŷt−1 + ẑt) (2.10)

INFLt = π(A) + 400π̂t

INTt = π(A) + r(A) + 4γ(Q) + 400R̂t.

The parameters γ(Q), π(A), and r(A) are related to the steady states of the model economy

as follows

γ = 1 +
γ(Q)

100
, β =

1

1 + r(A)/400
, π = 1 +

π(A)

400
.

The structural parameters are collected in the vector θ. Since in the first-order approximation

the parameters ν and φ are not separately identifiable, we express the model in terms of κ,

defined in (2.2). Let

θ = [τ, κ, ψ1, ψ2, ρR, ρg, ρz, r
(A), π(A), γ(Q), σR, σg, σz]

′.

More generically, the measurement equation (2.10) can be expressed as

yt = Ψ0(θ) + Ψ1(θ)t+ Ψ2(θ)st + ut, (2.11)

where we allow for a vector of measurement errors ut.
2

Equations (2.9) and (2.11) provide a state-space representation for the linearized DSGE

model. The challenge in evaluating the likelihood function is that the states st are (at

least partially) unobserved. Let Xt1:t2 = {xt1 , xt1+1, . . . , xt2}. The state space representa-

tion provides a joint density for the observations and latent states given the parameters:

p(Y1:T , S1:T |θ). However, inference is based on p(Y1:T |θ) and the hidden states have to be

integrated out. The likelihood function can be factorized as follows:

p(Y1:T |θ) =
T∏
t=1

p(yt|Y1:t−1, θ). (2.12)

A filter generates a sequence of conditional distributions st|Y1:t and as a by-product produces

the sequence of densities p(yt|Y1:t−1, θ).

2The DSGE model solution method implies that certain linear combinations of model variables, namely

w2,t in (2.5), are equal to zero. If some elements of w2,t only depend on variables that can be measured in

the data, this implication is most likely violated. To cope with this problem, one can either limit the number

of observables included in yt, as we do in the New Keynesian model, or include so-called measurement errors

as, for instance, in Sargent (1989), Altug (1989), and Ireland (2004).
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Algorithm 1 (Generic Filter) 1. Initialization at time t− 1: p(st−1|Y1:t−1, θ)

2. Forecasting t given t− 1:

(a) Transition equation:

p(st|Y1:t−1, θ) =

∫
p(st|st−1, Y1:t−1, θ)p(st−1|Y1:t−1, θ)dst−1

(b) Measurement equation:

p(yt|Y1:t−1, θ) =

∫
p(yt|st, Y1:t−1, θ)p(st|Y1:t−1, θ)dst

3. Updating with Bayes theorem. Once yt becomes available:

p(st|Y1:t, θ) = p(st|yt, Y1:t−1, θ) =
p(yt|st, Y1:t−1, θ)p(st|Y1:t−1, θ)

p(yt|Y1:t−1, θ)

If the DSGE model is log-linearized and the errors are Gaussian, then the Kalman filter can

be used to construct the likelihood function. To complete the model specification we make

the following distributional assumptions about the distribution of the structural innovations

εt, the measurement errors ut, and the initial state s0:

εt ∼ iidN(0,Σε), ut ∼ iidN(0,Σu), s0 ∼ N
(
ŝ0|0, P0|0

)
. (2.13)

In stationary models it is common to assume that s̄0|0 and P0|0 corresponds to the invariant

distribution associated with the law of motion of st in (2.9). The four conditional dis-

tributions in the description of Algorithm 1 for a linear Gaussian state space model are

summarized in Table 2.1. Derivations can be found in textbook treatments of the Kalman

filter, e.g., Hamilton (1994) or Durbin and Koopman (2001).

2.3 Priors

Prior distributions play an important role in the estimation of DSGE models. They allow

researchers to incorporate information not contained in the estimation sample Y into the

empirical analysis. While priors could in principle be formed by pure introspection, in reality

most priors (as well as most model specifications) are based on some empirical observations.

To indicate this dependence on non-sample (meaning other than Y ) information, we could

write p(θ|X 0) instead of p(θ), but for notational convenience we omit the dependence on X 0.
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Table 2.1: Conditional Distributions for Kalman Filter

Distribution Mean and Variance

st−1|(Y1:t−1, θ) N
(
s̄t−1|t−1, Pt−1|t−1

)
Given from Iteration t− 1

st|(Y1:t−1, θ) N
(
s̄t|t−1, Pt|t−1

)
s̄t|t−1 = Φ1s̄t−1|t−1

Pt|t−1 = Φ1Pt−1|t−1Φ′1 + ΦεΣεΦ
′
ε

yt|(Y1:t−1, θ) N
(
ȳt|t−1, Ft|t−1

)
ȳt|t−1 = Ψ0 + Ψ1t+ Ψ2s̄t|t−1

Ft|t−1 = Ψ2Pt|t−1Ψ′2 + Σu

st|(Y1:t, θ) N
(
s̄t|t, Pt|t

)
s̄t|t = s̄t|t−1 + Pt|t−1Ψ′2F

−1
t|t−1(yt − ȳt|t−1)

Pt|t = Pt|t−1 − Pt|t−1Ψ′2F
−1
t|t−1Ψ2Pt|t−1

The tacit assumption underlying posterior inference with a prior that is constructed from

non-sample information is that p(Y |θ,X 0) = p(Y |X 0, θ), that is, the two sources of informa-

tion are independent conditional on θ. This is assumption a reasonable approximation if the

observations in X 0 pre-date the observations in Y or if Y consists of macroeconomic time

series and X 0 contains micro-level data from an overlapping time period.

Del Negro and Schorfheide (2008) distinguish between three groups of parameters. The

first group, denoted by θ(ss), are parameters that can be identified from the steady-state

relationships. For instance, in the small-scale New Keynesian model θ(ss) = [r(A), π(A), γ(Q)]′.

These three parameters affect the steady state real interest rate, inflation rate, and overall

growth rate of the economy. The second group of parameters consists of parameters that

characterize the law of motion of the exogenous shock processes: θ(exo) = [ρg, ρz, σg, σz, σR]′.

Finally, the last group of parameters control the endogenous propagation mechanisms with-

out affecting the steady state of the model: θ(endo) = [τ, κ, ψ1, ψ2, ρR]′.

Priors for θ(ss) are often based on pre-sample averages. For instance, if the estimation

sample starts in 1983:I, the prior distribution for r(A), π(A), and γ(Q) may be informed by

data from the 1970s. Priors for θ(endo) may be partly based on microeconometric evidence.

For instance, in a version of the New Keynesian model that replaces the quadratic price ad-

justment costs with a Calvo mechanism (intermediate good producers can re-optimize their

prices with an exogenous probability 1− ζp and are unable to change their prices with prob-

ability ζp) the slope of the Phillips curve κ is related to the frequency of price changes, which

can be measured from micro-level data. Ŕıos-Rull, Schorfheide, Fuentes-Albero, Kryshko,
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and Santaeulalia-Llopis (2012) provide a very detailed discussion of prior elicitation for the

Frisch labor supply elasticity. In the simple New Keynesian model, this elasticity is implicitly

fixed at infinity, because of the quasi-linear specification of the household utility function.

Priors for θ(exo) are the most difficult to specify, because the exogenous processes tend to be

unobserved. Del Negro and Schorfheide (2008) suggest to elicit priors for θ(exo) indirectly.

Conditional on θ(ss) and θ(endo), the exogenous shock parameters determine the volatility and

persistence of yt. Thus, beliefs – possibly informed by pre-sample observations, about the

dynamics of the observables, can be mapped into beliefs about the persistence and volatility

of the exogenous shocks. This can be done using the formal procedure described in Del Ne-

gro and Schorfheide (2008), or it can be done informally using an iterative procedure that

starts by specifying an initial prior for θ(exo), generating parameter draws from this prior,

simulating trajectories from the DSGE model, examining the implied sample moments, and

potentially re-specifying the prior for θ(exo) until the desired implicit prior for the moments

of yt is obtained.

Table 2.2 provides a prototypical prior distribution for the coefficients of the small New

Keynesian DSGE model. It specifies marginal distributions for all elements of the θ vector.

The joint prior distribution is the product of the marginal densities. The domain of the

prior is truncated to ensure that the the linearized rational expectations model has a unique

stable solution. The prior for the steady state parameters are based on averages from a

pre-1983:I sample. Unlike in much of the literature, the prior distributions for many of the

other parameters are uniform on a bounded domain. In high-dimensional models, it might

be desirable to introduce some dependence among the parameters. Methods to do so are

provided in Del Negro and Schorfheide (2008).
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Table 2.2: Prior Distribution

Name Domain Prior

Density Para (1) Para (2)

τ R+ Gamma 2.00 0.50

κ R+ Uniform 0.00 1.00

ψ1 R+ Gamma 1.50 0.25

ψ2 R+ Gamma 0.50 0.25

ρR [0, 1) Uniform 0.00 1.00

ρG [0, 1) Uniform 0.00 1.00

ρZ [0, 1) Uniform 0.00 1.00

r(A) R+ Gamma 0.50 0.50

π(A) R+ Gamma 7.00 2.00

γ(Q) R Normal 0.40 0.20

100σR R+ InvGamma 0.40 4.00

100σG R+ InvGamma 1.00 4.00

100σZ R+ InvGamma 0.50 4.00

Notes: Para (1) and Para (2) list the means and the standard deviations for Beta, Gamma,

and Normal distributions; the upper and lower bound of the support for the Uniform dis-

tribution; s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

.

The effective prior is truncated at the boundary of the determinacy region.
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Chapter 3

A Primer on Bayesian Inference

The prior distribution p(θ) discussed in the previous section describes the initial state of

knowledge – before observing Y – about the parameter θ. Unlike under the frequentist

paradigm, the parameter θ is regarded as a random variable. The calculus of probability

is used to characterize the state of knowledge or the degree of beliefs of an individual with

respect to events or quantities – such as parameters – that have not (yet) been observed, and

maybe cannot be observed, by that individual. The Bayesian approach prescribes consistency

among the beliefs held by an individual, and their reasonable relation to any kind of objective

data. Learning about θ takes place by updating the prior distribution in light of the data Y .

The likelihood function p(Y |θ) summarizes the information about the parameter contained

in the sample Y . According to Bayes Theorem, the conditional distribution of θ given Y is

given by

p(θ|Y ) =
p(Y |θ)p(θ)
p(Y )

. (3.1)

This distribution is called posterior distribution. The term in the denominator is called

marginal likelihood. It is defined as

p(Y ) =

∫
p(Y |θ)p(θ)dθ (3.2)

and normalizes the posterior density such that it integrates to one.

In a nutshell, Bayesian inference amounts to characterizing properties of the posterior

distribution p(θ|Y ). Unfortunately, for many interesting models, including the DSGE models

considered in this book, a direct analysis of the posterior is not feasible. All that can be done

is to numerically evaluate the prior density p(θ) and the likelihood function p(Y |θ). In order

to compute posterior quantiles and moments of functions h(θ) we have to rely on numerical
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techniques. In particular, we will use posterior sampler that generate sequences of draws θi,

i = 1, . . . , N from p(θ|Y ). To the extent that (Monte Carlo) averages of these draws satisfy

a strong law of large numbers (SLLN) and possibly a central limit theorem (CLT), we can

use them to approximate posterior moments.

Before delving in the Bayesian inference for DSGE models, we will take a step back and

begin in Section 3.1 Bayesian inference in a simple autoregressive (AR) model, which takes

the form of a Gaussian linear regression. For this model, the posterior distribution can be

characterized analytically and closed-form expressions for its moments are readily available.

Draws from the posterior distribution can be easily generated using a direct sampling al-

gorithm. In Section 3.2 we modify the parameterization of the AR(1) model to introduce

some identification problems. Lack of or weak identification of key structural parameters

is a common occurrence in the context of DSGE models. In our AR(1) example the pos-

terior distribution of the parameter of interest becomes non-Gaussian, and sampling from

this posterior is now less straightforward. We proceed by introducing two important pos-

terior samplers. We will subsequently employ variants of these samplers to implement the

Bayesian analysis of DSGE models. Section 3.3 focuses on importance sampling, whereas

Section 3.4 provides an introduction to the Metropolis-Hastings algorithm. Final, we wrap

up this primer on Bayesian inference in Section 3.5, which discusses how to turn posterior dis-

tributions – or draws from posterior distributions – into point estimates, interval estimates,

forecasts, and how to solve general decision problems.

3.1 The Posterior of A Linear Gaussian Model

Since we do not expect our readers to be experts in Bayesian analysis, we begin with a simple

regression model to illustrate some of the principles and mechanics of Bayesian inference.

Consider the AR(1) model

yt = θyt−1 + ut, ut|Y1:t−1 ∼ iidN (0, 1), t = 1, . . . , T (3.3)

Conditional on the initial observation y0 the likelihood function is of the form

p(Y1:t|y0, θ) =
T∏
t=1

p(yt|Y1:t−1, θ) (3.4)

= (2π)−T/2 exp

{
−1

2
(Y −Xθ)′(Y −Xθ)

}
,
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where y1:t = {y1, . . . , yt} and the T × 1 matrices Y and X are composed of the elements yt

and xt = yt−1. Suppose the prior distribution is of the form

θ ∼ N

(
0, τ 2

)
(3.5)

with density

p(θ) = (2πτ 2)−1/2 exp

{
− 1

2τ ′τ
θ2

}
. (3.6)

The hyperparameter τ controls the variance of the prior distribution. We will subsequently

vary τ to illustrate the effect of the prior variance on the posterior distribution.

According to Bayes Theorem the posterior distribution of θ is proportional (∝) to the

product of prior density and likelihood function

p(θ|Y ) ∝ p(θ)p(Y |θ). (3.7)

To simplify the notation we dropped y0 from the conditioning set and we replaced y1:t by

the matrix Y . Absorbing terms that do not depend on θ into the proportionality constant,

the right-hand-side of (3.7) can be written as

p(θ)p(Y |θ)

∝ exp

{
−1

2
[Y ′Y − θ′X ′Y − Y ′Xθ − θ′X ′Xθ − τ−2θ′θ]

}
. (3.8)

Straightforward algebraic manipulations let us express the exponential term as

Y ′Y − θ′X ′Y − Y ′Xθ − θ′X ′Xθ − τ−2θ′θ (3.9)

=
(
θ − (X ′X + τ−2)−1X ′Y

)′(
X ′X + τ−2

)(
θ − (X ′X + τ−2)−1X ′Y

)
+Y ′Y − Y ′X(X ′X + τ−2)−1X ′Y.

Since the exponential term is a quadratic function of θ we can deduce that the posterior

distribution is Normal

θ|Y ∼ N (θ̄, V̄θ) (3.10)

with posterior mean and covariance

θ̄ = (X ′X + τ−2)−1X ′Y, V̄θ = (X ′X + τ−2)−1.

Define θ̂mle = (X ′X)−1X ′Y and write

θ̄ = (X ′X + τ−2)−1
(
X ′Xθ̂mle + τ−2 · 0

)
.
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Thus, the posterior mean of θ is a weighted average of the maximum likelihood estimator

and the prior mean, which is zero. The weights depend on the information contents of the

likelihood function, X ′X, and the prior precision τ−2. Holding the data fixed, and decrease in

τ shifts the posterior mean toward the prior mean. Moreover, it decreases the prior variance.

In our derivation of the posterior distribution we have deliberately ignored all the normal-

ization constants and only focused on terms that depend on θ. This approach served us well

because based on the general shape of the posterior density we were able to determine that

it belongs to the family of Gaussian densities, for which the normalization constants are well

known. We can use this information to easily derive the marginal density p(Y ) that appears

in the denominator of Bayes Theorem in (3.1). Write

p(Y ) =
p(Y |θ)p(θ)
p(θ|Y )

(3.11)

= (2π)−T/2 exp

{
−1

2
[Y ′Y − Y ′X(X ′X + τ−2)−1X ′Y ]

}
×|1 + τ 2X ′X|−1/2.

The second expression on the right-hand-side is obtained by replacing the Gaussian densities

p(Y |θ), p(θ), and p(θ|Y ) by (3.4), (3.6), and the density associated with (3.10), respectively.

The exponential term in (3.11) can be interpreted as goodness-of-fit, whereas |1 + τ 2X ′X|
is a penalty for model complexity. If τ is close to zero, our model has essentially no free

parameters because the tight prior distribution forces the posterior to be close to zero as well.

In this case the goodness-of-fit term tends to be small but the penalty for model complexity

is also small. If, on the other hand, τ is large, then the goodness-of-fit term is large, as it

approximately equals (minus) the sum of squared residuals from an OLS regression. The

penalty tends to be large as well. Thus, neither specifications with a very concentrated prior

or a very diffuse prior tend to be associated with a high marginal data density.

Marginal data densities are important for Bayesian analysis because they determine the

posterior model probabilities. Suppose a researcher assigns prior probabilities γj,0 to models

Mj, j = 1, . . . , J , then the posterior model probabilities are given by

γj,T =
γj,0p(Y |Mj)∑J
j=1 γj,0p(Y |Mj)

. (3.12)

We will discuss the role of posterior model probabilities in the evaluation of DSGE models

later on.
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To economize on notation we will often abbreviate posterior distributions p(θ|Y ) by π(θ)

and posterior expectations of h(θ) by

Eπ[h] = Eπ[h(θ)] =

∫
h(θ)π(θ)dθ =

∫
h(θ)p(θ|Y )dθ. (3.13)

Much of this monograph focuses on comparing algorithms that generate draws {θi}Ni=1 from

posterior distributions of parameters in DSGE models. These draws can then be transformed

into objects of interest, h(θi), and a Monte Carlo average of the form

h̄N =
1

N

N∑
i=1

h(θi) (3.14)

may be used to approximate the posterior expectation of Eπ[h]. For the approximation to

be useful, it should satisfy a a SLLN and a CLT. In the simple linear regression model

with Gaussian posterior given by (3.10) it is possible to sample directly from the posterior

distribution and obtain independently and identically distributed (iid) draws from π(·).

Algorithm 2 (Direct Sampling) For i = 1 to N , draw θi from N
(
θ̄, V̄θ

)
.

Provided that Vπ[h(θ)] <∞ we can deduce from Kolmogorov’s SLLN and the Lindeberg-

Levy CLT that

h̄N
a.s.−→ Eπ[h]

√
N
(
h̄N − Eπ[h]

)
=⇒ N

(
0,Vπ[h(θ)]

)
. (3.15)

Thus, the posterior variance of h(θ), scaled by 1/N , determines the accuracy of the Monte

Carlo approximation. In the context of DSGE models, direct iid sampling from the posterior

is generally infeasible and the variance of the Monte Carlo approximation is (much) larger

than Vπ[h(θ)]/N . The ratio of the actual variance to the infeasible variance Vπ[h(θ)]/N

provides a measure of efficiency of the algorithm.

3.2 A Posterior of a Set-Identified Model

There are many applications in which certain parameters of DSGE models are difficult to

identify. Identification problems in DSGE models typically come in two varieties: (i) local

identification problems in which the likelihood function is fairly flat in certain directions of
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the parameter space; (ii) global identification problems in which the likelihood function is

multi-modal. The example in this subsection is designed to showcase a local identification

problem.

Suppose that yt follows an AR(1) process with autoregressive coefficient that we now denote

by φ. However, unlike in the previous section, we now assume that the object of interest is

not the autoregressive parameter, but instead a parameter θ that can be bounded based on

φ as follows:

φ ≤ θ and θ ≤ φ+ 1.

Strictly speaking, the parameter θ is set identified. The interval Θ(φ) = [φ, φ + 1] is called

the identified set and in this simple example its length is equal to one. To complete the

model specification we specify a prior for θ conditional on φ of the form

θ|φ ∼ U [φ, φ+ 1]. (3.16)

The joint posterior distribution of θ and φ can be characterized as follows

p(θ, φ|Y ) = p(φ|Y )p(θ|φ, Y ) ∝ p(Y |φ)p(θ|φ)p(φ). (3.17)

Since θ does not enter the likelihood function, we can immediately deduce that

p(φ|Y ) =
p(Y |φ)p(φ)∫
p(Y |φ)p(φ)dφ

and p(θ|φ, Y ) = p(θ|φ). (3.18)

Following (3.10), suppose that the posterior distribution of φ takes the form φ|Y ∼ N(φ̄, V̄φ).

We deduced that the posterior distribution of θ conditional on φ is simply equal to the prior

distribution in (3.16). Since the prior of θ on the set Θ(φ) is uniform, the marginal posterior

distribution of θ is given by

π(θ) =

∫ θ

θ−1

p(φ|Y )p(θ|φ)dφ (3.19)

= ΦN

(
θ − φ̄√
V̄φ

)
− ΦN

(
θ − 1− φ̄√

V̄φ

)
,

where ΦN(x) is the cumulative density function of a N(0, 1).

The posterior of θ has a more complicated shape than the posterior of φ. Figure 3.1 depicts

the posterior for three choices of V̄φ. If the posterior variance of the reduced-form parameter

φ is large, the posterior looks almost Gaussian. However, as V̄φ decreases, the posterior starts

to resemble the shape of a step function that increases from zero to one at θ = −0.5 and then
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Figure 3.1: Posterior Distribution for Set-Identified Model
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Notes: The figure depicts the posterior distribution π(θ) in (3.19) for φ̄ = −0.5 and V̄φ equal

to 1/4 (solid red), 1/20 (dashed blue), and 1/100 (dotted green).

drops to zero around θ = 0.5. The flatness of the posterior density on the interval [φ̄, φ̄+ 1]

gets more pronounced as the sample size increases and the uncertainty about the parameter

φ vanishes. In this stylized example, it is possible to sample from the posterior distribution

of θ directly by first sampling φi ∼ N
(
φ̄, V̄φ

)
and then sampling θi|φi ∼ U

[
φi, φi + 1

]
. This

scheme generates iid draws from the joint posterior (φ, θ)|Y . The θi draws can then be

used to construct Monte Carlo approximations for moments associated with the marginal

posterior distribution θ|Y . Instead of using a direct sampler to generate draws from the

posterior, we will consider an importance sampler, which is an important building block of

some of the algorithms considered later on in this book.

3.3 Importance Sampling

Instead of attempting to sample directly from the posterior π(θ) in (3.19), we could approx-

imate π(·) by using a different, tractable density g(θ) that is easy to sample from. Because

in many applications the posterior density can only be evaluated up to a constant of pro-

portionality, we write

π(θ) =
f(θ)

Z
. (3.20)

Often, f(θ) corresponds to the product of likelihood function and prior density p(Y |θ)p(θ)
which appears in the numerator of (3.1) and Z corresponds to the marginal likelihood p(Y )

that appears in the denominator of Bayes Theorem.
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3.3.1 The Importance Sampling Algorithm

Importance sampling (IS) is based on the identity

Eπ[h(θ)] =

∫
h(θ)π(θ)dθ =

1

Z

∫
Θ

h(θ)
f(θ)

g(θ)
g(θ)dθ. (3.21)

The ratio

w(θ) =
f(θ)

g(θ)
(3.22)

is called the (unnormalized) importance weight. We can also define a normalized importance

weight as

v(θ) =
w(θ)∫

w(θ)g(θ)dθ
=

w(θ)∫
Zπ(θ)dθ

=
w(θ)

Z
. (3.23)

It is straightforward to verify based on (3.21) and the definition in (3.22) that
∫
v(θ)h(θ)dθ =

Eπ[h(θ)].

Algorithm 3 (Importance Sampling) 1. For i = 1 to N , draw θi
iid∼ g(θ) and compute

the unnormalized importance weights

wi = w(θi) =
f(θi)

g(θi)
. (3.24)

2. Compute the normalized importance weights

W i =
wi

1
N

∑N
i=1 w

i
. (3.25)

An approximation of Eπ[h(θ)] is given by

h̄N =
1

N

N∑
i=1

W ih(θi). (3.26)

Note that according to our definitions W i is different from v(θi). W i is normalized by the

sample average of the unnormalized weights wi, whereas v(θ) is normalized by the population

normalization constant Z. By construction, the sample average 1
N

∑N
i=1W

i = 1.
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3.3.2 Convergence and Accuracy

Provided that Eg[|hf/g|] < ∞ and Eg[|f/g|] < ∞, see Geweke (1989), the Monte Carlo

estimate h̄N defined in (3.26) converges almost surely (a.s.) to Eπ[h(θ)] as N −→ ∞. In

Chapter 5 we will refer to the swarm of pairs {(θi,W i)}Ni=1 as a particle approximation of

π(θ). The accuracy of the approximation is driven by the “closeness” of g(·) to f(·) and

is reflected in the distribution of the weights. If the distribution of weights is very uneven,

the Monte Carlo approximation h̄ is inaccurate. Uniform weights arise if g(·) ∝ f(·), which

means that we are sampling directly from π(θ).

The limit distribution of the Monte Carlo approximation can be derived as follows. Define

the population analogue of the normalized importance weights as v(θ) = w(θ)/Z and write

h̄N =
1
N

∑N
i=1(wi/Z)h(θi)

1
N

∑N
i=1(wi/Z)

=
1
N

∑N
i=1 v(θi)h(θi)

1
N

∑N
i=1 v(θi)

.

Now consider a first-order Taylor series expansion in terms of deviations of the numerator

from Eπ[h] and deviations of the denominator around 1:

√
N(h̄N − Eπ[h]) =

√
N

(
1

N

N∑
i=1

v(θi)h(θi)− Eπ[h]

)
(3.27)

−Eπ[h]
√
N

(
1

N

N∑
i=1

v(θi)− 1

)
+ op(1)

= (I)− Eπ[h] · (II) + op(1),

say. Provided that supθ π/g < ∞ and Eg[h2] < ∞, we can apply a multivariate extension

of the Lindeberg-Levy CLT to the terms (I, II). Using straightforward but tedious algebra

it can be shown that the variances and covariance of I and II are given by

Vg[hv] = Eπ[(π/g)h2]− E2
π[h], Vg[v] = Eπ[(π/g)]− 1,

COVg(hv, v) =
(
Eπ[(π/g)h]− Eπ[h]

)
.

In turn we can deduce that

√
N(h̄N − Eπ[h]) =⇒ N

(
0,Ω(h)

)
, where Ω(h) = Vg[(π/g)(h− Eπ[h])]. (3.28)

Using a crude approximation (see, e.g., Liu (2001)), we can factorize Ω(h) as follows:

Ω(h) ≈ Vπ[h]
(
Vg[π/g] + 1

)
. (3.29)
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This allows us to define an (approximate) effective measure of sample size that is independent

of the function h(·) and only depends on the variance of the importance weights:

ESS = N
Vπ[h]

Ω(h)
≈ N

1 + Vg[π/g]
. (3.30)

The approximation highlights that the larger the variance of the importance weights, the

less accurate the Monte Carlo approximation relative to the accuracy that could be achieved

with an iid sample from the posterior.

3.3.3 A Numerical Illustration

Figure 3.2 provides a numerical illustration of the importance sampling algorithm in the con-

text of the posterior density (3.19) associated with the set-identified model in Section 3.2.

Panel (i) depicts the posterior density for φ̄ = −0.5 and V̄ = 100. We consider two impor-

tance sampling densities. Both are centered at θ = 0.5. The first density (“concentrated”)

has a variance of 0.125, whereas the second density (“diffuse”) has a larger variance of

0.5. The concentrated importance sampling density assigns a very small probability to the

interval [−0.5,−0.25] which has a large probability under the posterior distribution.

The accuracy of the importance sampling approximations are illustrated in Panels (ii)

and (iii) as a function of the number of draws N . We depict the inefficiency factor Ω(h)/Vπ[h]

as well as a simulation-based inefficiency factor. We run the importance sampling algorithm

500 times and compute the variance of the Monte Carlo approximations of Eπ[θ] and Eπ[θ2]

across the runs. We multiply this variance by N and divide by Vπ[h] so that it is on the same

scale as the asymptotic inefficiency factor. In general, the asymptotic approximation is very

accurate. A comparison between Panels (ii) and (iii) highlights that the approximation with

the ”concentrated” importance sampling density is a lot less accurate than the approximation

obtained with the “diffuse” importance sampling densities, which does a much better job

in covering the tails of the posterior distribution. Finally, we also plot N/ESS, where

ESS was defined in (3.30). The ESS-based inefficiency measure only provides a very crude

approximation of the accuracy of the importance sampling approximation.

In general, it is important that the importance density g is tailored toward the target

distribution π to maintain a small variance of the importance weights. In some applications,

a good importance density can be obtained by centering a fat-tailed t distribution at the

mode of π and using a scaled version of the inverse Hessian of lnπ at the mode to align

the contours of the importance density with the contours of the posterior π. The sequential
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Figure 3.2: Importance Sampling Approximations of Eπ[θ] and Eπ[θ2]
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Monte Carlo algorithms discussed in Chapter 5 construct the importance densities in a

sequential manner.

3.4 Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm belongs to the class of Markov chain Monte Carlo

(MCMC) algorithms. The algorithm generates a Markov chain such that the stationary

distribution associated with the Markov chain is unique and equals the posterior distribution

of interest.

3.4.1 A Generic MH Algorithm

Key ingredient of the MH algorithm is a proposal distribution q(ϑ|θi−1), which potentially

depends on the draw θi−1 in iteration i − 1 of the algorithm. The proposed draw is always

accepted if it raises the posterior density (relative to θi−1) and it is sometimes accepted even

if it lowers the posterior density. If the proposed draw is not accepted, then the chain does

not move and θi = θi−1. The acceptance probability is chosen to ensure that the distribution

of the draws converges to the target posterior distribution. The algorithm takes the following

form:

Algorithm 4 (Generic MH Algorithm) For i = 1 to N:

1. Draw ϑ from a density q(ϑ|θi−1).

2. Set θi = ϑ with probability

α(ϑ|θi−1) = min

{
1,

p(Y |ϑ)p(ϑ)/q(ϑ|θi−1)

p(Y |θi−1)p(θi−1))/q(θi−1|ϑ)

}
and θi = θi−1 otherwise.

Because p(θ|Y ) ∝ p(Y |θ)p(θ) we can replace the posterior densities in the calculation of

the acceptance probabilities α(ϑ|θi−1) by the product of likelihood and prior, which does not

require the evaluation of the marginal data density p(Y ).

Algorithm 4 describes how to generate a parameter draw θi conditional on a parameter

draw θi. Thus, implicitly it characterizes a Markov transition kernel K(θ|θ̃), where the
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conditioning value θ̃ corresponds to the parameter draw from iteration i. The probability

theory underlying the convergence of Monte Carlo averages constructed from the output

of the MH algorithm is considerably more complicated than the theory for the importance

sampler. The key questions are the following: (i) suppose that θ0 is generated from some

arbitrary density g(·) and θN is obtained by iterating the Markov transition kernel forward

N times, then is it true that θN is approximately distributed according to p(θ|Y ) and the

approximation error vanishes as N −→ ∞? (ii) Suppose that (i) is true, is it also true

that sample averages of θi, i = 1, . . . , N satisfy a SLLN and a CLT? For a comprehensive

exposition of the convergence theory for Markov chains and MCMC algorithms, we refer

the interested reader to textbook treatments such as Robert and Casella (2004) or Geweke

(2005). In the remainder of this section we will briefly show why the posterior distribution

p(θ|Y ) is an invariant distribution for the Markov chain generated by Algorithm 4 and

present a simple discrete example that in which we can analytically solve for the transition

kernel of the Markov chain.

3.4.2 An Important Property of the MH Algorithm

For Algorithm 4 to generate a sequence of draws from the posterior distribution p(θ|Y ) a

necessary condition is that the posterior distribution is an invariant distribution under the

transition kernel K(·|·), that is,

p(θ|Y ) =

∫
K(θ|θ̃p(θ̃|Y )dθ̃. (3.31)

Thus, if θi−1 is a draw from the posterior distribution p(θ|Y ) then θi is also a draw from this

distribution.

Verifying the invariance property is relatively straightforward. The transition kernel can

be expressed as follows:

K(θ|θ̃) = u(θ|θ̃) + r(θ̃)δθ̃(θ). (3.32)

Here u(θ|θ̃) is the density kernel (note that u(θ|·) does not integrated to one) for accepted

draws:

u(θ|θ̃) = α(θ|θ̃)q(θ|θ̃). (3.33)

Recall from Algorithm 4 above that q(·|·) is the density for the proposed draw and α(·|·) is

the probability that the draw is accepted. The term r(θ̃) is the probability that conditional
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on θ̃ the proposed draw will be rejected:

r(θ̃) =

∫ [
1− α(θ|θ̃)

]
q(θ|θ̃)dθ = 1−

∫
u(θ|θ̃)dθ. (3.34)

If the proposed draw is rejected, then the algorithm sets θi = θi−1, which means that

conditional on the rejection, the transition density degenerates to a pointmass at θ = θ̃,

which is captured by the dirac function δθ̃(θ) in (3.32).1

The MH step is constructed to be reversible in the following sense. Conditional on the

sampler not rejecting the proposed draw, the density associated with a transition from θ̃ to

θ is identical to the density associated with a transition from θ to θ̃:

p(θ̃|Y )u(θ|θ̃) = p(θ̃|Y )q(θ|θ̃) min

{
1,
p(θ|Y )/q(θ|θ̃)
p(θ̃|Y )/q(θ̃|θ)

}
(3.35)

= min
{
p(θ̃|Y )q(θ|θ̃), p(θ|Y )q(θ̃|θ)

}
= p(θ|Y )q(θ̃|θ) min

{
p(θ̃|Y )/q(θ̃|θ)
p(θ|Y )/q(θ|θ̃)

, 1

}
= p(θ|Y )u(θ̃|θ).

Using the reversibility result, we can now verify the invariance property in (3.31):∫
K(θ|θ̃)p(θ̃|Y )dθ̃ =

∫
p(θ̃|Y )u(θ|θ̃)dθ̃ +

∫
p(θ̃|Y )r(θ̃)δθ̃(θ)dθ̃ (3.36)

=

∫
p(θ|Y )u(θ̃|θ)dθ̃ + p(θ|Y )r(θ)

= p(θ|Y )

The second equality follows from (3.35) and the properties of the dirac function. The last

equality follows from (3.34).

The invariance property in (3.32) is by no means sufficient to guarantee that the Monte

Carlo average of draws h(θi) from Algorithm 4) converges to the posterior expectation Eπ[h].

In particular, one needs to ensure that the transition kernel K(·|·) has a unique invariant

distribution, that repeated application of the transition kernel leads to convergence to the

unique invariant distribution regardless of the chain’s initialization, and that the persistence

of the draws θi generated by the Markov chain is not so strong such that sample averages do

not converge to population means. Rather than providing a general treatment of convergence,

we will examine a specific example, in which we can solve for the transition kernel analytically.

1The dirac function has the property that δθ̃(θ) = 0 for θ 6= θ̃ and
∫
δθ̃(θ)dθ = 1.
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3.4.3 An Analytical Example

Suppose the parameter space is discrete and θ can only take two values: τ1 and τ2. The

posterior distribution then simplifies to two probabilities which we denote be πl = P{θ =

τl|Y }, l = 1, 2. The proposal distribution in Algorithm 4 can be represented as a two stage

Markov process with transition matrix

Q =

[
q11 q12

q21 q22

]
, (3.37)

where qlk is the probability of drawing ϑ = τk conditional on θi = τl. For illustrative

purposes, we will assume that

q11 = q22 = q, q12 = q21 = 1− q.

We can now derive a transition matrix for the Markov chain generated by Algorithm 4.

Suppose that θi−1 = τ1. Then with probability q, ϑ = τ1. The probability that this draw

will be accepted is

α(τ1|τ1) = min

{
1,
π1/q

π1/q

}
= 1.

With probability 1− q the proposed draw is ϑ = τ2. The probability that this draw will be

rejected is

1− α(τ2|τ1) = 1−min

{
1,
π2/(1− q)
π1/(1− q)

}
= 0.

Thus, the probability of a transition from θi−1 = τ1 to θi = τ1 is equal to q. Using similar

calculations and assuming that

π2 > π1,

it can be verified that the Markov transition matrix for the process {θi}Ni=1 is given by

K =

 q (1− q)
(1− q)π1

π2
q + (1− q)

(
1− π1

π2

)  =

[
k11 k12

k21 k22

]
. (3.38)

Straightforward calculations (see, for instance, Hamilton (1994)) reveal that the transition

matrix K has two eigenvalues λ1 and λ2:

λ1(K) = 1, λ2(K) = q − (1− q) π1

1− π1

. (3.39)

The eigenvector associated with λ1(P ) determines the invariant distribution of the Markov

chain, which, as we have seen in Section 3.4.2, equals the posterior distribution. Provided
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that the second eigenvalue is different from one, the posterior is the unique invariant distri-

bution of the Markov chain.

The persistence of the Markov chain depends on the shape of the proposal distribution

in relation to the posterior distribution. In the discrete case, one could easily obtain an iid

sample from the posterior by setting q = π1. While in general it is not feasible to tailor

the proposal density to generate serially uncorrelated draws, the goal of MCMC design is to

keep the persistence of the chain as low as possible. If q is equal to one, then θi = θ1 for all

i and the equilibrium distribution of the chain is no longer unique. Taking averages of the

θi’s will no longer yield a consistent estimate of its posterior mean. If q = 0, the equilibrium

distribution remains unique, but a draw of θi = τ1 is followed by a draw of θi+1 = τ2. The

subsequent transition to θi+2 is stochastic and the expected number of τ2 draws is equal to

π2/π1.

As in Section 3.3, we will now examine the convergence of Monte Carlo averages of h(θi).

To do so, we define the transformed parameter

ξi =
θi − τ1

τ2 − τ1

. (3.40)

This transformed parameter takes the values 0 or 1. We can represent the Markov chain

associated with ξi as first-order autoregressive process

ξi = (1− k11) + λ2(K)ξi−1 + νi. (3.41)

Conditional on ξi−1 = j, j = 0, 1, the innovation νi has support on kjj and (1 − kjj), its

conditional mean is equal to zero, and its conditional variance is equal to kjj(1−kjj). Based

on this autoregressive representation, it is straightforward to compute the autocovariance

function of ξi, which then can be converted into the autocovariance function of h(θi):

COV (h(θi), h(θi−s)) =
(
h(τ2)− h(τ1)

)2
π1(1− π1)

(
q − (1− q) π1

1− π1

)s
= Vπ[h]

(
q − (1− q) π1

1− π1

)s
(3.42)

If q = π1 then the autocovariances are equal to zero and the draws h(θi) are serially uncorre-

lated (in fact, in our simple discrete setting they are also independent). Defining the Monte

Carlo estimate

h̄N =
1

N

N∑
i=1

h(θi) (3.43)
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Figure 3.3: Discrete MH Algorithm
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Notes: Panel 1 depicts the autocorrelation function of θi. Panel 2 depicts the variance ratio

V̄ (θ̄)/Vπ[θ]. of the small sample variance V̂ (θ̄) computed across multiple chains (x-axis)

versus HAC estimates of V̄ (θ̄)/N (y-axis) computed for each chain.
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we deduce from a central limit theorem for dependent random variables that

√
N(h̄N − Eπ[h]) =⇒ N

(
0, V̄ (h̄)

)
, (3.44)

where V̄ (h̄) is the long-run covariance matrix

V̄ (h̄) = lim
N−→∞

Vπ[h]

(
1 + 2

N∑
s=1

N − s
N

(
q − (1− q) π1

1− π1

)s)
.

In turn, a measure of effective sample size for the MH algorithm can be defined as

ESS =
N

1 + 2
∑N

s=1
N−s
N

(
q − (1− q) π1

1−π1

)s . (3.45)

3.4.4 A Numerical Illustration

We proceed with a numerical illustrations of the issues at hand when designing MCMC

algorithms. We parameterize the example as a Bernoulli distribution (τ1 = 0, τ2 = 1) with

π1 = 0.2. To assess the effectiveness of different MH settings, we vary q ∈ [0, 1). The top

panel of Figure 3.3 displays the autocorrelations up to 9 lags for q = {0, 0.33, 0.66, 0.99}.
When q = 0.99 (the turquoise line) the chain generated by the MH algorithm is extremely

autocorrelated. As discussed, the probability of moving from θi−1 = τ1 to θi = τ2 is 1− q, or

0.01. Similarly, the probability of moving from θi−1 = τ2 to θi = τ1 is (1− q)π1/π2 = 0.0025.

Thus, if the initial draw is θ0 = τ1, one would expect 100 draws before encountering τ2.

However, recall that 80% of the realized draws from the invariant distribution should be τ2.

Intuitively, the high autocorrelation reflects the fact that it will take a high number of

draws to accurately reflect the target distribution, or that the chain is “moving” extremely

slowly around the parameter space. This will manifest itself in a high variance of Monte

Carlo estimates, as we will see below. When q = 0.66 or 0.33 (the green and red lines,

respectively), the autocorrelation is substantially weaker than under the q = 0.99 sampler.

Still, both exhibit positive autocorrelation. Intuitively, when θi−1 = τ1, both the samplers

will select θi = τ1 with probability greater than π1 = 0.2, inducing a positive autocorrelation

in the chain. Finally, when q = 0 (the blue line), the MH chain actually has a negative

first order autocorrelation. For θi−1 = τ1 the probability of τ1 for θi is zero, which is much

less than one would expect under iid draws. Induced negative autocorrelation can actually

serve to reduce Monte Carlo variance relative to theoretical variance, which the next panel

highlights.
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The middle panel computes the relative variance ratios, V̄ (h̄)/Vπ[h] when q is varied in

[0, 1). The grey line shows the relative variance while the black horizontal bar indicates a

relative variance of one. The y coordinates are rescaled in log terms. Consistent with the

autocorrelations discussed above, for large values of q, the variance of Monte Carlo estimates

of h drawn from the MH chain are much larger than the variance of estimates derived from

iid draws. Indeed, when q = 0.99 the variance is about 100 times larger. As q moves closer

to π1 the relative variance shrinks. Indeed, when q = π1 the Monte Carlo estimates from

the MH sampler and an iid sampler have the same variance, as the chain generated by the

MH sampler mimics the iid sampler. Finally, when q < π1, the Monte Carlo variance from

the MH sampler is less than that under iid draws. While this reduction in MC variance

is obviously desirable, a few points should be kept in mind as we move forward. First,

the design of a good MH sampler–here, this amounts to picking q–is highly depended on

the target distribution, here indexed by π1. Unfortunately, the reason one often resorts to

MCMC techniques is that they don’t know important features of the target distribution,

i.e, π1. Second and relatedly, measures such as the relative variance are often impossible to

compute (as one doesn’t generally know π1), so instead analysts typically rely on measures

like sample autocorrelation to get a sense of performance an MH algorithm.

In an environment where asymptotic variances are not known in closed-form, it is difficult

to know when the chain generated by an MH algorithm has converged. There are many

diagnostics available for this, some of which we will discuss in more detail in the next

section. At the heart of most of the measures, though, is whether the empirical variability

of an estimate computed across many runs an MH sampler is consistent with estimates

within each chain. With an eye towards between and within chain measurement, we run 10

replications of MH samplers for q = {0, 0.33, 0.66, 0.99}. The length of each simulation is

N = 1000. We set h(θ) = θ; i.e., we are interested in the variance of Monte Carlo estimates of

the mean of the distribution. For each replication, we compute an estimate of V̄ (h̄)/N , using

a simple Newey-West heteroskedastic- and autocorrelation-consistent (HAC) estimator,

HAC[h̄] =
γ̂0 + 2

∑L
l=1

(
1− l

L+1

)
γ̂l

N
,

where γl = COV (h(θi), h(θi−l)), with L set to 400. We also compute an estimate of the

variance of h across the 10 replications. Indexing the replications by j, for each choice of q

we can simply compute:

V̂ (h̄) = V AR({h̄j}10
j=1).
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The bottom panel of Figure 3.3 examine the relationships between these two estimates.

The y-coordinate of the colored dots represent the HAC estimates for each q, while the x-

coordinate gives the value of small sample variance of V̂ (h̄) for each q. The black line gives

the 45 degree line. One can see that relative ordering for the qs is preserved in small samples,

with q = 0 having the lowest small-sample variance and q = 0.99 having the highest. More

importantly, the small-sample variance for each of the simulators is bracketed by the HAC

estimates, indicating by the black line bisecting the dots for each q. That is, the within chain

estimates appear consistent with the across chain measures.

3.5 Bayesian Inference and Decision Making

The posterior distribution of the model parameters can be used for inference and decision

making. From a Bayesian perspective it is optimal to make decisions that minimize the

posterior expected loss of the decision maker. It turns out that many inferential problems,

e.g., point or interval estimation, can be restated as decision problems. In general, there is

a decision rule δ(Y ) that maps the observations Y into decisions, and a loss function L(θ, δ)

or L(y∗, δ) according to which decisions are evaluated. The loss functions may either depend

on model parameters, e.g., θ, or on future or counterfactual values of yt, which we denoted

by y∗, or it could depend on both. For the remainder of this section we assume that the loss

depends on the parameter θ.

The posterior expected loss associated with a decision δ(Y ) is given by

ρ
(
δ(Y )|Y

)
=

∫
Θ

L
(
θ, δ(Y )

)
p(θ|Y )dθ. (3.46)

Note that in this calculation the observations Y are fixed and we are integrating over the

unknown parameter θ under the posterior distribution. A Bayes decision is a decision that

minimizes the posterior expected loss:

δ∗(Y ) = argminδ ρ
(
δ|Y
)
. (3.47)

Because all calculations are conditional on Y , we simply write δ instead of δ(Y ) from now

on. For some decision problems, e.g., point estimation under a quadratic loss function (see

below), it is possible to solve for δ∗ analytically, expressing the optimal decision as a function

of moments or quantiles of the posterior distribution of θ. A Monte Carlo approximation can

then be used to evaluate δ. For other decision problems it might not be feasible to derive δ∗
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analytically. In these case one can replace the posterior risk for each choice of δ by a Monte

Carlo approximation of the form

ρ̄N
(
δ|Y
)

=
1

N

N∑
i=1

L
(
θi, δ

)
, (3.48)

where the θi’s are draws from the posterior p(θ|Y ). If the draws are generated by importance

sampling, then the losses have to be reweighted using the importance weights as in (3.26).

A numerical approximation to the Bayes decision δ∗(·) is then given by

δ∗N(Y ) = argmind ρ̄N
(
δ(·)|Y

)
. (3.49)

According to the frequentist large sample theory for extremum estimators (see for instance

the textbook treatment in van der Vaart (1998)), δ∗N(Y )
a.s.−→ δ∗(Y ) provided that ρ̄N

(
δ|Y
)

converges to ρ
(
δ|Y
)

uniformly in δ and N −→∞.

3.5.1 Point Estimation

Suppose that θ is scalar. The most widely used loss functions are the quadratic loss function

L2

(
θ, δ) = (θ − δ)2 and the absolute error loss function L1(θ, δ) = |θ − δ|. The Bayes

estimator associated with the quadratic loss function is the posterior mean Eπ[θ] which can

be approximated by the Monte Carlo average

θ̄ =
1

N

N∑
i=1

θi. (3.50)

The Bayes estimator associated with the absolute error loss function is the posterior median.

More generally, the τ sample quantile can be obtained by solving the problem (see Koenker

(2005) for a textbook treatment of quantile regressions)

θ̂τ = argminq

(1− τ)
1

N

∑
θi<q

(q − θi) + τ
1

N

∑
θi≥q

(θi − q)

 . (3.51)

An easy way to compute the solution to this problem is to sort the draws in ascending order

and let θ̂τ the bτNc’th draw.
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3.5.2 Interval Estimation

An interval estimator (credible interval) for a scalar parameter θ consists of a lower bound

δl and an upper bound δu. Let δ = [δl, δu]
′ and consider the loss function

L(θ, δ) = max
λ∈R−

(δu − δl) + λ
(
I{δl ≤ θ ≤ δu} − (1− α)

)
, (3.52)

where I{x ≤ a} is the indicator function that equals one if x ≤ a and is zero otherwise. Note

that if δl ≤ θ ≤ δu then the factor post-multiplying λ is positive for α > 0 and the solution

to the constrained maximization problem is to set λ = 0. Thus, the loss corresponds to the

length of the interval. If θ lies outside of the interval, then the loss is infinite. The posterior

risk is given by

ρ(δl(Y ), δu(Y )|Y ) = (δu − δl) + max
λ∈R−

λ
(
P(δl ≤ θ ≤ δu|Y )− (1− α)

)
. (3.53)

If the posterior density p(θ|Y ) is unimodal, then the credible interval that minimizes this

loss function has the property that p(δl|Y ) = p(δu|Y ) = κ. It is called the highest posterior

density (HPD) set because the density of all values of θ that are included in this set exceeds

the threshold κ. If the posterior-density is multimodal the interval that minimizes the

posterior expected loss in (3.53) is not necessarily the HPD set. The HPD set may be the

union of multiple disjoint intervals (constructed around the modes) and is formally defined

as CSHPD =
{
θ |p(θ|Y ) ≥ κ

}
. The threshold κ is chosen to guarantee that the set has a

1− α coverage probability.

In practice researchers often replace HPD sets by equal-tail-probability sets that satisfy∫ δl

−∞
p(θ|Y )dθ =

∫ ∞
δu

p(θ|Y )dθ = α/2.

While these intervals tend to be longer than HPD intervals, they are easier to compute

because δl and δu are simply the α/2 and 1−α2 quantiles which can be obtained from (3.51).

3.5.3 Forecasting

In forecasting applications the argument θ of the loss function is replaced by a future obser-

vation yT+h: L(yT+h, δ). For the AR(1) model in (3.3) we can express

yT+h = θhyT +
h−1∑
s=0

θsuT+h−s, (3.54)
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which implies that the h-step ahead conditional distribution is

yT+h|(Y1:T , θ) ∼ N

(
θhyT ,

1− θh

1− θ

)
. (3.55)

We can express the predictive density of yT+h as

p(yT+h|Y1:T ) =

∫
p(yT+h|yT , θ)p(θ|Y1:T )dθ. (3.56)

Draws from this predictive density can be easily generated with the following algorithm:

Algorithm 5 (Sampling from Predictive Distribution) For each draw θi from the pos-

terior distribution p(θ|Y1:T ) sample a sequence of innovations uiT+1, . . . , u
i
T+h and compute

yiT+h as a function of θi, uiT+1, . . . , u
i
T+h, and Y1:T , e.g., according to (3.54).

Moments and quantiles of the predictive distribution can be approximated based on the

draws yiT+h. The posterior expected loss is given by

ρ
(
δ|Y1:T

)
=

∫
yT+h

L(yT+h, δ)p(yT+h|Y1:T )dyT+h (3.57)

and under suitable regularity conditions can be approximated by the Monte Carlo average

ρ̄(δ|Y ) =
1

N

N∑
i=1

L(yiT+h, δ). (3.58)

3.5.4 Model Selection and Averaging

The posterior probablities for a collection of Mj, j = 1, . . . , J are given by γj,T defined

in (3.12). The key difficulty in computing posterior model probabilities is the evaluation

of the marginal data density p(Y |Mj), which we will discuss in more detail in subsequent

chapters. Once the posterior probabilities have been obtained, they can be used for model

selection or averaging. Bayesian model selection typically refers to the solution of a decision

problem in which the loss associated with selecting the correct model is zero and the loss

associated with choosing an incorrect model is one. It can be verified that the solution

that minimizes the posterior expected loss is to select the model with the highest posterior

probability. Model averaging refers to a procedure in which posterior distributions from a

single model are replaced by the mixture of distribution obtained by averaging across all
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available models, using the posterior model probabilities as weights. Suppose that θ is a

parameter common to all models then we can form

p(θ|Y ) =
J∑
j=1

γj,Tp(θ|Y,Mj). (3.59)

Similarly, the predictive distribution for a future observation yT+h takes the form

p(yT+h|Y1:T ) =
J∑
j=1

γj,Tp(yT+h|Y1:T ,Mj). (3.60)
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Chapter 4

Metropolis-Hastings Algorithms for

DSGE Models

To date, the most widely used method to generate draws from posterior distributions of a

DSGE model is the random walk MH (RWMH) algorithm. This algorithm is a special case

of the generic Algorithm 4 in which the proposal distribution q(ϑ|θi−1) can be expressed as

the random walk ϑ = θi−1 +η and η is drawn from a distribution that is centered at zero. We

will introduce a benchmark RWMH algorithm in Section 4.1 and apply it to a small-scale

New Keynesian DSGE model in Section 4.2. In combination with the a prior distribution

that is typically used for this kind of model the posterior distribution has a well-behaved

elliptical shape and the output from the simple RWMH algorithm can be used to obtain

accurate numerical approximations of posterior moments.

Unfortunately, in many applications, in particular those involving medium- and large-scale

DSGE models the posterior distributions could be very non-elliptical. Irregularly shaped

posterior distributions are often caused by identification problems. The DSGE model may

suffer from a local identification problem that generates posteriors that are very flat in cer-

tain directions of the parameter space, at least locally in the neighborhood of the mode,

similar to the posterior encountered in the simple set-identified model of Section 3.2. Alter-

natively, the posterior may exhibit multimodal features. Multimodality could be caused by

the data’s inability to distinguish between the role of a DSGE model’s external and internal

propagation mechanisms. For instance, inflation persistence, can be generated by highly

autocorrelated cost-push shocks or by firms’ inability to frequently re-optimize their prices
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in view of fluctuating marginal costs. We use a very stylized state-space model to illustrate

these challenges for posterior simulator in Section 4.3.

In view of the difficulties caused by irregularly-shaped posterior surfaces, we review a

variety of alternative MH samplers in Section 4.4. These algorithms differ from the RWMH

algorithm in two dimensions. First, they use alternative proposal distributions q(ϑ|θi−1). In

general, we consider distributions of the form

q(·|θi−1) = pt(·|µ(θi−1),Σ(θi−1), ν),

where pt(·) refers to the density of a student-t distribution Our exploration of different qs

will thus concentrate on different ways of forming the location parameter µ(·) and the scale

matrix Σ(·). For ν = ∞ this notation nests Gaussian proposal distributions. The second

dimension in which we generalize the algorithm is blocking, i.e., we group the parameters

into subvectors, and use a Block MH sampler to draw iteratively from conditional posterior

distributions.

While the alternative MH samplers are designed for irregular posterior surfaces for which

the simple RWMH algorithm generates inaccurate approximations, we illustrate the per-

formance gains obtained through these algorithms using the simple New Keynesian DSGE

model in Section 4.5. Similar to the illustrations in Section 3.4, we evaluate the accuracy

of the algorithms by computing the variance of Monte Carlo approximations across multiple

chains. Our simulations demonstrate that careful tailoring of proposal densities q(ϑ|θi−1)

as well as blocking of the parameters can drastically improve the accuracy of Monte Carlo

approximations. In Section 3.4, we showed directly that the Monte Carlo estimates associ-

ated with the discrete MH algorithm satisfied a SLLN and CLT for dependent, identically

distributed random variables. All of the MH algorithms here give rise to Markov chains

that are (recurrent,) irreducible and aperiodic for the target distribution of interest. These

properties are sufficient for a SLLN to hold. However, validating conditions for a CLT to

hold is much more difficult and beyond the scope of this book.

Finally, Section 4.6 takes a brief look at the numerical approximation of marginal data

densities that are used to compute posterior model probabilities.

4.1 A Benchmark Algorithm

The most widely used MH algorithm in DSGE model applications is the random walk MH

(RWMH) algorithm. The mean of the proposal distribution is simply the current location
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in the chain, with its variance prespecified,

µ(θt−1) = θt−1 and Σ(θt−1) = c2Σ̂ (4.1)

The name of the algorithm comes from the random walk form of the proposal, which can be

written as

ϑ = θi−1 + η

where ε is mean zero with variance c2Σ̂. Given the symmetric nature of the proposal distri-

bution, the acceptance probability becomes

α = min

{
p(ϑ|Y )

p(θi−1|Y )
, 1

}
.

A draw, ϑ, is accepted with probability one if the posterior at ϑ has a higher value than the

posterior at θi−1. The probability of acceptance decreases as the posterior at the candidate

value decreases relative to the current posterior.

To implement the RWMH, the user still needs to specify ν, c, and Σ̂. For all of the

variations of the RWMH we implement, we set ν =∞, that is, we use a multivariate normal

proposal distribution in keeping with most of the literature. Typically, the choice of the

c is made conditional on Σ̂, so we first discuss the choice for Σ̂. The proposal variance

controls the relative variances and correlations in the proposal distribution. As we have

seen in Section 3.4, the sampler can work very poorly if q is strongly at odds with the

target distribution. This intuition extends to the multivariate setting here. Suppose we our

vector of parameters θ, contains two parameters, say β and δ, that are highly correlated

in the posterior distribution. If the variance of the proposal distribution does not capture

this correlation, but instead characterizes β and δ as independent–by, for example, using a

diagonal matrix for Σ̂–then the proposal ϑ is unlikely to reflect the fact that when β is large

δ is large, and so on. This means that p(ϑ|Y ) is likely to be small, and so the draw will be

rejected. The chain will have many rejections, and consequently c driven be tuned to small

values. The chain generated by this algorithm will be very highly autocorrelated and thus

the Monte Carlo estimates derived from it will have high variance.

A good choice for Σ̂ seeks to incorporate information from the posterior, to potentially

capture correlations discussed above. Obtaining this information can difficult, as one is

necessarily running MCMC because there is not much information about the posterior. A

popular approach, used in Schorfheide (2000), is to set Σ̂ to be the negative of the inverse

Hessian at the mode of the log posterior, θ̂, obtained by running an numerical optimization
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routine before running MCMC. Using this as an estimate for the covariance of the posterior

is attractive, because it can be viewed as a large sample approximation to the posterior

covariance matrix as the sample size T −→ ∞. There exists a large literature on the

asymptotic normality of posterior distributions. Fundamental conditions can be found, for

instance, in Johnson (1970).

Unfortunately, in many applications the maximization of the posterior density is tedious

and the numerical approximation of the Hessian may be inaccurate. These problems may

arise if the posterior distribution is very non-elliptical and possibly multi-modal, or if the

likelihood function is replaced by a non-differentiable particle filter approximation (see Chap-

ter 7 below). In these cases, a (partially) adaptive approach may work well: First, generate

a set of posterior draws based on a reasonable initial choice for Σ̂, e.g. the prior covariance

covariance matrix. Second, compute the sample covariance matrix from the first sequence

of posterior draws and use it as Σ̂ in a second run of the RWMH algorithm. In principle,

the covariance matrix Σ̂ can be adjusted more than once. However, Σ̂ must be fixed for the

validity of the algorithm to hold. Samplers which constantly (or automatically) adjust Σ̂ are

known as adaptive samplers and require substantially different theoretical justifications.

Instead of strictly following one of the two approaches that we just described, in many

of the numerical illustrations below, we use an estimate of the posterior covariance, V ,

obtained from an earlier estimation. While this approach is impractical in general, it avoids

an mismatch between the Hessian-based estimate and the posterior covariance – in some

sense, it is a best-case scenario. To summarize, we examine the following variant of the

RWMH algorithm:

RWMH-V : Σ̂ is the posterior covariance.

For comparison purposes we also consider setting Σ̂ to the identity matrix I:

RWMH-I : Σ̂ = I

This is a generic approach, as it does not require any prior knowledge of the posterior to

implement, which is attractive because this makes it easy to implement. In particular, this

choice does not require a numerical maximization of the posterior, which may be difficult to

execute if the posterior is very non-elliptical. The downside of choosing the identity matrix is

that it ignores the scaling of the parameters and the orientation of the posterior contours. We

will see in Section 4.5 below that this naive choice of proposal distribution covariance matrix
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leads to a substantial deterioration of the efficiency of the algorithm. If the prior distribution

is proper and the marginal distributions are appropriately scaled, then the identity matrix

could be replaced by a diagonal matrix with the prior variances on the diagonal.

The final parameter of the algorithm is the scaling factor c. This parameter is typically

adjusted to ensure a “reasonable” acceptance rate. Given the opacity of the posterior,

it is difficult to derive a theoretically optimal acceptance rate. If the sampler accepts too

frequently, it may be making very small movements, resulting in high Monte Carlo estimates.

Similarly, if the chain rejects too frequently, it may be get stuck in one region of the parameter

space, again resulting in poor estimates. However, for the special case of a target distribution

which is multivariate normal, Roberts, Gelman, and W.R. (1997) has derived a limit (in the

size of parameter vector) optimal acceptance rate of 0.234. Most practitioners target an

acceptance rate between 0.20 and 0.40. The scaling c factor can be tuned during the burn-in

period or via pre-estimation chains. We will discuss the relationship between the accuracy

of Monte Carlo approximations and the choice of c in more detail in Section 4.5.1.

4.2 The RWMH-V Algorithm at Work

We will now apply the RWMH-V algorithm to the estimation of the small-scale New Keyne-

sian model (DSGE Model I) introduced in Section 1.1. The model is solved using a log-linear

approximation as described in Section 2.1. We begin with this example on account of its

simplicity and because it has been previously studied in An and Schorfheide (2007b). We

can thus be confident all of our samplers can converge to the posterior in reasonable time,

allowing us to concentrate on the variance of the estimators as a measure of success. In

later sections, we will examine more elaborate models where some simulators have trouble

replicating key features of the posterior.

The model uses three observables to inform the estimation. We use quarterly per capita

GDP growth, quarterly inflation, and the annualized federal funds rate, whose measurement

equations were defined in Equation (2.11). The observations span from 1983:I to 2002:IV,

giving us a total of 80 observations. The prior distribution was given in Table 2.2. Figure 4.1

plots the observables.

In general the initial draw θ0 of an MH does not reflect the posterior. Indeed, there may be

a large number of draws before the sampler has “converged”–that is when a draw is more or

less indistinguishable from a draw from the posterior. For this reason, it is common practice
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Figure 4.1: DSGE I Observables
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to drop a substantial part (say the first N0 draws) of the initial simulations of the MH

chain, known as the “burn-in.” Figure 4.2 depicts θ̄(N0, N) = 1
N−N0

∑
i=1 θ

i as a function of

N for multiple runs of the RWMH-V algorithm and three choices of N0. Initial draws are

generated from the prior distribution. The dispersion of initial recursive mean after burn-

in corresponds roughly to posterior variance to the extent that the chain converged to its

equilibrium distribution after N0 draws. Each recursive mean appears to approach the same

limit point.

While the draws generated by the posterior simulator represent the joint posterior dis-

tribution of the parameter vector θ, researchers typically start out the empirical analysis

by reporting summary statistics for the marginal posterior distribution of each parameter.

Table 4.1 provides posterior mean parameter estimates and 90% credible intervals. Instead

of computing HPD intervals, we report the 5th and the 95th percentile of the posterior dis-

tribution, which can be easily obtained after sorting the posterior draws for each parameter.

The posterior estimates of the DSGE model parameters are broadly in line with estimates re-

ported elsewhere in the literature. The estimated annualized steady state growth rate of the

economy is 1.68%, the estimated steady state inflation rate for the sample period is 3.43%,

and the implied steady state nominal interest rate is 5.56%. The estimated intertemporal

elasticity of substitution 1̂/τ = 0.37. The estimated slope of the New Keynesian Phillips

curve is fairly large, κ̂ = 0.75, implying a low degree of price rigidity. The central bank reacts
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Figure 4.2: Convergence of Monte Carlo Averages
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Notes: The figure depicts recursive means of τ i for different choices of the burn-in sample

size and multiple chains.

Table 4.1: Posterior Estimates of DSGE Model Parameters

Parameter Mean [5, 95] Parameter Mean [5,95]

τ 2.72 [ 1.48, 3.87] ρr 0.76 [ 0.69, 0.83]

κ 0.75 [ 0.37, 0.98] ρg 0.95 [ 0.61, 1.00]

ψ1 1.89 [ 1.41, 2.40] ρz 0.87 [ 0.78, 0.92]

ψ2 0.63 [ 0.20, 1.21] σr 0.24 [ 0.18, 0.66]

r(A) 0.45 [ 0.04, 1.05] σg 0.79 [ 0.61, 1.57]

π(A) 3.43 [ 2.79, 4.02] σz 0.49 [ 0.26, 2.48]

γ(Q) 0.42 [ 0.04, 0.73]

strongly to inflation movements as well as deviations of output from flexible price output.

In the remainder of this chapter, we will not focus on the posterior estimates per se but

rather on the accuracy with which various posterior samplers can generate approximations

of posterior moments.

The parameter draws can be transformed into other statistics of interest. For instance, the

DSGE model can be used to study the propagation of exogenous shocks. Conditional on a

parameter vector θ, it is straightforward to compute impulse response functions (IRFs) from

the state-space representation of the DSGE model given by (2.9) and (2.11). The mapping

from the parameters to the IRFs is an example of a function h(θ) that is of interest in many

DSGE model applications. (Pointwise) Bayesian inference for IRFs can be implemented by
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Figure 4.3: Impulse Response to a Monetary Policy Shock
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Notes: The figure depicts pointwise posterior means and 90% credible bands.

first converting each draw θi into h(θi) and then computing posterior means and credible

intervals for each element of the h(·) vector. Results for the small-scale DSGE model are

depicted in Figure 4.3. Each column of the figure corresponds to the responses to the

government spending shock, the technology growth shock, and the monetary policy shock,

respectively; and each row corresponds to the response of output, inflation, and interest rates

to the three shocks. The solid lines depict posterior mean responses and the shaded areas

are 90% credible bands.

The log-linearized equilibrium conditions for the small-scale DSGE model were summarized

in (2.1). A positive government spending (or, more generally, demand) shock raises output,

but leaves inflation and interest rates unchanged. In this simple model consumption in

deviations from the stochastic trend, ĉt is the difference between output deviations ŷt and

the government spending shock ĝt. Moreover, ĝt equals potential output, i.e. the output

that would prevail in the absence of price rigidities, and ĉt = ŷt − ĝt can be interpreted as

the output gap. If the log-linearized equilibrium conditions are rewritten in terms of ĉt, then

the government spending shock drops out of the Euler equation, the New Keynesian Phillips

curve, and the monetary policy rule. This implies that the government spending shock only

affects output, but not the output gap, i.e. consumption, inflation, and interest rate.

In response to a technology growth shock ẑt, output and consumption react proportionally,
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i.e. ŷ = ĉt. While the level of output will adjust to the new level of technology in the long-

run, expectations of increasing productivity lead agents to increase consumption initially by

more than ẑt, meaning that ŷt = ĉt > 0. According to the Phillips curve, the positive output

gap is associated with an increase in inflation, which in turn triggers a rise in interest rate.

In the long-run, the levels of output and consumption rise permanently while both inflation

and interest rates revert back to their steady states. Finally, an unanticipated increase in

nominal interest rates raises the real rate because inflation is slow to adjust. According to

the Euler equation, current consumption is minus the sum of future expected real rates,

which means that consumption and output fall. According to the price setting equation, a

drop in output and consumption leads to a fall in inflation.

Notes: (i) (ii)

4.3 Potential Irregularities in the Posterior

The posterior distribution associated with the small-scale New Keynesian model has an

elliptical shape and the RWMH-V algorithm performs well. The advanced computational

techniques that we will present subsequently are motivated by the observation that more

elaborate DSGE models or DSGE models equipped with a more diffuse prior distribution

may generate non-elliptical posterior distributions that are difficult to sample from. To

illustrate the difficulties that may arise when generating draws from the posterior density

p(θ|Y ), consider the following stylized state-space model discussed in Schorfheide (2010):

yt = [1 1]st, st =

[
φ1 0

φ3 φ2

]
st−1 +

[
1

0

]
εt, εt ∼ iidN(0, 1). (4.2)

The mapping between some structural parameters θ = [θ1, θ2]′ and the reduced-form param-

eters φ = [φ1, φ2, φ3]′ is assumed to be

φ1 = θ2
1, φ2 = (1− θ2

1), φ3 − φ2 = −θ1θ2. (4.3)

The first state, s1,t, looks like a typical exogenous driving force of a DSGE model, e.g., total

factor productivity, while the second state s2,t evolves like an endogenous state variable,

e.g., the capital stock, driven by the exogenous process and past realizations of itself. The

mapping from structural to reduced form parameters is chosen to highlight the identification

problems endemic to DSGE models. First, θ2 is not identifiable when θ1 is close to 0, since it

enters the model only multiplicatively. Second, there is a global identification problem. Root
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Figure 4.4: Posteriors For Stylized State Space Model
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cancelation in the AR and MA lag polynomials for yt causes a bimodality in the likelihood

function.

Figure 4.4 depicts posterior contours for two hypothetical posteriors. The contours in

the left panel highlight the local identification problem that arises if θ1 is close to zero.

The contours in the left panel are based on a posterior for which we we simulate T = 200

observations given θ = [0.45, 0.45]′. This parameterization is observationally equivalent to

θ = [0.89, 0.22]′. In both cases we use a prior distribution that is uniform on the square

0 ≤ θ1 ≤ 1 and 0 ≤ θ2 ≤ 1. For the MH algorithm to be efficient, the posterior on the left

requires that the algorithm tries to make relatively large steps in the θ2 direction and small

steps in the θ1 direction. This is achieved by aligning the contours of the proposal density

with the contours of the posterior. Recall that in the benchmark algorithm we used a Σ̂ that

was constructed from (an approximation of) the posterior covariance matrix.

Sampling from the posterior depicted in the right panel is considerably more difficult,

because the sampler has to travel from one modal region to the other, crossing a valley. This

turns out to be difficult for the benchmark RWMH algorithm. Blocking, i.e., sampling from

the posterior of θ2|(θ1, Y ) and θ1|(θ2, Y ) can help and so can a more careful tailoring of the

proposal densities for the conditional distributions.

4.4 Alternative MH Samplers

The benchmark RMWH algorithm can be improved in two directions. First, one can tai-

lor the proposal distribution to reduce the persistence in the Markov chain. We consider
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two algorithms that have this feature: the Metropolis-Adjusted Langevin algorithm in Sec-

tion 4.4.1 and the Newton MH algorithm in Section 4.4.2. This list is not exhaustive. For

instance, Kohn, Giordani, and Strid (2010) propose an adaptive MH algorithm in which the

proposal distribution is a mixture of a random walk proposal, an independence proposal, and

a t-copula estimated from previous draws of the chain. While this is a promising approach,

but it requires the user to specify a large set of tuning parameters, which may be daunting to

the applied macroeconomist. Second, it is often helpful to split the parameters into blocks,

and sample from the posterior distribution of each block, conditional on the most recent

draws of all the other parameters. Block MH algorithms are discussed in Section 4.4.3.

4.4.1 Metropolis-Adjusted Langevin Algorithm

A natural evolution from the RWMH, which uses only the level of the (unnormalized) pos-

terior, is the Metropolis-Adjusted Langevin (MAL) Algorithm, which incorporates the slope

of the posterior. The MAL algorithm has a long history, dating back to Phillips and Smith

(1994) and Roberts and Tweedie (1992). The MAL algorithm is based on the Langevin

diffusion,

dXt = dBt +
1

2
log p(dXt|Y )dt.

X has p(·|Y ) as its invariant distribution. The discretization of this process suggests a

natural evolution of a Markov chain,

θi = θi−1 +
c1

2
5 log p(θi−1|Y ) + c2ε.

Here c1 and c2 are scaling factors. Clearly, chains based on this evolution will not satisfy

the posterior as their ergodic distribution, given the bias induced by the gradient term. It is

easy to correct this bias by adding a MH step in the evolution. That is, treat the proposal

distribution as t(µ(θt−1),Σ(θt−1), ν) with

µ(θt−1) = θt−1 +
c1

2
5 log p(θt−1|Y ), Σ(θt−1) = c2

2I.

This defines a valid MH algorithm. Indeed, Roberts and Rosenthal (1998) show that the

optimal rate of acceptance is 57% in the special case when the elements of θ are uncorre-

lated. The higher acceptance rate suggests improved statistical performance relative to the

RW algorithm. Intuitively, the MAL algorithm pushes the chain toward regions of higher

probability density, where most of the draws should lie.
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Unfortunately, in a multidimensional setting, it becomes difficult to scale step size c1 as

parameters tend to have different magnitudes. Moreover, simply using the gradient ignores

any potential relationship between the parameters, the knowledge of which is informative in

any MCMC algorithm. It turns out–see, for example, Roberts and Stramer (2002)–that it

is extremely helpful to precondition the MAL proposal, with

µ(θt−1) = θt−1 +
c1

2
M15 log p(θt−1|Y ), Σ(θt−1) = c2

2M2. (4.4)

One standard practice is to set M1 = M2 = M , with

M = −

[
∂2(log p(θ̂|Y ))

∂θ∂θ′

]−1

. (4.5)

To reiterate, θ̂ is the mode of the posterior. The use of the Hessian at the mode in a sense

accounts for the “average” relationships between the parameters. If this is not changing

much over the parameter space, then the preconditioned MAL (p-MAL) algorithm might

be quite efficient. We examine the effectiveness of this algorithm. As with the RWMH-V

algorithm, we abstract from the difference between the Hessian and the posterior covariance,

V , and simply use in its place.

MAL : M1 = M2 = V.

4.4.2 Newton MH Algorithm

The connection between posterior simulation and Newtonian optimization is more closely

exploited by Qi and Minka (2002), called Newton MH. Their algorithm can be seen as a

MAL-type algorithm with,

µ(θi−1) = θi−1 − s
[
∂2(log p(θi−1|Y ))

∂θ∂θ′

]−1

5 log p(θi−1|Y ) and (4.6)

Σ̂(θi−1) = −
[
∂2(log p(µ(θi−1)|Y ))

∂θ∂θ′

]−1

. (4.7)

Here s is the step size of the Newton step. When the log posterior is quadratic, s = 1

is the optimal step size. If the log posterior is quadratic–the distribution is elliptical–then

the proposal distribution will directly coincide with the target distribution and one will be

perfectly sampling the posterior, θi−1 and ϑ will be uncorrelated. Obviously, there are many

departures from normality in the posterior of DSGE models, so this approximation it not
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exact. To accommodate this, it is better to let s, sometimes called the learning rate be

stochastic (independently of θi−1).1

c1 = 2s, s ∼ iidU [0, s̄],

where s̄ is a tuning parameter. This means that average step-size is s̄/2. For our simulations

below, we will set the hyperparameters of the algorithm

Newton MH : s̄ = 2, c2 = 1.

The Newton MH and MAL algorithms depart from the RWMH by using local information

about the posterior embedded in the slope and curvature of the posterior to potentially build

more efficient simulators. The RWMH blindly searches through the parameter space looking

areas of high posterior density, whereas both the Newton and MALA algorithms explicitly

account for this objective in their proposal distributions. To inclusion of an accept-reject

Metropolis step ensures that posterior will still be obtained as the invariant distribution of

the chain.

For both MAL and Newton MH algorithm, there is a cost born by including the derivatives

of the log posterior. For DSGE models, these cannot be obtained analytically. Herbst (2011)

uses matrix calculus to derive efficient algorithms for computing these objects for some DSGE

models. Still, using numerical differentiation, while slow, can still produce reasonably sized

chains without taking too much time.

4.4.3 Block MH Algorithm

Despite a careful choice of the proposal distribution q(·|θi−1), it is natural that the efficiency

of the MH algorithm decreases as dimension of the parameter vector θ increases. This

problem is particularly pronounced for the RWMH, as we will see below. The success of the

proposed random walk move decreases as the dimension d of the parameter space increases.

One way to alleviate this problem, is to break the parameter vector into blocks. Consider a

d dimensional parameter vector, θ. A partition of the parameter space, B, is collection of

B sets of indices that this mutually exclusive and collectively exhaustive labels over subsets

of the parameters vector. Call the subsets θb, b = 1, . . . , B. In the context of a sequence

1As long as s and θi−1 are independent, the Markov transition implied will still preserve the posterior

as its invariant distribution. This can seen by thinking of an augmented posterior p(s, θ|Y ) and casting the

algorithm as the so-called Metropolis-within-Gibbs.
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of parameter draws, let θib refer to the bth block of ith draw of θ and let θi<b refer to the

ith draw of all of the blocks before b and similarly for θi>b. Algorithm 6 describes a generic

Block MH algorithm.

Algorithm 6 (Block MH Algorithm) 1. Draw θ0 ∈ Θ.

2. Iterate. For i = 1, . . . , n: Partition the parameter vector into Nblocks blocks Bi of

the form θ = [θ1, . . . , θNblocks ]
′ via some rule (perhaps probabilistic), unrelated to the

current state in the chain. For b = 1, . . . , Nblocks: Draw ϑb ∼ q(·|
[
θi<b, θ

i−1
b , θi−1

≥b
]
).

With probability,

α = max

{
p(
[
θi<b, ϑb, θ

i−1
>b

]
|Y )q(θi−1

b , |θi<b, ϑb, θi−1
>b )

p(θi<b, θ
i−1
b , θi−1

>b |Y )q(ϑb|θi<b, θ
i−1
b , θi−1

>b )
, 1

}
,

set θib = ϑb, otherwise set θib = θi−1
b .

In order to make the Block MH algorithm operational the researcher has to decided how to

allocate parameters to blocks in each iteration and how to choose the proposal distribution

q(·|
[
θi<b, θ

i−1
b , θi−1

>b

]
) for parameters of block b.

In general, the optimal block structure is not known outside of a few special cases –

discussed in, for example, Roberts and Sahu (1997). A good rule of thumb, however, is that

we want the parameters within a block, say, θb, to be as correlated as possible while we want

the parameters between blocks, say, θb and θ−b, should be “as independent as possible,”

according to Robert and Casella (2004). The intuition for this rule is the following: if A

and B are independent, then sampling p(A|B) and p(B|A) iteratively will produce draws

from p(A,B), since p(A|B) = p(A) and p(B|A) = p(B). On the other hand, if A and B

are perfectly correlated, then sampling p(A|B) amounts to solving a deterministic function

for a in b. The subsequent draw from P (B|A) will amount to solving for b in a via the

inverse of the original; that is, b will be the same value as before and the chain will not move

throughout the parameter space. Unfortunately, picking the “optimal” blocks in this fashion

requires a priori knowledge about the posterior and it therefore often infeasible.

The first three papers in the DSGE model literature to consider blocking were Curdia and

Reis (2009), Chib and Ramamurthy (2010), and Herbst (2011). Curdia and Reis (2009)

group the parameters by type: economic – those related to agents’ preferences and produc-

tion technologies – and statistical – those governing the exogenous processes driving the
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model. The rationale for this grouping is that it is relatively straightforward to design pro-

posal distributions for the statistical parameters. However, the grouping is unlikely to be

optimal, because, for instance, economic parameters related to the persistence generated by

the internal propagation mechanism of a DSGE model may be highly correlated with the

parameters of the exogenous processes. Chib and Ramamurthy (2010) propose grouping

parameters randomly. Essentially, the user specifies how many blocks to partition the pa-

rameter vector into and every iteration a new set of blocks is constructed. While there will

be correlated blocks sometimes, the randomization ensures that this does not occur as persis-

tent feature of the chain. Key to the algorithm is that the block configuration is independent

of the Markov-Chain. This is crucial for ensuring the validity of the SLLN. Otherwise, the

chain is said to be adaptive and the asymptotic theory is substantially more complicated.

Herbst (2011) constructs a Block MH algorithm in which the blocking is explicitly based

on the posterior correlation structure which is approximated based on draws from a burn-in

period. He provides evidence that the distributional blocking procedure outperforms the

random blocking.

In the remainder of this book we will use Random-Block MH algorithms of the following

form:

Algorithm 7 (Random-Block MH Algorithm) 0. Generate a sequence of random

partitions {Bi}ni=1 of the parameter vector θ into Nblocks equally sized blocks, denoted

by θb, b = 1, . . . , Nblocks: assign an iidU [0, 1] draw to each element of θ, sort the

parameters according to the assigned random number, and then let the b’th block consists

of parameters (b− 1)Nblocks, . . . , bNblocks.
2

1. Execute Algorithm 6.

In order to tailor the block-specific proposal distributions, Chib and Ramamurthy (2010)

advocates using an optimization routine – specifically, simulated annealing – to find the mode

of the conditional posterior distribution. As in the RWHM-V algorithm, the variance of the

proposal distribution is based on the inverse Hessian of the conditional log posterior density

evaluated at the mode. This algorithm is called Tailorized Random Block MH (TaRBMH)

algorithm. While the TaRBMH algorithm is very successful in reducing the persistence of

the Markov chain relative to the benchmark RWMH-V algorithm, the downside is that the

2If the number of parameters is not divisible by Nblocks, then the size of a subset of the blocks has to be

adjusted.
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algorithm is very slow due to the likelihood evaluations required to execute the simulated

annealing step and the computation of the Hessian.

4.5 A Look at the Accuracy of MH Samplers

We proceed by assessing the accuracy of the various MH sampler that we introduced in the

preceding sections. While our earlier discussion was couched in terms of a general h, here we

simply use Monte Carlo estimates of the posterior means. We adjust our notation slightly

so that θ̄ is Monte Carlo approximation of Eπ[θ], Vπ[θ] is posterior variance of θ, and V̄ [θ̄]

is asymptotic variance of θ̄. Using the notation of Section 3.4 we consider two measures of

accuracy: the Newey-West HAC estimator HAC[θ̄] that can be computed for each run of

the MH algorithm and the small sample variance V̂ (θ̄) of the Monte Carlo approximation

θ̄ that is computed based on the output of 20 chains. In Section 4.5.1 we illustrate the

effect of the scaling constant c in the RWMH-V algorithm on the accuracy of the Monte

Carlo approximation. In Section 4.5.2 we examine the accuracy of the MAL algorithm and

the Newton MH algorithm and we consider the effect of blocking on the accuracy of the

RWMH-V and the RWMH-I algorithms.

4.5.1 The Effect of Scaling the Proposal

Given the widespread use of the RWMH-V algorithm, it is instructive to investigate the

effect of the scaling constant c. To do so, we run the single-block RWMH-V algorithm for

different choices c. Here we are taking for granted that each of the simulators have converged

to the posterior; detailed examination of the posterior (not shown) confirms this. For each

choice of c, we run 20 Monte Carlo chains, with draws initialized around the posterior mode,

in line with standard practice. Moreover, we use a burn-in period equal to half of the chain

length.

The results are depicted in Figure 4.5. The acceptance probability of the RWMH-V sampler

is decreasing in c. If c is small, the proposed random-walk steps of the sampler are tiny and

the probability that the proposed draws are accepted is very high. As c increases, the

average proposed step sizes get larger and the probability of acceptance decreases because

it becomes more likely to propose a parameter value that is associated with a low posterior

density. We measure the variance of the Monte Carlo approximation using HAC(h) and
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Figure 4.5: Scaling of Proposal Density versus Accuracy of Posterior Mean of τ
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Notes: Panel (i): we plot as a function of the scaling constant c the acceptance rate, the

estimates κ̂ = 1+2
∑L

l=1

(
1− l/(L+1)

)
ρ̂l for multiple chains, and NV̂ (τ̄)/Vπ[τ ] where V̂ (τ̄)

is the small sample variance of τ̄ across multiple runs. Panel (ii): we plot NV̂ (τ̄)/Vπ[τ ]

versus the acceptance rate α̂.

V̂ (h). Both measures are very similar and indicate that the accuracy of the posterior mean

approximation has an inverted-U shape as a function of c. While 4.5 focuses on τ , the results
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for the other parameters are qualitatively similar. The minimum, i.e., the highest precision, is

attained for c = 0.5. Intuitively, for small values of c the serial correlation and hence κ̂ is large

because the step-sizes are very small. For very large values of c the serial correlation is high

because the probability that a proposed parameter draw is rejected and therefore θi = θi−1

is very high. Panel (ii) of Figure 4.5 depicts the relationship between the acceptance rate

and the accuracy of the Monte Carlo approximation. For the posterior distribution of τ the

Monte Carlo approximation error is smallest for acceptance rates between 20% and 40%.

4.5.2 A Comparison of Algorithms

We now proceed to the comparison of several different MH algorithms. The comparison in-

cludes the naive 1-Block RWMH-I and 3-Block RWMH-I algorithms, the benchmark 1-Block

RWHM-V algorithm as well as a 3-Block RWMH-V algorithm, a 3-Block MAL algorithm,

and a 4-Block Newton MH algorithm. For the Block RWMH-V algorithm we use a random

allocation of parameters to blocks. To configure the proposal distributions, we use the pos-

terior covariance matrix for the parameters included in each block and adjust the scaling

constant to target an acceptance rate of 30-40%. As before, for each algorithm, we run 20

Monte Carlo chains, with draws initialized around the posterior mode. Given the different

computational time for each algorithm, we run chains of different lengths for each algorithm.

For the variance calculations, the we use a burn-in period equal to half of the chain length.

Finally, for each algorithm, we pick the tuning coefficient c to achieve an acceptance rate

between 30% and 50%.

The average running time [minutes:seconds] and the acceptance rate for each algorithm are

reported in Table 4.2. The single block RWMH algorithms are the fastest because they only

require one likelihood evaluation per draw. The 3-Block RWMH-I algorithm requires three

likelihood evaluation and some additional time to assign parameters to blocks. The 3-Block

RWMH-V algorithm is noticeably slower because of the likelihood evaluations required to

tailor the proposal distributions for the conditional posteriors. MAL and Newton MH are

computationally the most demanding algorithms.3

Before examining the accuracy of the Monte Carlo approximations, we will take a look

at the persistence of the Markov chains generated by the six algorithms. The top panel of

3Rather than using the same number of draws for each algorithm, we reduce the number of draws for the

algorithms with a longer running time. This allows us to control the overall computational time allocated

to experiments in which we run the algorithm many times.
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Table 4.2: Tuning of MH Algorithm

Algorithm N Avg. Running Time Avg. Acceptance Rate

[minutes:seconds]

1-Block RWMH-I 100,000 00:37 0.30

3-Block RWMH-I 100,000 01:53 0.41

1-Block RWMH-V 100,000 00:38 0.38

3-Block RWMH-V 100,000 01:49 0.35

3-Block MAL 10,000 02:53 0.42

4-Block Newton MH 10,000 17:37 0.53

Figure 4.6 shows estimated autocorrelation functions up to 40 lags for a a single chain. for

the sequence {τ i}Ni=N0+1, where τ is the coefficient of relative risk aversion. The choice of

proposal distribution for the MH algorithm has a profound effect on the persistence of the

chain. The comparison between the 1-Block RWMH-I and the 1-Block RWMH-V algorithms

highlights that aligning the contours of the proposal distribution with the contours of the

posterior distribution (at the mode) leads to a drastic reduction in the persistence. While

the chain generated by the 1-Block RWMH-I algorithm is nearly perfectly correlated even at

a displacement of 40, the autocorrelation of the the RWMH-V chain drops below 0.5 after

about 25 iterations of the algorithm.

Once the number of blocks is increased from one to three the persistence of the Markov

chains generated by the RWMH-I and RWMH-V algorithms drops. Thus, blocking has indeed

the desired effect. The 3-Block RWMH-I algorithm, however performs worse than the 1-Block

RWMH-V algorithm, highlighting the importance of well-tailored proposal densities. The

autocorrelation of the 3-Block RWMH-V algorithm falls below 0.5 after about 12 iterations.

Finally, the MAL and Newton MH algorithms yield very low serial correlation but are also

quite costly computationally, as the running times in Table 4.2 indicate.

The second panel of Figure 4.6 shows an estimate of variance ratio NV̂ (τ̄)/Vπ[τ ] of each

sampler, again for the relative risk aversion parameter. As discussed previously, this ratio

can be interpreted as a measure of inefficiency. The MH variance is computed across the

20 runs, while the estimate of the posterior variance is obtained from a very large number

of posterior draws and can be regarded as exact. The inefficiency measures are in line with

the autocorrelation plot in the top panel of the figure. The inefficiency factor for the 1-
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Figure 4.6: Performance of Different MH Algorithms
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Notes: Panel 1 depicts the autocorrelation function of τ i. Panel 2 depicts the variance ratio

NV̂ (τ̄)/Vπ[τ ], where V̂ (τ̄) is the small sample variance of τ̄ computed across multiple runs.

The variance ratio can be interpreted as inefficiency factor.

Block RWMH-I algorithm is about 5,000, meaning that the 100,000 draws that we generated

deliver a Monte Carlo approximation that is about as accurate as an approximation obtained

from 20 iid draws. The 1-Block RWMH-V algorithm has an inefficiency factor of about 100

and blocking reduces it to 50. Thus, the 10,000 draws obtained from the 3-Block RWMH-V

algorithm are equivalent to 200 iid-equivalent draws.

Adjusting for the running time, the 3-Block RWMH-V algorithm generates about 18.3

iid-equivalent draws per second, whereas the 1-Block RWMH-V algorithm produces 26.3

iid-equivalent draws per second. Thus, while blocking reduces the persistence in the chain,

there is also a computational cost associated with the additional likelihood evaluations. On

balance, in this particular application the single-block algorithm comes out ahead in terms
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Figure 4.7: Performance of Different MH Algorithms
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Notes: Each panel contains scatter plots of the small sample variance V̂ (θ̄) computed across

multiple chains (x-axis) versus the HAC(h̄) estimates of V̄ (θ̄)/N (y-axis) computed for each

chain.

of generating iid-equivalent draws per second. The MAL and Newton MH algorithms have

inefficiency ratios of 10 and 5, respectively, which translates into 5.8 and 1.9 iid-equivalent

draws per second. Thus, in terms of iid-equivalent draws per second the benchmark 1-Block

RWMH-V algorithm is in fact the most efficient.

Finally, in Figure 4.7 we compare the small sample variance V̂ (θ̄) computed as the sample

variance of θ̄ across multiple chains to the HAC estimates HAC(h̄) computed for each

chain. If the chains have converged and the central limit theorem is operational, then the

HAC estimates should be very close to the small sample variance of h̄. It turns out that this

is the case for the small-scale New Keynesian DSGE model: by and large the estimates line

up along the 45 degree line.
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4.6 Evaluation of the Marginal Data Density

As discussed in Section 3, marginal data densities play an important role in the evaluation

of models. The marginal data density of a model Mj is defined as

p(Y |Mj) =

∫
p(Y |θ,Mj)p(θ|Mj)dθ (4.8)

and it is used to turn prior model probabilities into posterior model probabilities, see (3.12).

In general, the evaluation of the marginal data density involves a high-dimensional integral.

Numerical approximations can be obtained by post-processing the output of the MH sampler.

In this section we will consider the approximations proposed by Geweke (1999) and Chib and

Jeliazkov (2001). The numerical accuracy of alternative algorithms is discussed in Ardia,

Bastürk, Hoogerheide, and van Dijk (2012).

4.6.1 Geweke’s Harmonic Mean Estimator

Starting point for the harmonic mean (or reciprocal importance sampling) estimator of p(Y )

(we omit the model index Mj from the conditioning set) is the slightly rewritten version of

Bayes Theorem
1

p(Y )
=

1

p(Y |θ)p(θ)
p(θ|Y ). (4.9)

Note that we can multiply both sides of this equation by a function f(θ) with the property

that
∫
f(θ)dθ. Thus,

1

p(Y )
=

∫
f(θ)

p(Y |θ)p(θ)
p(θ|Y )dθ. (4.10)

Recall that the MH samplers deliver a sequence of draws {θi}Ni=1 from the posterior distribu-

tion p(θ|Y ). This suggests that a Monte Carlo approximation of the inverse marginal data

density can be obtained as

1

p(Y )
≈ 1

N

N∑
i=1

f(θi)

p(Y |θi)p(θi)
. (4.11)

The convergence of the Monte Carlo average depends on the existence of the moments

of the ratio of f(θi)/[p(Y |θi)p(θi)]. Note that draws of θi associated with a low likelihood

value can generate large outliers and invalidate the convergence of the Monte Carlo average.

For this reason, Geweke (1999) suggests to choose a function f(θ) that approximates the

shape of the posterior distribution but is equal to zero for parameter draws in the tails of

the posterior distribution. A function that satisfies this property, at least if the posterior
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distribution is approximately elliptical, is the density of a truncated multivariate normal

distribution. Let d be the dimension of the parameter space θ. Moreover, let θ̄ and Vθ be

numerical approximations of the posterior mean and covariance matrix of θ computed from

the output of the posterior sampler. Now define f(θ) as

f(θ) = τ−1(2π)−d/2|Vθ|−1/2 exp
[
−0.5(θ − θ̄)′V −1

θ (θ − θ̄)
]

×I
{

(θ − θ̄)′V −1
θ (θ − θ̄) ≤ F−1

χ2
d

(τ)
}
, (4.12)

where I{x ≤ a} is the indicator function that equals one if x ≤ a and is zero otherwise.

Overall, this leads to the approximation

p̂G(Y ) =

[
1

N

N∑
i=1

f(θi)

p(Y |θi)p(θi)

]−1

. (4.13)

The selection of τ , the probability associated with truncation, is left to the user. A low

value for τ eliminates θi which lie in tails of the posterior. This reduces the influence that

outliers can have, reducing the variability of the estimator. On the other hand, the more

draws that are excluded (i.e., f(θi) = 0) in Equation 4.14, the higher the variability the

estimator owing to the smaller sample used. In situations where the posterior is approxi-

mately normal, it is better to use a higher τ . Usually, when the posterior has already been

sampled, the associated posterior kernel {p(Y |θi)p(θi)}Ni=1 has already been stored, making

the evaluation of Equation 4.14. It is recommended, then, to try different values of τ , to

assess the stability of the estimator.

4.6.2 Sims, Waggoner, Zha’s Estimator

When the posterior is not approximately elliptical, the ratio f(θ)/[p(Y |θ)p(θ)] can vary

substantially across the parameter space, leading to poor estimates from Geweke’s modified

harmonic mean estimator. Sims, Waggoner, and Zha (2008), hereafter SWZ, proposal an

alternative modified harmonic mean estimator through a different approximating function

f , an elliptical distribution, whose construction we describe below.

f is centered at the posterior mode, θ̂. When the a distribution is multimodal, the posterior

mean may be an area of very low density, leading to mismatch between f and the posterior.

Using draws from the posterior, a scaling measure about this mode is constructed as

Vθ̂ =
1

N

N∑
i=1

(θi − θ̂)(θi − θ̂)′.
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Defining (and slightly abusing notation), for any draw θi, the distance

ri =
√

(θi − θ̂)′V −1

θ̂
(θi − θ̂),

To construct the elliptical distribution, f , SWZ first construct a univariate density, g, to

match the behavior of the posterior. The density of g is given by,

g(r) =
νrν−1

bν − aν
, r ∈ [a, b]

and 0 otherwise. Letting c1, c10, and c90 be the first, tenth and ninetieth percentiles of

empirical distribution of {ri}Ni=1, respectively, the hyperparameters of g are given by,

ν =
log(1/9)

log(c10/c90)
, a = c1, and b =

c90

0.91/ν
.

ν and b are chosen so that the tenth and ninetieth percentiles of g would correspond exactly

with those of the {ri}Ni=1 if a = 0. Given that a is ultimately set to c1, these percentiles will

not match. Using g, SWZ construct the elliptical distribution as

f̃(r) =
Γ(d/2)

2πd/2|Vθ̂|1/2
g(r)

rd−1

The construction of the final, truncated version of f̃ is also more complicated than Geweke’s

approach. Potential multimodality means that density may vary substantially even where

the posterior is concentrated. Given this, SWZ directly exclude the lowest 1− q proportion

of the posterior, which has an associated log posterior kernel cutoff L1−q. Moreover, by

construction of the elliptical distribution, posterior draws θi for which ri /∈ [a, b] are also

truncated. The indicator associated with this truncation region is given by,

I(θ) = {ln p(Y |θ)p(θ) > L1−q} × {r ∈ [a, b]} .

Unlike, Geweke’s estimator, the probability that θ lies in this region can only be achieved

through simulation, since in relies on information from the posterior and not only on the

properties f̃ per se. An estimate of the probability, τ̂ is:

τ̂ =
1

J

J∑
j=1

I(θj), θj ∼ iidf̃ .

Putting these together, we have the approximating function

fSWZ(θ) = τ̂−1f̃

(√
(θ − θ̂)′V −1

θ̂
(θ − θ̂)

)
I(θ).
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The modified harmonic mean estimator is then given by:

p̂SWZ(Y ) =

[
1

N

N∑
i=1

fSWZ(θi)

p(Y |θi)p(θi)

]−1

. (4.14)

There are two draws back associated with this estimator. First, it can be quite noisy,

requiring a large J to achieve a stable estimate. Second, computationally it can be quite

costly to evaluate the log posterior kernel of a DSGE model repeatedly. Still, if the posterior

exhibits multimodality and/or fat tails, the SWZ estimator can yield tremendous advantages.

4.6.3 Chib and Jeliazkov’s Estimator

While Geweke’s (1999) and SWZ’s (2008) harmonic mean estimators could be computed for

the output of any posterior simulator, the following method proposed by Chib and Jeliazkov

(2001) is closely tied to the MH algorithm (Algorithm 4). We start by rewriting Bayes

Theorem as follows:

p(Y ) =
p(Y |θ̃)p(θ̃)
p(θ̃|Y )

. (4.15)

Note that this relationship holds for any parameter value θ̃. We will take θ̃ to be a parameter

value that is associated with a high posterior density, e.g., the posterior mode. In order to

make the formula operational, we need to numerically approximate the value of the posterior

density p(θ̃|Y ).

Using the notation introduced in Section 3.4, the proposal density for a transition from θ

to θ̃ is given by q(θ̃|θ). Moreover, the probability of accepting the proposed draw is

α(θ̃|θ) = min

{
1,
p(θ̃|Y )/q(θ̃|θ)
p(θ|Y )/q(θ|θ̃)

}
.

Using the definition of α(θ̃|θ) it follows that∫
α(θ̃|θ)q(θ̃|θ)p(θ|Y )dθ (4.16)

=

∫
min

{
1,

p(θ̃|Y )q(θ̃|θ)
p(θ|Y )/q(θ|θ̃)

}
q(θ̃|θ)p(θ|Y )dθ

= p(θ̃|Y )

∫
min

{
p(θ|Y )q(θ|θ̃)
p(θ̃|Y )/q(θ̃|θ)

, 1

}
dθ

= p(θ̃|Y )

∫
α(θ|θ̃)q(θ|θ̃)dθ.
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In turn, the posterior density at θ̃ can be approximated as

p̂(θ̃|Y ) =
1
N

∑N
i=1 α(θ̃|θi)q(θ̃|θi)

1
J

∑J
j=1 α(θj|θ̃)

. (4.17)

Here {θi}Ni=1 is the sequence of draws generated with the MH algorithm and {θj}Jj=1 are

draws from q(θ|θ̃) that can be generated by direct sampling. The final approximation of the

marginal data density is given by

p̂CS(Y ) =
p(Y |θ̃)p(θ̃)
p̂(θ̃|Y )

. (4.18)

Like the SWZ estimator, this estimator requires the user evaluate the log posterior kernel J

additional, which can be expensive for large models.

4.6.4 Illustration

We estimate log marginal data density of the simple DSGE model using 5000 draws from

the posterior for 20 separate runs of the RWMH-V algorithm. Table 4.3 displays the mean

and standard deviation across the 20 runs for each estiamtor. For the Geweke and SWZ

estimators we use two different truncation probabilities.

All the algorithms give roughly the same answer, although the Chib and Jeliazkov estimator

is much more variable. Moving to the modified harmonic mean estimators, the SWZ estimate

is more-or-less unchanged. The mean of the Geweke estimator changes, consistent with the

observation that the has DSGE posterior has slightly fatter tails than a multivariate normal,

which the SWZ is less affected by.
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Table 4.3: Marginal Data Density

Model Mean(ln p̂(Y )) Std. Dev.(ln p̂(Y ))

Geweke (τ = 0.9) -346.06 0.06

Geweke (τ = 0.5) -346.15 0.05

SWZ (q = 0.9) -346.27 0.02

SWZ (q = 0.5) -346.29 0.02

Chib and Jeliazkov -345.38 0.68

Notes: Table shows mean and standard deviation of different estimators of the log marginal

data density, computed over twenty runs of the RWMH sampler using 5000 draws. The

SWZ estimator uses J = 10000 draws to compute τ̂ , while the CJ estimators uses J = 10000

Table 6.1.3.



74



Chapter 5

Sequential Monte Carlo Methods

In Section 3.3 we introduced the idea of importance sampling. The key difficulty, in particular

in high dimensional parameter spaces, is to find a good proposal densities. In this chapter,

we will explore methods in which proposal densities are constructed sequentially. Suppose

φn, n = 1, . . . , Nφ, is a sequence that slowly increases from zero to one. We can define a

sequence of tempered posteriors as

πn(θ) =
[p(Y |θ)]φnp(θ)∫
[p(Y |θ)]φnp(θ)dθ

n = 1, . . . , Nφ, φn ↑ 1. (5.1)

Provided that φ1 is close to zero, the prior density p(θ) may serve as an efficient proposal

density for π1(θ). Likewise, the density πn(θ) may be a good proposal density for πn+1(θ).

Sequential Monte Carlo (SMC) algorithms try to exploit this insight efficiently.

SMC algorithms were initially developed to solve filtering problems that arise in nonlin-

ear state-space models. We will consider such filtering applications in detail in Chapter 7.

Chopin (2002) showed how to adopted the particle filtering techniques to conduct poste-

rior inference for a static parameter vector. Textbook treatments can be found in Cappé,

Moulines, and Ryden (2005), Liu (2001) and a recent survey focusing on econometric ap-

plications is provided by Creal (2012). The first paper that applied SMC techniques to

posterior inference in DSGE models is Creal (2007). He presents a basic SMC algorithm

and uses it for posterior inference in a small-scale DSGE model that is similar to the model

in Section 1.1. Herbst and Schorfheide (2014) developed the algorithm further, provided

some convergence results for an adaptive version of the algorithm building on the theoretical

analysis of Chopin (2004), and showed that a properly tailored SMC algorithm delivers more

reliable posterior inference for large-scale DSGE models with multi-modal posterior than the
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widely-used RMWH-V algorithm. Much of the subsequent exposition borrows from Herbst

and Schorfheide (2014). An additional advantage of the SMC algorithms over MCMC al-

gorithms, on the computational front, highlighted by Durham and Geweke (2012), is that

SMC is much more amenable to parallelization. Durham and Geweke (2012) show how

to implement an SMC algorithm on graphical processing unit (GPU), facilitating massive

speed gains in estimations. While the evaluation of DSGE likelihoods is not (yet) amenable

to GPU calculation, we will show how to exploit the parallel structure of the algorithm.

Because we will generate draws of θ sequentially, from a sequence of posterior distributions

{πn(θ)}Nφn=1, it is useful to equip the parameter vector with a subscript n. Thus, θn is

associated with the density πn(·).

5.1 An SMC Algorithm for DSGE Models

The sequence of posteriors in (5.1) was obtained by tempering the likelihood function, that

is, we replaced p(Y |θ) by [p(Y |θ)]φn . Alternatively, one could construct the sequence of

posteriors by sequentially adding observations to the likelihood function, that is, πn(θ) is

based on p(Y1:bφnT c|θ):

π(D)
n (θ) =

p(Y1:bφnT c)p(θ)∫
p(Y1:bφnT c)p(θ)dθ

(5.2)

This data tempering is particularly attractive in sequential applications. Due to the fact that

individual observations are not divisible, the data tempering approach is slightly less flexible.

This may matter for the early stages of the SMC sampler in which it may be advantageous

to add information in very small increments. The subsequent algorithm is presented in terms

of likelihood tempering. However, we will also discuss the necessary adjustments for data

tempering.

We begin with the description of the basic algorithm in Section 5.1.1. This algorithm

consists of three steps, using Chopin (2004)’s terminology: correction, that is, reweighting

the particles to reflect the density in iteration n; selection, that is, eliminating any particle

degeneracy by resampling the particles; and mutation, that is, propagating the particles

forward using a Markov transition kernel to adapt to the current bridge density. Section 5.1.2

provides details on the choice of the transition kernel in the mutation step, and the adaptive

choice of various tuning parameters is discussed in Section 5.1.3.
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5.1.1 The Basic Algorithm

Just as the basic importance sampling algorithm, SMC algorithms generate weighted draws

from the sequence of posteriors {πn}
Nφ
n=1. The weighted draws are called particles. We

denote the overall number of particles by N . At any stage the posterior distribution πn(θ) is

represented by a swarm of particles {θin,W i
n}Ni=1 in the sense that the Monte Carlo average

h̄n,N =
1

N

N∑
i=1

W i
nh(θi)

a.s.−→ Eπ[h(θn)]. (5.3)

Starting from stage n − 1 particles {θin−1,W
i
n−1}Ni=1 the algorithm proceeds in three steps:

correction, that is, reweighting the particles to reflect the density in iteration n; selection,

that is, eliminating any particle degeneracy by resampling the particles; and mutation, that

is, propagating the particles forward using a Markov transition kernel to adapt to the current

bridge density.

The algorithm provided below relies sequences of tuning parameters that will ultimately

be chosen adaptively in Section 5.1.3. However, to make the exposition more transparent,

we begin by assuming that these sequences are provided ex ante. Let {ρn}
Nφ
n=2 be a sequence

of zeros and ones that determine whether the particles are resampled in the selection step

and let {ζn}φNn=2 of tuning parameters for the Markov transition density in the mutation step

(see below).

Algorithm 8 (Simulated Tempering SMC)

1. Initialization. (φ1 = 0). Draw the initial particles from the prior: θi1
iid∼ p(θ) and

W i
1 = 1, i = 1, . . . , N .

2. Recursion. For n = 2, . . . , Nφ,

(a) Correction. Reweight the particles from stage n− 1 by defining the incremental

weights

w̃in = [p(Y |θin−1)]φn−φn−1 (5.4)

and the normalized weights

W̃ i
n =

w̃inW
i
n−1

1
N

∑N
i=1 w̃

i
nW

i
n−1

, i = 1, . . . , N. (5.5)
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An approximation of Eπn [h(θ)] is given by

h̃n,N =
1

N

N∑
i=1

W̃ i
nh(θin−1). (5.6)

(b) Selection.

Case (i): If ρn = 1, resample the particles via multinomial resampling. Let

{θ̂}Ni=1 denote N iid draws from a multinomial distribution characterized by sup-

port points and weights {θin−1, W̃
i
n}Ni=1 and set W i

n = 1.

Case (ii): If ρn = 0, let θ̂in = θin−1 and W i
n = W̃ i

n, i = 1, . . . , N . An approximation

of Eπn [h(θ)] is given by

ĥn,N =
1

N

N∑
i=1

W i
nh(θ̂in). (5.7)

(c) Mutation. Propagate the particles {θ̂i,W i
n} via M steps of a MH algorithm

with transition density θin ∼ Kn(θn|θ̂in; ζn) and stationary distribution πn(θ) (see

Algorithm 9 for details below). An approximation of Eπn [h(θ)] is given by

h̄n,N =
1

N

N∑
i=1

h(θin)W i
n. (5.8)

3. For n = Nφ (φNφ = 1) the final importance sampling approximation of Eπ[h(θ)] is

given by:

h̄Nφ,N =
N∑
i=1

h(θiNφ)W i
Nφ
. (5.9)

Algorithm 8 is initialized for n = 1 by generating iid draws from the prior distribution.

This initialization will work well as long as the prior is sufficiently diffuse to assign non-trivial

probability mass to the area of the parameter space in which the likelihood function peaks.

There do exist papers in the DSGE model estimation literature in which the posterior mean

of some parameters is several prior standard deviations away from the prior mean. For such

applications it might be necessary to choose φ1 > 0 and to use an initial distribution that is

also informed by the tempered likelihood function [p(Y |θ)]φ1 . If the particles are initialized

based on a more general distribution with density g(θ), then for n = 2 the incremental

weights have to be corrected by the ratio p(θ)/g(θ).

The correction step reweighs the stage n− 1 particles to generate an importance sampling

approximation of πn. Because the parameter value θi does not change in this step, no
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further evaluation of the likelihood function is required. The likelihood value p(Y |θin−1) was

computed as a by-product of the mutation step in iteration n−1. As discussed in Section 3.3,

the accuracy of the importance sampling approximation depends on the distribution of the

particle weights W̃ i
n. The more uniformly the weights are distributed, the more accuracy the

approximation. If likelihood tempering is replaced by data tempering, then the incremental

weights w̃in in (5.4) have to be defined as

w̃i(D)
n = p(Y(bφnT c+1):bφnT c|θ). (5.10)

The correction steps deliver a numerical approximation of the marginal data density as a

by-product. It can be verified that the unnormalized particle weights converge under suitable

regularity conditions as follows:

1

N

N∑
i=1

w̃inW
i
n−1

a.s.−→
∫

[p(Y |θ)]φn−φn−1
[p(Y |θ)]φn−1p(θ)∫
[p(Y |θ)]φn−1p(θ)dθ

dθ (5.11)

=

∫
[p(Y |θ)]φnp(θ)dθ∫

[p(Y |θ)]φn−1p(θ)dθ
.

Thus, the data density approximation is given by

p̂SMC(Y ) =

Nφ∏
n=1

(
1

N

N∑
i=1

w̃inW
i
n−1

)
. (5.12)

Computing this approximation does not require any additional likelihood evaluations.

The selection step is designed to equalize the particle weights, if its distribution becomes

very uneven. In Algorithm 8 the particles are being resampled whenever the indicator ρn is

equal to one. In Section 5.1.3 we consider a version of the algorithm in which ρn is equal

to one, if the effective sample size ESSn (which is a function of the variance of the particle

weights, see Equation (3.30)) falls below a threshold, and otherwise is equal to zero. On

the one hand, resampling introduces noise in the Monte Carlo approximation, which makes

it undesirable. On the other hand, resampling equalizies the particle weights and therefore

increases the accuracy of the correction step in the subsequent iteration. In Algorithm 8 we

use multinomial resampling. Alternative resampling algorithms are discussed, for instance,

in Liu (2001). While some of these alternative procedures lead to a smaller Monte Carlo

variance than multinomial resampling, it is more difficult to establish CLTs.

The mutation step changes the values of the particles from θin−1 to θin. To understand

the importance of the mutation step, consider what would happen without this step. For
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simplicity, suppose also that ρn = 0 for all n. In this case the particle values would never

change, that is, θin = θi1 for all n. Thus, we would be using the prior as importance sam-

pling distribution and reweigh the draws from the prior by the tempered likelihood function

[p(Y |θi1)]φn . Given the information contents in a typical DSGE model likelihood function,

this procedure would lead to a degenerate distribution of particles, in which in the last stage

Nφ the weight is concentrated on a very small number of particles and the importance sam-

pling approximation is very inaccurate. Thus, the goal of the mutation step is to adapt the

values of the stage n particles to πn(θ). This is achieved by using steps of an MH algorithm

with a transition density that satisfies the invariance property∫
Kn(θn|θ̂in)πn(θ̂in)dθ̂in = πn(θn).

The execution of the MH steps during the particle mutation phase requires at least one,

but possibly multiple, evaluations of the likelihood function for each particle i. To the

extent that the likelihood function is recursively evaluated with a filter, data tempering

has a computational advantages over likelihood tempering, because the former only requires

bφnT c ≤ T iterations of the filter, whereas the latter requires T iterations. The particle

mutation is ideally suited for parallelization, because the MH steps are independent across

particles and do not require any communication across processors. For DSGE models, the

evaluation of the likelihood function is computationally very costly because it requires to run

a model solution procedure as well as a filtering algorithm. Thus, gains from parallelization

are potentially quite large.

5.1.2 The Transition Kernel for the Mutation Step

The transition kernel Kn(θn|θ̂n; ζn) in the particle mutation phase is generated through a

sequence of MH steps. The kernel is indexed by a vector of tuning parameters ζn, which

may be different at every stage n. In our subsequent applications we will use M steps of a

Block RWMH-V algorithm to transform the particle values θ̂in into θin. Under a Gaussian

proposal density, this algorithm requires a covariance matrix Σ∗n, which can be partitioned

into submatrices for the various parameter blocks, as well as a scaling constant cn. In

principle, this scaling constant could be different for each block, but in our experience with

DSGE models the gain from using block-specific scaling is small. Let

ζn =
[
cn, vech(Σ∗n)′

]′
. (5.13)
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In Section 5.1.3 we will replace Σ∗n by a particle approximation of Vπn [θ] and update cn

recursively based on past rejection rates of the MH steps. The transition kernel is constructed

such that for each ζn the posterior πn(θ) is an invariant distribution. The MH steps are

summarized in the following algorithm.

Algorithm 9 (Particle Mutation) Prior to executing Algorithm 8:

0. Generate a sequence of random partitions {Bn}
Nφ
n=2 of the parameter vector θn into

Nblocks equally sized blocks, denoted by θn,b, b = 1, . . . , Nblocks. (See Algorithm 7.) Let

Σ∗n,b be the partitions of Σ∗n that correspond to the subvector θn,b.

In Step 2(c) in iteration n of Algorithm 8:

1. For each particle i, run M steps of the Block MH Algorithm 6 using a RWMH-V

proposal density of the form

ϑi,mn,b ∼ N

(
θi,m−1
n,b , c2

nΣ∗n,b

)
. (5.14)

For expository purposes, the sequence of blocks {Bn} in Algorithm 8 is generated prior to

running the SMC algorithm. This is of no practical consequences – one can also generate Bn

as part of Step 2(c) in iteration n of Algorithm 8. The Block RWMH-V could be replaced

by some of the alternative MH samplers discussed in Chapter 4. However, in our experience

the most important consideration for the performance of the SMC algorithm is parameter

blocking and the careful tailoring of the scaling constant cn and the covariance matrix Σ∗n.

As stated, the matrix Σ∗n,b refers to the covariance matrix associated with the marginal

distribution of θn,b. Alternatively, one could also use the covariance matrix associated with

the conditional distribution of θn,b|(θn,<b, θn,>b).

5.1.3 Tuning and Adaption of the Algorithm

The SMC algorithm involves several tuning parameters. Some of these tuning parameters

are chosen ex ante, whereas others are determined adaptively, based on the output of the

algorithm in earlier stages. This section provides a broad overview of the tuning parameters.

Their effect on the performance of the algorithm will be studied in Section 5.3 below.

Number of Particles, Number of Stages, Tempering Schedule. In our implemen-

tation of Algorithm 8 the tuning parameters N , Nφ, and λ are fixed ex ante. The number
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of particles N scales the overall accuracy of the Monte Carlo approximation. Because most

of the computational burden arises in the mutation step, the computing time increases ap-

proximately linearly in N . Under suitable regularity conditions h̄Nφ,N is
√
N consistent and

satisfies a CLT. Nφ determines the number of stages πn(·) used to approximate the posterior

distribution π(·). Increasing the number of stages, Nφ, will decrease the distance between

bridge distributions and thus make it easier to maintain particle weights that are close to

being uniform. The cost of increasing Nφ is that each stage requires additional likelihood

evaluations.

The user also has to determine the tempering schedule {φn}
Nφ
n=1. To control its shape we

introduce a parameter λ and let

φn =

(
n− 1

Nφ − 1

)λ
. (5.15)

A large value of λ implies that the bridge distributions will be very similar (and close to

the prior) for small values of n and very different as n approaches Nφ. In the DSGE model

applications we found a value of λ = 2 to be very useful because for smaller values the

information from the likelihood function will dominate the priors too quickly and only a few

particles will survive the correction and selection steps. Conversely, if λ is much larger than

2, it makes some of the bridge distributions essentially redundant and leads to unnecessary

computations. The choice of λ does not affect the overall number of likelihood evaluations.

Resampling. Resampling becomes necessary when the distribution of particles degenerates.

As discussed in Section 3.3, a rule-of-thumb measure of this degeneracy is given by the

reciprocal of the uncentered particle variance of the particles, which is computed in the

selection step of Algorithm 8 and we called effective sample size:

ÊSSn = N/

(
1

N

N∑
i=1

(W̃ n
i )2

)
. (5.16)

If all particles receive equal weights, then ÊSSn = N . Using this degeneracy measure, we

can now replace the sequence of resampling indicators {ρn}
Nφ
n=2 by the adaptive indicators

ρ̂n = I{ÊSSn < N/2}, (5.17)

where I{x < a} is the indicator function that is equal to one if x < a and equal to zero

otherwise.

Mutation Step. The number of MH steps in the mutation phase of the SMC algorithm

affects the likelihood with which a particle mutation occurs. The larger M , the higher the
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probability that during the M steps at least one of the proposed draws is accepted and the

particle value changes. However, each additional MH step also requires additional likelihood

evaluations. As we have seen in Chapter 4, increasing the number of blocks Nblocks generally

reduces the persistence of the MH chain, which increases the probability of a significant

change in the particle value.

We choose the sequence of tuning parameters ζn defined in (5.13) for the proposal distri-

bution of the Block RWMH-V algorithm adaptively. First, we replace Σ∗n by the importance

sampling approximation of Vπn [θ]. Second, we adjust the scaling factor cn to ensure that

the acceptance rate in the MH step is approximately 25%, which according to Panel (ii) of

Figure 4.5 delivers a high degree of accuracy. At each iteration n we then replace ζn in (5.13)

with1

ζ̂n =
[
ĉn, vech(Σ̃n)′

]′
. (5.18)

The following algorithm describes how ζ̂n is constructed at each iteration n.

Algorithm 10 (Adaptive Particle Mutation) For n ≥ 2, prior to Step 1 of Algorithm 9:

1. Compute an importance sampling approximation Σ̃n of Vπn [θ] based on the particles

{θin−1, W̃
i
n}Ni=1.

2. Compute the average empirical rejection rate R̂n−1(ζ̂n−1), based on the Mutation step

in iteration n− 1. The average are computed across the Nblocks blocks.

3. Adjust the scaling factor according to ĉ2 = c∗ and ĉn = ĉn−1f
(
1 − R̂n−1(ζ̂n−1)

)
for

n ≥ 3, where f(x) = 0.95 + 0.10 e16(x−0.25)

1+e16(x−0.25) .

4. Execute Algorithm 9 by replacing ζn with ζ̂n =
[
ĉn, vech(Σ̃n)′

]′
.

Note that f(0.25) = 1, which means that the scaling factor stays constant whenever the

target acceptance rate is achieved. If the acceptance rate is below (above) 25% the scaling

factor is decreased (increased). The range of the adjustment is determined by the factor

0.1 and the sensitivity to the deviation of the actual from the targeted acceptance rate is

determined by the factor 16 in the expression for f(x). We found that the particular constants

in the definition of f(x) worked well in practice. To satisfy the regularity conditions for the

theoretical analysis we chose a function f(x) that is differentiable.

1We use “tilde” instead of “hat” for θ and Σ because the approximations are based on the correction step

in Algorithm 8.
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5.1.4 Convergence

A detailed theoretical analysis of the convergence properties of SMC algorithms is provided

by Chopin (2004). Herbst and Schorfheide (2014) adapt the proofs of the SLLN and CLT

in Chopin (2004) to cover the specifics of Algorithm 8. The convergence results can be

elegantly proved recursively, that is, by showing that the convergence of h̄n−1,N implies the

convergence of h̄n,N . We briefly outline the derivation of the limit distribution of the Monte

Carlo approximations for the non-adaptive version of the SMC algorithm (Algorithm 8),

meaning we assume that the sequences {ρn}, {Bn}, and {ζn} are predetermined. A rigorous

proof, using the same notation as below, can be found in the supplemental appendix to

Herbst and Schorfheide (2014).

The convergence results rely on three types of assumptions. First, we assume that the

prior is proper, the likelihood function is uniformly bounded that the tempered marginal

likelihood of the data in stage n = 2 is non-zero:∫
p(θ)dθ <∞, sup

θ∈Θ
p(Y |θ) < M <∞,

∫
[p(Y |θ)]φ2p(θ)dθ > 0. (5.19)

Second, we require the existence of moments by considering functions h(θ) that belong to

the classes H1 and H2 as

H1 =

{
h(θ)

∣∣ ∃δ > 0 s.t.

∫
|h(θ)|1+δp(θ)dθ <∞

}
(5.20)

H2 =

{
h(θ)

∣∣ ∃δ > 0 s.t.

∫
|h(θ)|2+δp(θ)dθ <∞

}
.

Because the likelihood is assumed to be bounded, we can immediately deduce the existence

of j + δ moments of the tempered posterior distributions πn(θ), n = 2, . . . , Nφ, for functions

Hj. Note that H2 ⊆ H1. We obtain a SLLN for functions contained in H1 and a CLT for

functions in H2. Third, we will assume that

h̄n−1,N
a.s.−→ Eπn−1 [h],

√
N
(
h̄n−1,N − Eπn−1 [h]

)
=⇒ N(0,Ωn−1(h)) (5.21)

as the number of particles N −→∞. Recall that in stage n = 1 we directly sample from the

prior distribution. Thus, the moment bounds in (5.20) suffices to ensure the convergence of

h̄1,N .

Correction Step. For the subsequent calculations, it is convenient to normalize the incre-

mental weight as follows:

vn(θ) =
Zn−1

Zn
[p(Y |θ)]φn−φn−1 . (5.22)
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In terms of the normalized incremental weights, we can write the Monte Carlo approximation

in the correction step as

h̃n,N =
1

N

N∑
i=1

W̃ i
nh(θin−1) =

1
N

∑N
i=1 h(θin−1)vn(θin−1)W i

n−1

1
N

∑N
i=1 vn(θin−1)W i

n−1

. (5.23)

The normalized incremental weights have the following useful property:∫
h(θ)v(θ)πn−1(θ)dθ =

∫
Zn−1

Zn
[p(Y |θ)]φn−φn−1

[p(Y |θ)]φn−1p(θ)

Zn−1

dθ (5.24)

=

∫
h(θ)πn(θ)dθ.

As the number of particles N −→ ∞, the Monte Carlo approximation h̃n,N converges as

follows:

h̃n,N
a.s.−→

∫
h(θn)πn(θn)dθn = Eπn [h] (5.25)

√
N
(
h̃n,N − Eπn [h]

)
=⇒ N

(
0, Ω̃n(h)

)
, Ω̃n(h) = Ωn−1

(
vn(θ)(h(θ)− Eπn [h])

)
.

The almost-sure convergence follows from the SLLN in (5.21) and the property of the nor-

malized incremental weights in (5.24). The asymptotic covariance matrix associated with

h̃n,N has the same form as the asymptotic covariance matrix Ω(h) in (3.28) associated with

the importance sampler.

Selection Step. The accuracy of the Monte Carlo approximation in (5.25) depends on

the distribution of the incremental weights vn(θin−1). Therefore, the adaptive version of the

algorithm described in Section 5.1.3 monitors the variance of the particle weights, trans-

formed into ÊSSn. If the distribution of particle weights is very uneven, then the particles

are resampled. In the non-adaptive version of the algorithm resampling occurs whenever

ρn = 1.

To examine the effect of resampling on the accuracy of the Monte Carlo approximation,

recall that we denoted the resampled particles by θ̂in. Let Fn−1,N be the σ-algebra generated

by {θin−1, W̃
i
n}, where W̃ i

n are the normalized particle weights computed in the correction step

(see (5.23)). Under multinomial resampling, the expected value of functions of resampled

particles is given by

E[h(θ̂)|Fn−1,N ] =
1

N

N∑
i=1

h(θin−1)W̃ i
n = h̃n,N . (5.26)
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Using this equality, we can decompose

ĥn,N − Eπn [h] =
(
h̃n,N − Eπn [h]

)
+

1

N

N∑
i=1

(
h(θ̂in)− E[h(θ̂)|Fn−1,N ]

)
(5.27)

= I + II,

say. The large sample behavior of I follows directly from (5.25). Conditional on Fn−1,N the

h(θ̂in) form a triangular array of (discrete) random variables that are iid within each row

with mean E[h(θ̂)|Fn−1,N ]. Thus, the behavior of term II can be analyzed with a SLLN and

a CLT for triangular arrays of iid random variables. It can be shown that

ĥn,N
a.s.−→

∫
h(θn)πn(θn)dθn (5.28)

√
N
(
ĥn,N − Eπn [h]

)
=⇒ N

(
0, Ω̂n(h)

)
, Ω̂n(h) = Ω̃n(h) + Vπn [h].

The second term in asymptotic variance Ω̂n(h) indicates that resampling increases the vari-

ance of the Monte Carlo approximation. However, it also equalizes the particle weights which

tends to lower the approximation errors in the subsequent iteration of the algorithm.

Mutation Step. Denote the conditional mean and variance associated with the transition

kernel Kn(θ|θ̂; ζn) by EKn(·|θ̂;ζn)[·] and VKn(·|θ̂;ζn)[·]. Because πn is the invariant distribution

associated with the transition kernel Kn, note that if θ̂ ∼ πn, then∫
θ̂

EKn(·|θ̂;ζn)[h]πn(θ̂)dθ̂ =

∫
θ̂

∫
θ

h(θ)Kn(θ|θ̂; ζn)dθπn(θ̂)dθ̂ (5.29)

=

∫
θ

h(θ)

∫
θ̂

Kn(θ|θ̂; ζn)πn(θ̂)dθ̂dθ

=

∫
θ

h(θ)πn(θ)dθ = Eπn [h].

Using the fact that 1
N

∑N
i=1W

i
n = 1 we can write

h̄n,N − Eπn [h] =
1

N

N∑
i=1

(
h(θin)− EKn(·|θ̂in;ζn)[h]

)
W i
n (5.30)

+
1

N

N∑
i=1

(
EKn(·|θ̂in;ζn)[h]− Eπn [h]

)
W i
n

= I + II,

say. Let F̂n,N be the σ-algebra generated by {θ̂in,W i
n}Ni=1. Notice that conditional on F̂n,N

the weights W i
n are known and the summands in term I form a triangular array of mean-

zero random variables that within each row are independently but not identically distributed



87

because the (conditional) variance and higher-order moments of h(θin) may depend on θ̂in.

While term I captures deviations of h(θin) from its conditional mean EKn(·|θ̂in;ζn)[h], the second

term captures deviations from the conditional mean of EKn(·|θ̂in;ζn)[h] from the tempered

posterior Eπn [h].

The large sample behavior of the Monte Carlo approximation in the mutation step, h̄n,N ,

depends on the particle weights W i
n, which in turn depends on how many iterations ago the

resampling step was executed. To simplify the exposition, we assume that ρn = 1, which

implies that W i
n = 1. The convergence of I follows from a SLLN and a CLT for a triangular

array of independently and non-identically distributed random variables. The convergence

of II is a consequence of (5.28). It can be shown that

h̄n,N
a.s.−→

∫
h(θn)πn(θn)dθn (5.31)

√
N
(
ĥn,N − Eπn [h]

)
=⇒ N

(
0,Ωn(h)

)
, Ωn(h) = Eπn

[
VKn(·|θ̂;ζn)[h]

]
+ Ω̂n

(
EKn(·|θ̂;ζn)[h]

)
.

To establish the convergence results (5.25), (5.28), and (5.31) in a rigorous manner mainly

requires the verification of moment bounds for the various random variables that are being

averaged in the Monte Carlo approximations. The recursive form of the asymptotic covari-

ances makes it difficult to use the results in practice. Estimates of the Ω matrices can be

obtained by running the SMC algorithm multiple times. Herbst and Schorfheide (2014) pro-

vide some high-level assumptions that ensure that choosing the tuning sequences adaptively

according to {ρ̂n, ζ̂n} does not affect the asymptotic covariance matrices.

5.1.5 Beyond Multinomial Resampling

The resampling step in Algorithm 8 is based on multinomial resampling. While the use of

multinomial resampling facilitates the theoretical analysis of the algorithm, in particular the

derivation of a CLT, it is not the most efficient resampling algorithm. We will provide a

brief overview of alternative resampling algorithms and refer the reader for more detailed

treatments to the books by Liu (2001) or Cappé, Moulines, and Ryden (2005) (and references

cited therein) as well as Murray, Lee, and Jacob (2014) for a discussion of parallelization of

these algorithms.

Resampling algorithms take as input the collection of particle weights {W̃ i
n}Ni=1 and produce

as output either an ancestry vector or a vector the contains the number of offsprings for each

particle. An ancestry vector An has elements Ain such that Ain = j if and only if particle j
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is the ancestor of resampled particle j, that is, θ̂in = θin−1. Alternatively, the offspring vector

On with elements Oi
n would contain the number of offsprings for each particle θin−1. Both

An and On contain the same information and each one can be transformed into the other.

Most algorithms have the unbiasedness property E[Oi
n] = W̃ i

n. The multinomial resampling

embedded in Algorithm 8 can be implemented by computing standardized cumulative weights

W̃ c,i
n =

∑i
j=1 W̃

j
n and generating N iid U [0, N ] random numbers ui. The element Ai can then

be defined as LB
(
{W̃ c,N

n }, ui
)
, where the function LB(W,u) returns the smallest integer i

such that the scalar u can be inserted into position i of a vector W, sorted in ascending

order, while maintaining the sorting.2

The variance of multinomial resampling can be reduced by stratification. Suppose we divide

the unit interval into N strata of the form U i = ((i−1)/N, i/N ] and for each stratum generate

a uniform random number ui. We can still define the ancestor vector Ai as LB
(
{W̃ c,N

n }, ui
)
,

but now the distribution has changed. For illustrative purposes consider the can N = 2 and

W̃ 1
n ≤ 1/2. For particle i = 1, u1 ∼ U(0, 1/2], which means that with probability 2W̃ 1

n the

value θ1
n−1 is selected and with probability 1 − 2W̃ 1

n the value θ2
n−1 is chosen. For particle

i = 2 we one always choose θ2
n−1 because u2 ≥ 1/2 ≥ W̃ 1

n . The distribution of offsprings

takes the form

Oi
n =


0 w. prob. (1− 2W̃ 1

n)

1 w. prob. 2W̃ 1
n

2 w. prob. 0

.

For the regular multinomial resampling described above, the distribution of offsprings is

Oi
n =


0 w. prob. (1− W̃ 1

n)2

1 w. prob. 2(1− W̃ 1
n)W̃ 1

n

2 w. prob. (W̃ 1
n)2

.

Both resampling algorithms are unbiased but the stratified resampler has a lower variance.

The variance reduction extends to N = 2 (see, e.g., Cappé, Moulines, and Ryden (2005)).

A stratified resampling algorithm to efficiently compute the cumulative offspring function is

provided in Murray, Lee, and Jacob (2014).

Stratified resampling aims to reduce the discrepancy between the empirical distribution

of the generated draws and the uniform distribution. This is achieved by defining ui =

(i − 1)/N + ξi where ξi ∼ iidU [0, 1/N ]. Alternatively, one could consider the sequence

2Suppose that W = [3, 5, 6, 10] and u = 4. One could replace either element 1 or element 2 of the vector

W without affecting the sorting. The function LB will return the value 1.
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ui = (i − 1)/N + ξ where ξ ∼ U [0, 1/N ]. This method is known as systematic resampling.

The theoretical properties of systematic resampling algorithms are more difficult to establish

because the draws ui, i = 1, . . . , N , are perfectly correlated. In sequential Monte Carlo

applications, this generates cross-sectional dependence of particles.

Let bxc denote the floor operator, i.e., the largest integer that is less or equal than x ≥ 0.

The residual resampling algorithm initially assigns bW̃ i
nc offsprings to each particle and then

determines the remaining offsprings randomly:

Oi
n = bW̃ i

nc+ Ôi
n. (5.32)

Now only N−
∑N

i=1bW̃ i
nc draws are required and the probability associated with particle i is

proportional to W̃ i
n − bW̃ i

nc. The residuals Ôi
n can be generated with one of the algorithms

described above. None of the algorithms discussed thus far is well suited for parallelization

because it is necessary to compute the sum of the particle weights (the summation step

appears as the last operation the correction step in Algorithm 8). The Metropolis resampling

algorithm and the rejection resampling algorithm discussed in Murray, Lee, and Jacob (2014)

are designed to avoid collective operations over the weights.

5.2 An Application to A Simple State-Space Model

Before applying the SMC algorithm to a full-fledged DSGE model, we use the stylized state-

space model of Section 4.3, which can generate a bimodal likelihood function (see the left

panel of Figure 4.4). As before, we simulate T = 200 observations given θ = [0.45, 0.45]′,

which is observationally equivalent to θ = [0.89, 0.22]′, and use a prior distribution that is

uniform on the square 0 ≤ θ1 ≤ 1 and 0 ≤ θ2 ≤ 1. Since the state-space model has only

two parameters and the model used for posterior inference is correctly specified, the SMC

algorithm works extremely well. It is configured as follows. We use N = 1024 particles,

Nφ = 50 stages, and a linear tempering schedule λ = 1. In the mutation phase we use

Nblocks = 1 block and M = 1 step for the RWMH-V algorithm.

Some of the output of the SMC algorithm is depicted in Figure 5.1. The top panel shows

a contour plot of the posterior density as well as draws from this posterior generated by Al-

gorithm 8. The algorithm successfully generates draws from the two high-posterior-density

regions. The bottom panel displays the sequence of tempered (marginal) posterior distribu-

tions πn(θ1). It clearly shows that the tempering dampens the posterior density. While the
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Figure 5.1: SMC Posterior Approximations

Notes: The top panel depicts the contours of the posterior as well as draws from π(θ). The

bottom panel depicts kernel density estimates of the sequence πn(θ) for n = 1, . . . , 50.

posterior is still unimodal during the first few stages, a clear bimodal shape as emerged for

n = 10. As φn approaches one, the bimodality of the posterior becomes more pronounced.

The bottom panel also suggests, that the stage n = Nφ − 1 tempered posterior provides a

much better importance sampling distribution for the overall posterior π(·) than the stage

n = 1 (prior) distribution.
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Figure 5.2: Adaption of the Algorithm

Figure 5.2 illustrates the adaptive choice of the scaling constant c in the RWMH-V mutation

step. The algorithm is configured to target an acceptance rate of 25%. The initial value

of the scaling constant is 0.5, which leads to an acceptance rate of more than 70% in the

first few steps of the algorithm. Gradually, the scaling constant is lowered according to

Algorithm 10. In stage n = 25 we are reaching the desired acceptance rate. The acceptance

rate subsequently drops slighly below 25% which triggers a drop in c. Starting from a value

exceeding 900, the effective sample size ÊSSn slowly decreases and at n = 26 falls below

the threshold of N/2. This triggers the resampling of particles and in turn ÊSSn jumps up

toward about 1,000. Thus, qualitatively, the adaption of the algorithm works as desired: the
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Figure 5.3: SMC: Importance of λ
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Notes: I think we should also plot hairs of
√

NV̂ [θ̄]
Vπ [θ]

as function of λ as in Figure 5.4.

scaling constant c in the RWMH-V algorithm is adjusted to achieve the desired acceptance

rate and the particles are resampled if the distribution of weights becomes uneven.

5.3 An Application to the Small-Scale New Keynesian

Model

We will now apply the SMC algorithm to conduct posterior inference for the three-equation

New Keynesian model (DSGE Model I). We use the same prior specification and the same

data set as in Section 4.2. We will illustrate how the accuracy of the SMC approxima-

tion changes as we vary the choice of tuning parameters for the algorithm. We run each

configuration of the algorithm 50 times verify and compute the cross-sectional variance of

the Monte Carlo approximations θ̄Nφ,N which we denote by V̂ [θ̄]. Because under iid sam-

pling the asymptotic variance of Monte Carlo approximation is given by Vπ[θ] we will use

V̂ [θ̄]/(Vπ[θ]/N), or transformations thereof, as measures of accuracy. Throughout this sec-

tion we fix the number of MH steps in the mutation step to be equal to M = 1

Figure 5.3 explores the connection between accuracy and the tempering schedule φn. The

results are based on N =, Nφ =, Nblocks =. For λ = 1 this schedule is linear in n and for
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λ > 1 it is convex. A convex tempering schedule implies that we add very little information

in the initial stages of the SMC algorithm to ensure that the particles adapt well to the

bridge distribution. As n increases, the incremental amount of likelihood information added

in each stage also increases. According to the linear schedule performs very poorly. A choice

of λ in the range of 2 to 4 yields the most accurate approximation and for values larger than

5 the performance slowly deteriorates. Note that the choice of λ has essentially no effect the

number of likelihood evaluations and on the computational time (except that poor choices

of λ may require additional resampling steps). In the subsequent experiments we let λ = 2.

According to the results discussed in Section 5.1.4, the Monte Carlo approximations should

satisfy a CLT, which means that the cross-sectional variance should decay at the rate 1/N .

This implies that the scaled ratio of standard deviations

√
V̂ [θ]/(Vπ[θ]/N) should be ap-

proximately constant for large values of N . We show bundles of the scaled variance ratio

in Figure 5.4, where each hairline corresponds to one of the DSGE model parameters. Here

Nblocks =. The top panel shows results for Nφ = 25 stages and the bottom panel results for

Nφ = 100 stages. A comparison between Nφ = 25 and Nφ = 100 indicates that increasing

the number of stages raises the precision (and lowers the inefficiency factor) of the Monte

Carlo approximation. For Nφ = 25 the inefficiency profiles are fairly flat for more than

20,000 particles. For Nφ = 100, the inefficiency profiles are increasing.

Finally, Figure 5.5 explores the trade-offs between number of particles N , number of stages

Nφ, and number of blocks Nblocks in the mutation step. *** we dropped the N factor because

N is different for each line *** The experiments are designed such that we keep the number

of likelihood evaluations constant. The top panel indicates that a large number of particles,

e.g., N = 4, 000, combined with a moderate number of stages, e.g., Nφ = 25, delivers a

more accurate approximation than a small number of particles, e.g., N = 250, and a large

number of stages, e.g., Nφ = 400. Of course, if we would to reduce the number of stages

more drastically, the accuracy would at some point deteriorate. A very large number of

stages is not helpful because a lot of computational resources are allocated to approximating

very similar bridge distributions. The bottom panel depicts the effect of blocking. In this

small-scale model, the effect of blocking, i.e., using 4 blocks and in combination with 250

particles instead of 1 block and 1,000 particles improves the accuracy only slightly for 3 out

of the 7 parameters depicted in the figure. For the policy rule coefficients ψ1 and ψ2 and the

inverse elasticity of substitution, a large number of particles appears to be more useful than

a large number of blocks.
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Figure 5.4: Sequential Monte Carlo Central Limit Theorem
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Figure 5.5: SMC: Relative Importance of Tuning Parameters
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Chapter 6

Case Studies

This chapter considers three different empirical applications: the estimation of a small-

scale New Keynesian model with correlated shocks in Section 6.1, the estimation of the

Smets-Wouters model under a more diffuse prior distribution in Section 6.2, and finally the

estimation of DSGE model designed to analyze fiscal policy questions in Section 6.3. In each

of these applications we highlight distinct non-elliptical features of the posterior distribution

and document to what extent the MH and SMC algorithms of Chapters 4 and 5 accurately

approximate the posteriors.

6.1 New Keynesian Model with Correlated Shocks

The fit of DSGE models can be improved either by enriching the endogenous propagation

mechanism of the model or by generalizing the law of motion for the exogenous shocks. Most

of the DSGE model literature has focused on augmenting the basic neoclassical stochastic

growth model with more sophisticated economic mechanism, e.g., frictions in the adjustment

of labor and capital inputs, or costs of changing nominal prices and wages, or information

imperfections. These mechanisms interact with the effects of monetary and fiscal policy and

incorporating empirically-important mechanisms into a DSGE model is crucial for obtaining

reliable policy predictions. At the same time, the exogenous shocks are typically assumed

to follow independent AR(1) processes. However, a priori there is nothing that rules out

a correlation between, say, neutral and investment-specific technology shocks or between

nominal price and wage markup shocks. Nor is it a priori unreasonable to assume that the

exogenous shocks follow an AR(1) process rather than a richer ARMA(p,q) process. The
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only reason that many authors to prefer with rather simple exogenous processes is that one

of the goals of the DSGE research program is to develop economic mechanisms that can

generate the observed comovements and persistence of macroeconomic time series from a set

of uncorrelated exogenous shocks.

Nonetheless, in environments in which model fit is important, e.g., central bank forecast-

ing with DSGE models, the generalization of the law of motion of exogenous shocks is a

plausible modeling strategy. Most prominently, this has been done to a limited extent by

using ARMA(1,1) shocks instead of AR(1) shocks and by introducing correlation between

certain shock innovations in the context of the SW model which we examine in more de-

tail in Section 6.2. Curdia and Reis (2010) take this approach a step further and consider a

fairly general vector-autoregressive law of motion for the exogenous processes of a small-scale

DSGE model. While this modeling strategy is helpful in overcoming DSGE model misspec-

ification, it also introduces potential identification problems. The more flexible and densely

parameterized the law of motion of the exogenous shocks, the more difficult it becomes to

identify the shock parameters and the parameters associated with the endogenous propaga-

tion mechanism jointly. From a computational perspective, this may introduce multi-modal

posterior distributions, which are the focus of the remainder of this section.

6.1.1 Model Specification

In the small-scale DSGE model of Chapter 1.1 the technology growth shock ẑt and the

government spending shock ĝt evolve according to independent AR(1) processes. We now

replace the two AR(1) processes in (1.24) and (1.25) by the following VAR process:[
ẑt

ĝt

]
=

[
ρz ρzg

ρgz ρg

][
ẑt−1

ĝt−1

]
+

[
εz,t

εg,t

]
,

[
εz,t

εg,t

]
∼ N

([
0

0

]
,

[
σ2
z 0

0 σ2
g

])
. (6.1)

Thus, the small-scale DSGE model with correlated exogenous shocks is comprised of (2.1)

and (6.1). Unlike in the version of the model estimated in Chapters 4.2 and 5.3, the lagged

government spending (or demand) shock potentially effects current technology growth or

vice versa. A non-zero coefficient ρgz could be interpreted as a reduced-form fiscal policy

rule in which government spending is increased if the supply conditions are poor. Likewise, a

positive coefficient ρzg could potentially capture productivity enhancing public infrastructure

investments. While these interpretations suggests that ρgz < 0 whereas ρzg > 0, we use more

agnostic priors of the form

ρg, ρz ∼ U [0, 1], ρgz, ρzg ∼ U [−1, 1]. (6.2)
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Figure 6.1: Posterior of ρgz and ρzg
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Notes: The two panels depict histograms of prior distributions and kernel density estimates

of the posterior densities.

The marginal prior distributions for the remaining DSGE model parameters are identical to

those in Table 2.2. The joint prior distribution is truncated to ensure stationarity of ẑt and

ĝt and determinacy of the overall system.

6.1.2 Estimation Results from a Highly Accurate SMC Run

We estimate the modified small-scale DSGE model using the same data as in Chapters 4.2

and 5.3. We begin the numerical analysis by examining the posterior distribution based on

a highly accurate run of the SMC algorithm. The most striking feature of this posterior is

depicted in Figure 6.1 which shows the marginal prior and posterior distributions of ρgz and

ρzg. The marginal prior distributions are represented by the gray shaded histograms. After

the truncation induced by the stationarity restriction the marginal prior distributions of the

two parameters are no longer uniform, but they are unimodal and spread out across the unit

interval. The posterior distributions are represented by kernel density estimates. While the

posterior density of ρgz is unimodal and sharply peaks around zero, the posterior of ρzg, on

the other hand, is bimodal with peaks at approximately -0.3 and 0.3 respectively.

IRFs associated with the parameter estimates are depicted in Figures 6.2 and 6.3. The

panels in each figure show three types of IRFs: responses associated with ρzg < 0, ρzg > 0

and ρzg = 0. The ρzg = 0 responses are identical to the posterior mean responses of the

benchmark small-scale New Keynesian DSGE model reported in Chapter 4.2 (see Figure 4.3).

The other two sets of responses are constructed from the conditional posterior distributions

θ|(Y, ρgz > 0) and θ|(Y, ρgz < 0) as E[IRF |Y, ρgz > 0] and E[IRF |Y, ρgz < 0], respectively.
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Figure 6.2: Correlated Shocks Model: Impulse Responses (Part 1)
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Notes: The graphs depict posterior means of impulse response functions based on the con-

ditional posteriors θ|(Y, ρgz > 0), and θ|(Y, ρgz < 0). For comparison, the graph also shows

responses from the small-scale DSGE model with uncorrelated shocks (see Chapter 4.2).

Figure 6.2 shows the responses of the exogenous processes to government spending and

technology growth shock innovations. Under the benchmark specification of the DSGE

model, the exogenous shocks are independent of each other, which means that the demand

shifter processes ĝt does not respond to the technology shock innovation εz,t and vice versa.

In the DSGE model with correlated exogenous shocks, on the other hand, there are spillovers.

The government spending process drops slightly (2 to 4 basis points) in response to a 50 to

60 basis points increase in εz,t. The response is qualitatively very similar for the two modes

of the posterior, which is consistent with the unimodal shape of the marginal posterior of ρgz.

More interesting is the response of technology growth to a government spending (or general

demand) shock innovation. The impulse responses in the bottom left panel of Figure 6.2

reflect the bimodal shape of the ρzg posterior. If ρzg > 0 (ρzg > 0) then technology growth

increases (decreases) by about 10 basis points in response to a 25 basis point εg,t shock.

Figure 6.3 depicts the impulse responses of output, inflation, and interest rates. The

effect of a monetary policy shock is approximately the same for the two modes of the model
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Figure 6.3: Correlated Shocks Model: Impulse Responses (Part 2)
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Notes: The graphs depict posterior means of impulse response functions based on the con-

ditional posteriors θ|(Y, ρgz > 0), and θ|(Y, ρgz < 0). For comparison, the graph also shows

responses from the small-scale DSGE model with uncorrelated shocks (see Chapter 4.2).

with correlated shocks. The monetary policy responses closely resemble the IRFs obtained

from the baseline version of the small-scale DSGE model with uncorrelated shocks. The

IRFs for the government spending and the technology growth shock, on the other hand,

are markedly different for the two modes of the correlated shocks model and the baseline

model. In the baseline model, neither inflation nor interest rates respond to a change in

government spending. In the correlated shocks model, a rise in government spending also

triggers a change in technology. We saw that depending on the mode, technology growth

either rises or falls in response to a positive εg,t innovation. As a consequence, inflation and

interest rates may either rise or fall in response to a positive demand shock, depending on

which mode is selected. Moreover, because a drop in technology growth is associated with

lower output, the magnitude of the output response also differs significantly. The IRFs of

inflation and interest rates to a technology growth shock are generally more muted under the

correlated shocks specification than under the baseline specification. Conditional on ρzg > 0

these responses are slightly positive, whereas for ρzg < 0 they are slightly negative.
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Figure 6.4: Posterior Probability of ρzg > 0 and ∂π̂t/∂ε̂g,t > 0
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Notes: Each dot (20 in total) correspond to one run of the SMC algorithm (blue) or the

RWMH algorithm (red).

Table 6.1: Configuration of Algorithms for Correlated Shocks Model

RWMH-V SMC

N = 100, 000 N = 4, 800

Nburn = 50000 Nφ = 500

Nblocks = 1 Nblocks = 6, M = 1

c = 0.125 λ = 4

Run time: 1 min (1 core) Run time: 1 min (12 cores)

Notes: We run each algorithm 20 times.

6.1.3 Comparison of RWMH-V and SMC Performance

Given the stylized nature of the small-scale DSGE model we do not offer a detailed economic

interpretation of the estimation results. The small-scale DSGE model places strong restric-

tions on the autocovariance function of output growth, inflation, and interest rates and the

generalization of the law of motion of the exogenous shocks relaxes these restrictions some-

what, pointing toward an omitted endogenous propagation mechanism. In the remainder of

this section we direct our attention to the computational challenges created by the bimodal

posterior. We will compare the accuracy of the standard RWMH-V algorithm to the SMC

algorithm.

Accuracy Assessment and Tuning of Algorithms. To compare the performance of
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the 1-Block RWMH-V algorithm and a SMC algorithm, we run each of these algorithms 20

times and evaluate the posterior probability that ρzg > and the probability that inflation

increases in response to a government spending shock. The 1-Block RWMH-V algorithm is

initialized with a random draw from the prior distribution of the DSGE model parameters

and it runs for about 1 minute on a single processor. The SMC algorithm uses 4,800 particles,

6 blocks, 500 stages, and λ = 4. The run time of the SMC algorithm is about 1 minute on

12 processors. Allocating more computational resources to the RWMH algorithm did not

change the result. A summary is provided in Table 6.1.3.

Results. The two panels of Figure 6.4 show estimates of posterior probability that ρzg > 0

and inflation responds positively to an expansionary government spending shock. The bi-

modal posterior density depicted in Figure 6.1 in conjunction with the IRF plots in Figure 6.3

imply that these posterior probabilities should be around 50%. In order correctly estimate

these probabilities the posterior sampler has to generate draws from the two high-posterior-

density areas in the correct proportion. The Monte Carlo approximations of the posterior

probabilities obtained from the SMC algorithm are very stable and close to 50% in all 20

runs. The RWMH algorithm, on the other hand, generates estimates that essentially switch

between zero and one across runs, depending on whether the sampler gets stuck near the

ρzg > 0 mode or the ρzg < 0 mode. In other words, the RWMH sampler does not travel

frequently enough between the two modes in order to generate draws from the two high-

posterior-probabilities areas of the parameter space in the correct proportion. Increasing the

number of draws from 100,000 to 1,000,000 did not correct the problem.

Estimates of the marginal data density associated with the generalized shock model are

depicted in Figure 6.5. The Monte Carlo approximation generated by the SMC algorithm is

very stable, whereas the approximation obtained with the modified harmonic mean estimator

described in Chapter 4.6 appears to be downward biased (as it misses a high-likelihood region

of the parameter space) and highly variable. In fact, four estimates constructed from the

RWMH output were outside of the limits of the chart.

Overall allowing for correlated technology and demand shocks is import for model fit.

Table 6.2 displays estimates of the log marginal data density for the small-scale DSGE model

under the standard (see Chapter x) and diffuse priors. We use the estimates computing from

the SMC sampler in both cases because of its high accuracy. The baseline prior model has

a log marginal data density of -346.2, over 30 points below that of the diffuse prior model.

Under the calculus of probabilities associated with Bayesian model comparison, the marginal
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Figure 6.5: Marginal Data Density Approximation: SMC versus Modified Harmonic Mean
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Notes: Each dot (20 in total) correspond to one run of the SMC algorithm (blue) or the

RWMH algorithm (red). The SMC algorithm automatically generates and estimate of the

MDD, for the RWMH algorithm we use Geweke’s modified harmonic mean estimator. 4

estimates from the RWMH output were off the chart. The estimated values are -333.02,

-362.8, -372.7, - 499.36.

Table 6.2: Marginal Data Density: Effect of Prior

Model Mean(ln p̂(Y )) Std. Dev.(ln p̂(Y ))

Baseline Prior -346.18 0.05

Diffuse Prior -314.46 0.04

Notes: Table shows mean and standard deviation of SMC-based estimate of the log marginal

data density, computed over twenty runs of the SMC sampler under each prior. The hyper-

parameters used for the SMC algorithm are given in Table 6.1.3.

data densities place overwhelmingly odds on the diffuse prior model, indicating that the

AR(1) restrictions are severe.

6.2 Smets-Wouters Model

We now turn to the estimation of the SW model. The SW model is considered to be a

medium-scale DSGE model. It is considerably larger, both in terms of state variables as

well as in terms of parameters to be estimated, than the small-scale New Keynesian model

considered thus far. The SW model forms the core of many of the DSGE models that are
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used in central banks to conduct monetary policy analysis and generate DSGE model-based

forecasts. The subsequent empirical illustration is based on Herbst and Schorfheide (2014).

However, unlike in Herbst and Schorfheide (2014) instead of considering the accuracy of

approximations of posterior means, we will focus on the accuracy of quantiles of the posterior

distribution.

6.2.1 Model Specification

Our version of the SW model is identical to the version presented in Smets and Wouters

(2007). The log-linearized equilibrium conditions, steady states, and measurement equations

are reproduced in Appendix A.1. The model is estimated using the growth rates of GDP,

aggregate consumption, and investment; the log level of hours worked; and price inflation,

wage inflation, and the federal funds rate. Our estimation differs from Smets and Wouters

(2007) in that we are using a more diffuse prior distribution.

Some researchers have argued that the prior distribution originally used by SW is implau-

sibly tight, in the sense that it seems hard to rationalize based on information independent

of the information in the estimation sample. For instance, the tight prior on the steady-state

inflation rate is unlikely to reflect a priori beliefs of someone who has seen macroeconomic

data only from the 1950s and 1960s. At the same time, this prior has a strong influence on

the empirical performance of the model, as discussed in Del Negro and Schorfheide (2013).

Closely related, Müller (2011) derives an analytical approximation for the sensitivity of pos-

terior means to shifts in prior means and finds evidence that the stickiness of prices and

wages is driven substantially by the priors.

One side benefit of tight prior distributions is that they tend to smooth out the poste-

rior surface by down-weighting areas of the parameter space that exhibit local peaks in the

likelihood function but are deemed unlikely under the prior distribution. Moreover, if the

likelihood function contains hardly any information about certain parameters and is essen-

tially flat with respect to these parameters, tight priors induce curvature in the posterior. In

both cases the prior information stabilizes the posterior computations. For simulators such

as the RWMH this is crucial, as they work best when the posterior is well-behaved.

The results presented below are based on a more diffuse prior, which is identical to the

one that we used in Herbst and Schorfheide (2014). For parameters on the unit interval we

replace Beta distributions by uniform distributions. Morever, we scale the prior variances of

the other parameters by a factor of three – with the exception that we leave the priors for
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the shock standard deviations unchanged. A table with the full specification of the diffuse

prior is available in Appendix A.1.

6.2.2 Estimation Results from a Highly-Accurate SMC Run

Table 6.3 summarizes the estimates of the quantiles of the marginal posterior distribution

for each DSGE model parameter. The estimates are obtained from the output of a highly-

accurate run of the SMC algorithm. The quantile estimates are computed as order statistics

by sorting the posterior draws {θij}Ni=1 for each element j of the parameter vector θ. Al-

ternatively, the sample quantiles can be computed by solving the following minimization

problem:

q̂τ (θj) = argminq

(1− τ)
1

N

∑
i: θij<q

(θij − q) + τ
1

N

∑
i: θij≥q

(θij − q)

 . (6.3)

This is a special case of a quantile regression (see Koenker and Bassett (1978)) in which

the regressor is simply a constant term. The quantiles can be used to construct equal-tail-

probability credible intervals. While these credible intervals are typically not the shortest

intervals that have a pre-specified posterior coverage probability, they are easier to compute

than highest-posterior-density intervals and frequently reported in practice. Under direct

(iid) sampling from the posterior distribution the accuracy of the quantile estimates is given

by the following CLT:

√
N(q̂τ − qτ ) =⇒ N

(
0,
τ(1− τ)

π2(qτ )

)
, (6.4)

where π(θ) is the posterior density.1 The further the quantile in the tails of the posterior

distribution, the less precise the its estimate. We will use an estimate of the asymptotic

variance in (6.4) to standardize the Monte Carlo variance of the posterior samplers.

6.2.3 Comparison of RWMH-V and SMC Performance

In the remainder of this section we compare the accuracy of the quantile estimates obtained

from the RWMH-V and the SMC algorithm. The computations are executed exactly as de-

1If the posterior distribution of θj is N(θ̄j , V̄θj ) then qτ (θj) = θ̄j + Φ−1
N (τ)

√
V̄θj , where ΦN (·) is the cdf

of a N(0, 1). In turn, π(qτ ) = φN (Φ−1
N (τ))/

√
Vθh .
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Table 6.3: SW Model with Diffuse Prior: Quantiles of Posterior

Quantile τ [%] Quantile τ [%]

2.5 5.0 50 95 97.5 2.5 5.0 50 95 97.5

ϕ 3.58 4.23 7.96 12.62 13.43 α 0.13 0.14 0.17 0.20 0.21

σc 1.28 1.33 1.63 2.03 2.12 ρa 0.95 0.96 0.97 0.98 0.98

h 0.55 0.59 0.70 0.78 0.80 ρb 0.01 0.02 0.16 0.44 0.58

ξw 0.77 0.80 0.96 0.99 1.00 ρg 0.97 0.97 0.99 1.00 1.00

σl 1.17 1.38 2.91 5.27 5.83 ρi 0.59 0.61 0.72 0.83 0.85

ξp 0.58 0.60 0.73 0.82 0.84 ρr 0.00 0.00 0.04 0.14 0.17

ιw 0.29 0.37 0.76 0.97 0.99 ρp 0.78 0.81 0.92 1.00 1.00

ιp 0.00 0.01 0.09 0.29 0.33 ρw 0.15 0.20 0.72 1.01 1.02

ψ 0.45 0.50 0.76 0.96 0.98 µp 0.38 0.47 0.79 0.98 1.00

Φ 1.46 1.50 1.71 1.94 1.99 µw 0.05 0.09 0.68 0.99 1.00

rπ 2.02 2.12 2.75 3.52 3.67 ρga 0.22 0.25 0.43 0.61 0.64

ρ 0.83 0.84 0.88 0.92 0.92 σa 0.40 0.41 0.46 0.51 0.52

ry 0.07 0.08 0.15 0.24 0.26 σb 0.16 0.18 0.24 0.29 0.29

r∆y 0.21 0.22 0.28 0.35 0.36 σg 0.49 0.50 0.54 0.60 0.61

π 0.34 0.41 0.87 1.23 1.31 σi 0.37 0.39 0.46 0.55 0.57

100(β−1 − 1) -0.00 -0.00 0.04 0.19 0.22 σr 0.21 0.22 0.24 0.27 0.27

l -3.58 -3.00 -0.08 2.93 3.54 σp 0.09 0.09 0.13 0.23 0.25

γ 0.36 0.37 0.40 0.44 0.45 σw 0.21 0.22 0.25 0.30 0.30

Table 6.4: Configuration of Algorithms for SW Model (Diffuse Prior)

RWMH-V SMC

N = 10, 000, 000 N = 12, 000

Nburn = 5, 000, 000 Nφ = 500

Nblocks = 1 Nblocks = 6, M = 1

c = 0.08 λ = 2.1

Run time: 20:00 hours (1 core) Run time: 2:30 hours (24 cores)

Notes: We run each algorithm 50 times.

scribed in Herbst and Schorfheide (2014). For convenience, we reproduce the most important

details.



108

Accuracy Assessment and Tuning of Algorithms. To assess the precision of the Monte

Carlo approximations, we run both algorithms 50 times and compute standard deviations

of quantile estimates across runs. We constrained the processing time to be roughly the

same across algorithms. The SMC algorithm runs about 2 hours and 30 minutes using 24

processors in parallel. In principle, we could instead run 24 copies of the RWMH on separate

processor cores and merge the results afterwards. This may reduce sampling variance if

each of the RWMH chains has reliably converged to the posterior distribution. However, if

there is a bias in the chains – because of, say, the failure to mix on a mode in a multimodal

posterior or simply a slowly converging chain – then merging chains will not eliminate that

bias. Moreover, choosing the length of the “burn-in” phase may become an issue as discussed

in Rosenthal (2000). Instead, we use a poor-man’s parallelization of the RWMH algorithm.

It is possible to parallelize MH algorithms via pre-fetching as discussed in Strid (2009). Pre-

fetching tries to anticipate the points in the parameter space that the MH algorithm is likely

to visit in the next k iterations and executes the likelihood evaluation for these parameter

values in parallel. Once the likelihood values have been computed one can quickly determine

the next k draws. While coding the parallel MCMC algorithm efficiently is quite difficult, the

simulation results reported in Strid (2009) suggest that a parallelization using 24 processors

would lead to a speedup factor of eight at best. Thus, in our poor-man’s parallelization, we

simply increase the running time of the RWMH algorithm on a single CPU by a factor of

eight. This results in approximately 10 million draws.

The hyperparameters of the SMC algorithm are N = 12, 000, Nφ = 500, λ = 2.1, and

Nblocks = 6, M = 1. In this application we follow Herbst and Schorfheide (2014) and use a

mixture proposal distribution in the mutation step of the SMC algorithm:

ϑb|(θin,b,m−1, θ
i
n,−b,m, θ

∗
n,b,Σ

∗
n,b) (6.5)

∼ αN

(
θin,b,m−1, c

2
nΣ∗n,b

)
+

1− α
2

N

(
θin,b,m−1, c

2
ndiag(Σ∗n,b)

)
+

1− α
2

N

(
θ∗n,b, c

2
nΣ∗n,b

)
.

The choice of this mixture proposal is based on ideas in in Kohn, Giordani, and Strid

(2010) on how to improve MH algorithms for DSGE models. The first part corresponds

to the standard random-walk proposal, the second part sets the off-diagonal elements to to

zero, and the third part is an independence MH proposal. In the implementation of the

algorithm the vector of means θ∗n and the the covariance matrix Σ∗n are replaced by SMC

approximations constructed after the correction step. We set the weight on the mixture
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Figure 6.6: Marginal Posterior Densities and Precision of Quantile Approximations
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components to α = 0.1. The choice of Nφ = 500 ensured that the bridge distributions were

never too “different.” The parameter λ was calibrated by examining the correction step at

n = 1. Essentially, we increased λ until the effective sample size after adding the first piece

of information from the likelihood was at least 10, 000; roughly speaking, 80% of the initial

particles retained substantial weight. We settled on the number of blocks by examining

the behavior of the adaptive scaling parameter c in a preliminary run. Setting Nblocks = 6

ensured that the proposal variances were never scaled down too much for sufficient mutation.

For the RWMH algorithm, we scale the proposal covariance to achieve an acceptance rate of

approximately 30% over 5 million draws after a burn-in period of 5 million. Each RWMH

chain was initialized with a draw from the prior distribution. A summary of the configuration

of the algorithms is provided in Table 6.2.3.

Results. Figure 6.6 depicts estimates of marginal posterior densities for four parameters: the

capital share parameter α, the policy rule coefficient on output growth rδy, the wage stickiness

parameter ζw, and the degree of wage indexation to lagged inflation and productivity growth

ιw. The posterior of α is fairly symmetric around its mean/mode, the posterior of r∆y is

skewed toward the right, the posterior of ζw is bimodal, and the posterior of ιw has a long

left tail.
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The multimodal features of the posterior distribution are discussed in detail in Herbst

and Schorfheide (2014). At one of the modes the values of the wage stickiness parameter,

ξw, and wage indexation parameter, ιw, are relatively low, while the parameters governing

the exogenous wage markup process imply a lot of persistence. At the other mode, the

relative importance of endogenous and exogenous propagation is reversed. The persistence

of measured wages is captured by ζw and ιw that are close to one. The multimodality of the

joint posterior translates into a bimodal marginal posterior density of for the wage stickiness

parameter ζw, which peaks around 0.87 and 0.97, respectively.

In addition to the posterior densities, the Figure 6.6 also shows a measure of efficiency

defined as

Neff =
τ(1− τ)/π̂2(q̂τ )

V̂ [q̂τ ]
. (6.6)

Thus, Neff measures the number of iid draws that one has to generate from the posterior

distribution to achieve a quantile approximation that is as accurate as the approximation

obtained from the posterior simulators. The SMC approximation of the quantiles are gen-

erally more accurate than the MCMC approximations from the RWMH-V algorithm. This

difference is most pronounced for r∆y. For α the measure Neff does not vary much as a

function of the quantile τ . For the parameters ξw and ιw the efficiency measure is larger for

the 0.95 and 0.975 quantiles, which may be due to the fact that we are using a kernel density

estimator that does not account for the upper bound of one for these two parameters.

The precision of the quantile approximations for all of the estimated DSGE model param-

eters is summarized in Figure 6.7. Each panel corresponds to a particular quantile and the

bottom right panel contains results for the posterior mean. Each dot in the scatter plots

depicts Neff for the RWMH-V and the SMC approximation of the posterior quantile of a

particular parameter. Essentially all dots lie above the 45-degree line, indicating that the

SMC algorithm provides more accurate approximations than the RWMH algorithm. For

most parameters the gain in accuracy from using the SMC algorithm exceeds a factor of five.

As with the the quantile estimates for the parameters, the SMC estimate of the marginal

data density is more accurate. Herbst and Schorfheide (2014) report that the standard devi-

ation of the estimate of the log marginal data density is five times larger under 20 simulations

from the RWMH-V than it is under the SMC sampler, owing the poor performance of both

the posterior simulator and modified harmonic mean estimators on multi-modal models. As

with the simple DSGE model, using more diffuse priors substantially improves model fit.

See Herbst and Schorfheide (2014) for details.
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Figure 6.7: Precision of Quantile Approximations for SMC and RWMH Algorithms
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6.3 Leeper-Plante-Traum Fiscal Policy Model

The final case study is the fiscal DSGE model estimated by Leeper, Plante, and Traum

(2010), hereafter LPT. The model is based on a standard real business cycle model with

habit, investment adjustment, and variable capital utilization. It also includes a detailed

description of fiscal policy. The estimated model is used to track the dynamics of fiscal

financing and to assess the role of debt in the determination of spending, taxes, and transfers.

Here we present only the portion of the model relevant to the fiscal sector; the full set of

loglinearized equations can be found in Section A.2 of the Appendix.

There are three sources of time-varying distortionary taxation (rates) in the model, τ ct , τ
k
t ,

and τ lt , levied on consumption, capital and labor income, respectively. Households allocate

their income between consumption, ct (taxed at rate τ ct ), government bonds, bt, and capital

investment, it. Their income is composed of labor income (wtlt, taxed at rate τ lt ), utilized-

capital income (Rk
t utkt−1, taxed at rate τ kt ), riskless government bond income (Rt−1bt−1),

and transfers zt. Taking the spending and income of households’ together, the (flow) budget

constraint can be written as:

(1 + τ ct )ct + it + bt = (1− τ lt )wtlt + (1− τ kt )Rk
t utkt−1 +Rt−1bt−1 + zt. (6.7)

The government uses the income from these taxes to finance government spending, Gt. The

budget constraint for the government, using capital letters to denote aggregate quantities,

is:

Bt + τ kt R
k
t utKt−1 + τ ltwtLt + τ ctCt = Rt−1Bt−1 +Gt + Zt. (6.8)

The level of taxes and transfers are given by fiscal rules, which we describe below. Capital and

labor taxes partially depend on output (Yt), capturing the effects of automatic stabilizers

via parameters ϕk and ϕl, and the debt-to-GDP ratio (Bt−1) via parameters γk and γl

for capital and labor, respectively. All of rates are driven by exogenous movements to

taxes, uct , u
k
t , and ult. In particular, these exogenous movements in one tax category can

contemporaneously affect the tax rates in other sectors. The degree of comovement are

controlled by the parameters φkl, φkc, and φlc. Letting x̂t denote the log deviation from

steady-state of xt, one can summarize the tax structure of the model as:

τ̂ kt = ϕkŶt + γkB̂t−1 + φklû
l
t + φkcû

c
t + ûkt , (6.9)

τ̂ lt = ϕlŶt + γlB̂t−1 + φklû
l
t + φlcû

c
t + ûlt, (6.10)

τ̂ ct = φkcû
c
t + φclû

c
t + ûct . (6.11)
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The exogenous movements in taxes follow AR(1) processes:

ûkt = ρkû
k
t−1 + σkε

k
t , εkt ∼ N (0, 1), (6.12)

ûlt = ρlû
l
t−1 + σlε

l
t, εlt ∼ N (0, 1), (6.13)

ûct = ρcû
c
t−1 + σcε

c
t , εct ∼ N (0, 1). (6.14)

On the outlays side, the fiscal rule for government spending, Gt, is a function of current

output and the previous period’s debt, controlled by the parameters, ϕg and γg, respectively.

Spending is also affected by an exogenous, AR(1) process, ugt . In the log deviations from

steady state, the rule is given by:

Ĝt = −ϕgŶt − γgB̂t−1 + ûgt , (6.15)

ûgt = ρgû
g
t−1 + σgε

g
t , εgt ∼ N (0, 1). (6.16)

The fiscal authority also facilitates lump sum transfers, Zt, which follows a rule again de-

termined by output (via parameter ϕZ), debt (via parameter γz), and an exogenous, AR(1)

shock uzt . Expressed in log deviations from steady state, the rule is given by:

Ẑt = −ϕzŶt − γzB̂t−1 + ûzt , (6.17)

ûzt = ρzû
z
t−1 + σzε

z
t , εzt ∼ N (0, 1). (6.18)

Prior Specifications. LPT use tight (but defensible) priors. Still, there are reasonable

arguments for making the prior more diffuse. For example, in their prior, ϕg, the (negative)

response of government spending to output, is restricted to be greater than zero, imply-

ing counter-cyclical fiscal policy. There is room to relax this. Moreover, many of the tax

comovement parameters, for example φkc and φlc, have not be estimated in the past, and

so could plausibility be characterized a priori with higher uncertainty than in the original

estimation. Finally, estimation with diffuse priors allows the analyst to parse the effects of

their original priors.

In this spirit, we estimate their model (on slightly different data) with substantially more

diffuse priors on a subset of parameters which determine the dynamics of the fiscal sector.

The “standard” and “diffuse” prior distributions are displayed in Table 6.5. The γ parame-

ters, which determine the responses of spending, taxes, and transfers to movements (in the

previous period’s) debt level, are shifted from a gamma distributions centered tightly around

0.4 to uniform distributions on [0, 5]. While the γs are still restricted to be nonnegative, con-

sistent with stability of the fiscal rules, there is much more uncertainty about plausible values;
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Table 6.5: Fiscal Model: Prior Distributions

Standard Prior Diffuse Prior

Type Para (1) Para (2) Type Para (1) Para (2)

Debt Response Parameters

γg Gamma 0.4 0.2 Uniform 0 5

γtk Gamma 0.4 0.2 Uniform 0 5

γtl Gamma 0.4 0.2 Uniform 0 5

γz Gamma 0.4 0.2 Uniform 0 5

Output Response Parameters

ϕtk Gamma 1.0 0.3 Normal 1.0 1

ϕtl Gamma 0.5 0.25 Normal 0.5 1

ϕg Gamma 0.07 0.05 Normal 0.07 1

ϕz Gamma 0.2 0.1 Normal 0.2 1

Exogenous Tax Comovement Parameters

φkl Normal 0.25 0.1 Normal 0.25 1

φkc Normal 0.05 0.1 Normal 0.05 1

φlc Normal 0.05 0.1 Normal 0.05 1

Notes: Para (1) and Para (2) correspond to the mean and standard deviation of the Beta,

Gamma, and Normal distributions and to the upper and lower bounds of the support for

the Uniform distribution. For the Inv. Gamma distribution, Para (1) and Para (2) refer to

s and ν, where p(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

.

moreover, the prior is flat, denying the posterior a potential source of curvature. The ϕ pa-

rameters control how much current output affects spending, taxation, and transfers. The

parametric assumption of Gamma distributions implies that spending and transfers will be

countercyclical, while capital and labor tax rates will be procyclical. These hard restrictions

might seem implausible; there is substantial evidence that, for example, government spend-

ing is procyclical. Our diffuse priors on these parameter are centered at the same values

as their standard counterparts, but with substantially higher variance (between three- and

ten-fold increase in prior standard deviation.) The priors on other parameters remain at the

values used by LPT, and can be seen in Table 6.6.

Data and Tuning of Algorithm. LPT use US data from 1960Q1 to 2008Q1 on nine
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Table 6.6: Fiscal Model: Common Prior Distribution

Type Para (1) Para (2) Type Para (1) Para (2)

Endogenous Propagation Parameters

γ Gamma 1.75 0.5 s′′ Gamma 5 0.5

κ Gamma 2.0 0.5 δ2 Gamma 0.7 0.5

h Beta 0.5 0.2

Exogenous Process Parameters

ρa Beta 0.7 0.2 σa Inv. Gamma 1 4

ρb Beta 0.7 0.2 σb Inv. Gamma 1 4

ρl Beta 0.7 0.2 σl Inv. Gamma 1 4

ρi Beta 0.7 0.2 σi Inv. Gamma 1 4

ρg Beta 0.7 0.2 σg Inv. Gamma 1 4

ρtk Beta 0.7 0.2 σtk Inv. Gamma 1 4

ρtl Beta 0.7 0.2 σtl Inv. Gamma 1 4

ρtc Beta 0.7 0.2 σtc Inv. Gamma 1 4

ρz Beta 0.7 0.2 σz Inv. Gamma 1 4

Notes: Para (1) and Para (2) correspond to the mean and standard deviation of the Beta,

Gamma, and Normal distributions and to the upper and lower bounds of the support for

the Uniform distribution. For the Inv. Gamma distribution, Para (1) and Para (2) refer to

s and ν, where p(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

.

series to estimate the model: the deviations of log real per capita consumption, investment,

hours, government debt, government spending, capital tax revenues, labor tax revenues,

consumption tax revenues, and government transfers from independent linear trends. Details

on the data construction are available in the Appendix of LPT.

Under the diffuse prior the posterior distribution will be multi-modal. Because we high-

lighted the difficulty of the RWMH-V algorithm with multimodal posterior surfaces already

above, we focus on the substantive results obtained from a single run of the SMC algorithm.

The configuration of the algorithm is summarized in Table 6.7.

Results. Table 6.8 summarizes the posterior distribution of the key parameters related



116

Table 6.7: Configuration of Algorithm for LPT Model

SMC

N = 6000

Nφ = 500

Nblocks = 3, M = 1

λ = 4.0

Run time: 48 minutes (12 cores)

Figure 6.8: Posterior Densities of Output Response Parameters ϕg and ϕz
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to fiscal policy in the model.2 The posterior means for the debt-response parameters are

more-or-less that same across prior settings, indicating that the prior is not substantially

influencing the posterior. On the other hand, the posterior distrubition of the elasticities

of taxes, spending, and transfers with respect to output (the ϕ parameters) are substan-

tially different under the different priors. In particular, the restriction that ϕi > 0 for

i ∈ {tk, tl, g, z}, embodied in the LPT prior, is “binding” in the sense that the posterior

under the diffuse prior has substantial density for ϕtl, ϕg, and ϕz < 0. Indeed, as shown in

Figure 6.8, once this restriction is relaxed, the sign of the posterior for ϕg and ϕz switches.

Figure 6.9 depicts scatter plots of draws from bivariate posterior distributions in the off-

diagonal panels and density plots for univariate posteriors of the tax comovement parameters

φlc, φkc, and φkl. Under the LPT prior distribution the posteriors appear to be unimodal

2The posterior distribution of the other parameters is similar under the two priors and can be seen in

Table A-3 in the Appendix.
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Table 6.8: Fiscal Model: Posterior Moments - Part 1

Based on LPT Prior Based on Diff. Prior

Mean [5%, 95%] Int. Mean [5%, 95%] Int.

Debt Response Parameters

γg 0.16 [ 0.07, 0.27] 0.1 [ 0.01, 0.23]

γtk 0.39 [ 0.22, 0.60] 0.38 [ 0.16, 0.62]

γtl 0.11 [ 0.04, 0.21] 0.039 [ 0.00, 0.11]

γz 0.32 [ 0.17, 0.47] 0.32 [ 0.14, 0.49]

Output Response Parameters

ϕtk 1.7 [ 1.18, 2.18] 2.1 [ 1.44, 2.69]

ϕtl 0.29 [ 0.11, 0.53] 0.12 [ -0.33, 0.58]

ϕg 0.057 [ 0.01, 0.13] -0.43 [ -0.87, 0.03]

ϕz 0.17 [ 0.06, 0.33] -0.074 [ -0.56, 0.41]

Exogenous Tax Comovement Parameters

φkl 0.19 [ 0.14, 0.24] 1.6 [ 1.29, 1.87]

φkc 0.028 [ -0.03, 0.08] -0.33 [ -2.84, 2.73]

φlc -0.016 [ -0.07, 0.04] 0.2 [ -1.23, 1.40]

Innovations to Fiscal Rules

σg 3.0 [ 2.79, 3.30] 2.9 [ 2.66, 3.18]

σtk 4.4 [ 4.01, 4.75] 1.3 [ 1.08, 1.46]

σtl 3.0 [ 2.71, 3.22] 2.0 [ 1.71, 2.33]

σtc 4.0 [ 3.67, 4.33] 1.1 [ 0.96, 1.35]

σz 3.3 [ 3.07, 3.63] 3.3 [ 3.07, 3.63]

and concentrated near zero. As the prior distribution is relaxed, the posterior distributions

become multimodal. The marginal posterior of φlc has modes near -1 and 1, and the posterior

of φkc has modes near -3 and 3. The posterior distributions are not symmetric. For φlc there

is more mass in the positive region of the parameter space whereas for φkc most of the

posterior mass is in the negative region of the parameter space.

The multimodal posterior for the parameters translates into a multimodal posterior for

impulse responses. The responses to a labor income tax shock are depicted in Figure 6.10.
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Figure 6.9: Posterior Distribution of Tax Comovement Parameters
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The figure depicts four type of posterior mean responses: the baseline responses obtained

from the posterior distribution that is associated with the LPT prior; the unconditional

posterior mean responses associated with the diffuse prior; posterior mean responses based

on the diffuse prior that condition on φlc > 0, φkc < 0 or φlc < 0, φkc > 0, respectively. The

lower right panel shows the response of the labor tax rate τ̂l. To facilitate the comparison

between the four sets of impulse responses, we normalize the labor tax innovation to one

percent. If the steady state labor tax rate is 30% then a one percent increase raises the tax
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Figure 6.10: Impulse Response to a Labor Tax Innovation
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rate to 30.3%.

Under the diffuse prior distribution capital taxes increase in response to a labor tax shock,

because τkl is unambiguously positive. Under the LPT prior the capital tax response is

more muted and turns negative after one period. While the spillover from the labor tax

innovation onto the consumption tax rate is roughly zero on average, under the diffuse prior

the response is bimodal: conditional on the φlc > 0 (φlc < 0) there is a 1.2% rise (fall) in the

consumption tax. In general, the increase in the labor tax lowers the labor supply and the

hours worked response is quite similar for all four cases. The increase in capital taxes lowers

investment conditional on the diffuse prior distribution. The drop in investment is amplified

(dampened) if the consumption tax falls (rises) in response to the labor tax innovation,

which creates a bimodal investment response. Falling (rising) consumption taxes create an

incentive to allocate more (less) income to consumption and less (more) to investment. In
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turn, the consumption response is also bimodal.
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Bayesian Computations for Nonlinear
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Chapter 7

Particle Filters

Particle filters are used to compute likelihood functions and track the hidden states in non-

linear state-space models. Nonlinear state-space representations arise when DSGE models

are solved by higher-order perturbation methods or projection methods. For detailed de-

scriptions and assessments of nonlinear solution techniques we refer the reader to the existing

literature, e.g., Judd (1998) and Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez (2006).

Our starting point is a state-space representation of the form

yt = Ψ(st; θ) + ut, ut ∼ Fu(·; θ) (7.1)

st = Φ(st−1, εt; θ), εt ∼ Fε(·; θ).

Just as in the linear case, the functions Ψ(st; θ) and Φ(st−1, εt; θ) are generated numerically by

the solution method. We require that the measurement error ut in the measurement equation

is additively separable and that the probability density function p(ut|θ) can be evaluated

analytically. In many applications, ut ∼ N(0,Σu). While the exposition of the algorithms

in this chapter focuses on the linear state-space model (7.1), the numerical illustrations and

empirical applications are based on the linear Gaussian model

yt = Ψ0(θ) + Ψ1(θ)t+ Ψ2(θ)st + ut, ut ∼ N(0,Σu), (7.2)

st = Φ1(θ)st−1 + Φε(θ)εt, εt ∼ N(0,Σε)

obtained by solving log-linearized DSGE models. For model (7.2) the Kalman filter described

in Table 2.1 delivers the exact distributions p(yt|Y1:t−1, θ) and p(st|Y1:t, θ) against which the

accuracy of the particle filter approximation can be evaluated.

There exists a large literature on particle filters. Surveys and tutorials can be found, for in-

stance, in Arulampalam, Maskell, Gordon, and Clapp (2002), Cappé, Godsill, and Moulines
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(2007), Doucet and Johansen (2011), Creal (2012). These papers provide detailed references

to the literature. The basic bootstrap particle filtering algorithm is remarkably straightfor-

ward, but may perform quite poorly in practice. Thus, much of the literature focuses on

refinements of the bootstrap filter that increases the efficiency of the algorithm, see, for in-

stance, Doucet, de Freitas, and Gordon (2001). Textbook treatments of the statistical theory

underlying particle filters can be found in Cappé, Moulines, and Ryden (2005), Liu (2001),

and Del Moral (2013). In the remainder of this chapter, we discuss various versions of the

particle filter, including the bootstrap filter, conditionally optimal filters, filters for condi-

tional linear models, and the auxiliary particle filter. These filters are then applied to the

small-scale New Keynesian DSGE model and the SW model with diffuse prior. Throughout

this chapter we condition on a fixed vector of parameter values θ.

7.1 The Bootstrap Particle Filter

We will begin with a version of the particle filter in which the particles representing the

hidden state vector st are propagated by iterating the state-transition equation in (7.1)

forward. This version of the particle filter is due to Gordon, Salmond, and Smith (1993)

and called the bootstrap particle filter. As in Algorithm 8, we use the sequence {ρt}Tt=1 to

indicate whether the particles are resampled in period t.

Algorithm 11 (Bootstrap Particle Filter)

1. Initialization. Draw the initial particles from the distribution sj0
iid∼ p(s0) and set

W j
0 = 1, j = 1, . . . ,M .

2. Recursion. For t = 1, . . . , T :

(a) Forecasting st. Propagate the period t− 1 particles {sjt−1,W
j
t−1} by iterating the

state-transition equation forward:

s̃jt = Φ(sjt−1, ε
j
t ; θ), εjt ∼ Fε(·; θ). (7.3)

An approximation of E[h(st)|Y1:t−1, θ] is given by

ĥt,M =
1

M

M∑
j=1

h(s̃jt)W
j
t−1. (7.4)
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(b) Forecasting yt. Define the incremental weights

w̃jt = p(yt|s̃jt , θ). (7.5)

The predictive density p(yt|Y1:t−1, θ) can be approximated by

p̂(yt|Y1:t−1, θ) =
1

M

M∑
j=1

w̃jtW
j
t−1. (7.6)

(c) Updating. Define the normalized weights

W̃ j
t =

w̃jtW
j
t−1

1
M

∑M
j=1 w̃

j
tW

j
t−1

. (7.7)

An approximation of E[h(st)|Y1:t, θ] is given by

h̃t,M =
1

M

M∑
j=1

h(s̃jt)W̃
j
t . (7.8)

(d) Selection. Case (i): If ρt = 1 resample the particles via multinomial resampling.

Let {sjt}Mj=1 denote M iid draws from a multinomial distribution characterized by

support points and weights {s̃jt , W̃
j
t } and set W j

t = 1.

Case (ii): If ρt = 0, let sjt = s̃jt and W j
t = W̃ j

t .

An approximation of E[h(st)|Y1:t, θ] is given by

h̄t,M =
1

M

M∑
j=1

h(sjt)W
j
t . (7.9)

3. Likelihood Approximation. The approximation of the log likelihood function is

given by

ln p̂(Y1:T |θ) =
T∑
t=1

ln

(
1

M

M∑
j=1

w̃jtW
j
t−1

)
. (7.10)

The particle filter algorithm closely follows the steps of the generic filter in Algorithm 1.

The convergence theory underlying the particle filter is similar to the theory sketched in

Section 5.1.4 for the SMC sampler. To simplify the notation, we will drop the parameter

vector θ from the conditioning set. Starting point is a SLLN and a CLT for period t− 1:

h̄t−1,M
a.s.−→ E[h(st−1)|Y1:t−1], (7.11)

√
M
(
h̄t−1,M − E[h(st−1)|Y1:t−1]

)
=⇒ N

(
0,Ωt−1(h)

)
.
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For period t − 1 = 0 this can generally be achieved by directly sampling from the initial

distribution p(s0). We briefly sketch the convergence arguments for Steps 2(a) to 2(d). A

rigorous proof would involve verifying the existence of moments required by the SLLN and

CLT and a careful characterization of the asymptotic covariance matrices.

Forecasting Steps. The forward iteration of the state-transition equation amounts to

drawing st from a conditional density gt(st|sjt−1). In Algorithm 11 this density is given by

gt(st|sjt−1) = p(st|sjt−1).

We denote expectations under this density as Egt(·|sjt−1)[h] and decompose

ĥt|t−1 − E[h(st)|Y1:t−1] =
1

M

M∑
j=1

(
h(s̃jt)− Egt(·|sjt−1)[h]

)
W j
t−1 (7.12)

+
1

M

M∑
j=1

(
Egt(·|sjt−1)[h]W j

t−1 − E[h(st)|Y1:t−1]
)

= I + II,

say. This decomposition is similar to the decomposition (5.30) used in the analysis of the

mutation step of the SMC algorithm.

Conditional on {sjt−1,W
j
t−1}Ni=1 the weights W j

t−1 are known and the summands in term I

form a triangular array of mean-zero random variables that within each row are indepen-

dently but not identically distributed. Provided the required moment bounds for h(s̃jt)W
j
t−1

are satisfied, I converges to zero almost surely and satisfies a CLT. Term II also converges

to zero because

1

M

M∑
j=1

Egt(·|sjt−1)[h]W j
t−1

a.s.−→ E
[
Egt(·|st−1)[h]

∣∣Y1:t−1

]
(7.13)

=

∫ [∫
h(st)p(st|st−1)dst

]
p(st−1|Y1:t−1)dst−1

= E[h(st)|Y1:t−1]

Thus, under suitable regularity conditions

ĥt,M
a.s.−→ E[h(st)|Y1:t−1],

√
M
(
ĥt,M − E[h(st)|Y1:t−1]

)
=⇒ N

(
0, Ω̂t(h)

)
. (7.14)

The convergence of the predictive density approximation p̂(yt|Y1:t−1) to p(yt|Y1:t−1) in Step

2(b) follows directly from (7.14) by setting h(st) = p(yt|st). For the Gaussian state-space
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model (7.2) the incremental weights take the form

w̃jt = p(yt|s̃jt) = (2π)−n/2|Σu|−1/2 exp

{
− 1

2
(yt −Ψ0 −Ψ1t−Ψ2s̃

j
t)
′Σ−1

u (7.15)

×(yt −Ψ0 −Ψ1t−Ψ2s̃
j
t)

}
,

where n here denotes the dimension of yt.

Updating and Selection Steps. The goal of the updating step is to approximate posterior

expectations of the form

E[h(st)|Y1:t] =

∫
h(st)p(yt|st)p(st|Y1:t−1)dst∫
p(yt|st)p(st|Y1:t−1)dst

≈
1
M

∑M
j=1 h(s̃jt)w̃

j
tW

j
t−1

1
M

∑M
j=1 w̃

j
tW

j
t−1

= h̃t,M . (7.16)

The Monte Carlo approximation of E[h(st)|Y1:t] has the same form as the Monte Carlo

approximation of h̃n,M in (5.23) in the correction step of the SMC Algorithm 8 and its

convergence can be analyzed in a similar manner. Defining the normalized incremental

weights

vt(st) =
p(yt|st)∫

p(yt|st)p(st|Y1:t)dst
, (7.17)

under suitable regularity conditions the Monte Carlo approximation satisfies a CLT of the

form

√
M
(
h̃t,M − E[h(st)|Y1:t]

)
=⇒ N

(
0, Ω̃t(h)

)
, Ω̃t(h) = Ω̂t

(
vt(st)(h(st)− E[h(st)|Y1:t])

)
.

(7.18)

Finally, the selection step in Algorithm 11 is identical to the selection step in Algorithm 8

and it adds some additional noise to the approximation. If ρt = 1, then

√
M
(
h̄t,M − E[h(st)|Y1:t]

)
=⇒ N

(
0,Ωt(h)

)
, Ωt(h) = Ω̃t(h) + V[h(st)|Y1:t]. (7.19)

As discussed in the context of the SMC algorithm, the asymptotic covariance matrix Ω̃t(h)

critically depends on the distribution of the particle weights. As for the SMC algorithm, we

can define an effective sample size (in terms of number of particles) as

ÊSSt = N
/( 1

M

M∑
j=1

(W̃ j
t )2

)
. (7.20)

and replace the deterministic sequence {ρt}Tt=1 by an adaptively chosen sequence {ρ̂t}Tt=1, for

which ρ̂t = 1 whenever ÊSSt falls below a threshold.

The Role of Measurement Errors. Many DSGE models, e.g., the ones considered in this

book, do not assume that the observables yt are measured with error. Instead, the number
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of structural shocks is chosen to be equal to the number of observables, which means that

the likelihood function p(Y1:T ) is nondegenerate. The Kalman filter iterations in Table 2.1

are well defined even if the measurement error covariance matrix Σu in the linear Gaussian

state space model (7.2) is equal to zero, provided that the number of shocks εt is not smaller

than the number of observables and the forecast error covariance matrix Ft|t−1 is invertible.

For the particle filter, the incremental weights (7.15) are degenerate if Σu = 0 because the

conditional distribution of yt|st is a pointmass. For a particle j, this point mass is located

at yjt = Ψ(s̃jt ; θ). If in the forecasting step the innovation εjt is drawn from a continuous

distribution and the state transition equation Φ(st−1, εt; θ) is a smooth function of the lagged

state and the innovation εt, then the probability that yjt = yt is zero, which means that

w̃jt = 0 for all j and the particles vanish after one iteration. The intuition for this result is

straightforward. The incremental weights are large for particles j for which yjt = Ψ(s̃jt ; θ) is

close to the actual yt. Under Gaussian measurement errors, the metric for closeness is given

by Σ−1
u . Thus, all else equal, decreasing the measurement error variance Σu increases the

discrepancy between yjt and yt and therefore the variance of the particle weights.

Consider the following stylized examples (we are omitting the j superscripts). Suppose that

yt is scalar, the measurement errors are distributed according to ut ∼ N(0, σ2
u), Wt−1 = 1,

and let δ = yt − Ψ(st; θ). Suppose that in population the δ is distributed according to a

N(0, 1). In this case vt(st) in (7.17) can be viewed as a population approximation of the

normalized weights W̃t constructed in the updating step (note that the denominator of these

two objects is slightly different):

W̃t(δ) ≈ vt(δ) =
exp

{
− 1

2σ2
u
δ2
}

(2π)−1/2
∫

exp
{
−1

2

(
1 + 1

σ2
u

)
δ2
}
dδ

=

(
1 +

1

σ2
u

)1/2

exp

{
− 1

2σ2
u

δ2

}
.

The asymptotic covariance matrix Ω̃t(h) in (7.18) which captures the accuracy of h̃t,M as

well as the heuristic effective sample size measure defined in (7.20) depend on the variance

of the particle weights, which in population is given by∫
v2
t (δ)dδ =

1 + 1/σ2
u√

1 + 2/σ2
u

=
1

σu

1 + σ2
u√

2 + σ2
u

−→∞ as σu −→ 0.

Thus, a decrease in the measurement error variance raises the variance of the particle weights

and thereby decreases the effective sample size. More importantly, the increasing dispersion

of the weights translates into an increase in the limit covariance matrix Ω̃t(h) and a deteri-

oration of the Monte Carlo approximations generated by the particle filter. In sum, all else

equal, the smaller the measurement error variance, the less accurate the particle filter.
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7.2 Sequential Importance Sampling and Resampling

In the basic version of the particle filter the time t particles were generated by simulating

the state transition equation forward. However, the naive forward simulation ignores infor-

mation contained in the current observation yt and may lead to a very uneven distribution

of particle weights, in particular if the measurement error variance is small or if the model

has difficulties explaining the period t observation in the sense that for most particles s̃jt the

actual observation yt lies far in the tails of the model-implied distribution of yt|(s̃jt , θ). The

particle filter can be generalized by allowing s̃jt in the forecasting step to be drawn from a

generic importance sampling density gt(·|sjt−1, θ), which is why particle filters are also called

sequential importance sampling with resampling (SISR) algorithms.

Algorithm 12 (Sequential Importance Sampling with Resampling)

1. Initialization. (Same as Algorithm 11)

2. Recursion. For t = 1, . . . , T :

(a) Forecasting st. Draw s̃jt from density gt(s̃t|sjt−1, θ) and define the importance

weights

ωjt =
p(s̃jt |s

j
t−1, θ)

gt(s̃
j
t |s

j
t−1, θ)

. (7.21)

An approximation of E[h(st)|Y1:t−1, θ] is given by

ĥt,M =
1

M

M∑
j=1

h(s̃jt)ω
j
tW

j
t−1. (7.22)

(b) Forecasting yt. Define the incremental weights

w̃jt = p(yt|s̃jt , θ)ω
j
t . (7.23)

The predictive density p(yt|Y1:t−1, θ) can be approximated by

p̂(yt|Y1:t−1, θ) =
1

M

M∑
j=1

w̃jtW
j
t−1. (7.24)

(c) Updating. (Same as Algorithm 11)

(d) Selection. (Same as Algorithm 11)
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3. Likelihood Approximation. (Same as Algorithm 11).

The only difference between Algorithms 11 and 12 is the introduction of the importance

weights ωjt which appear in (7.22) as well as the definition of the incremental weights w̃jt

in (7.23). It can be verified that the introduction of the importance weights guarantees

the the Monte Carlo averages converge to the desired limits. To assess the convergence of

ĥt,M replace in the decomposition (7.12) h(s̃jt) by h(s̃jt)ω
j
t and Egt(·|sjt−1)[h] by Egt(·|sjt−1)[hω],

respectively. Then note that

1

M

M∑
j=1

Egt(·|sjt−1)[hω]W j
t−1

a.s.−→ E
[
Egt(·|st−1)[hω]

∣∣Y1:t−1

]
(7.25)

=

∫ [∫
h(st)

p(st|st−1)

gt(st|st−1)
gt(st|st−1)dst

]
p(st−1|Y1:t−1)dst−1

= E[h(st)|Y1:t−1],

as desired.

The main goal of replacing the forward iteration of the state-transition equation by an

importance sampling step is to improve the accuracy of p̂(yt|Y1:t−1, θ) and h̃t,M . Consider

1

M

M∑
j=1

h(s̃jt)w̃
j
tW

j
t−1 =

1

M

M∑
j=1

h(s̃jt)
p(yt|s̃jt)p(s̃

j
t |s

j
t−1)

gt(s̃
j
t |s

j
t−1)

W j
t−1, (7.26)

which for h(·) = 1 delivers p̂(yt|Y1:t−1, θ) and also appears in the definition of h̃t,M . Choosing

a suitable importance density gt(s̃
j
t |s

j
t−1) that is a function of the time t observation yt can

drastically reduce the variance of the incremental weights w̃jt and improve the accuracy of

the Monte Carlo approximations. Such filters are called adapted particle filters. We will

subsequently discuss various choices of gt(s̃
j
t |s

j
t−1).

7.3 Implementation Issues

The implementation of Algorithm 12 requires the evaluation of the density p(st|sjt−1). In

a nonlinear DSGE model the innovations εt typically enter the state transition equation

st = Φ(sjt−1, εt) in a non-additive form, which makes it difficult to compute p(st|sjt−1). We

show in Section 7.3.1 that if the proposal distribution gt(st|sjt−1) is implicitly generated by

iterating the state-transition equation forward based on a draw ε̃jt from gεt(s
j
t−1) then the

computation of the importance weights ωjt simplifies considerably and does not require the

evaluation of conditional densities of st. Section 7.3.2 provides further discussion of filtering

for models that do not have measurement errors.
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7.3.1 Nonlinear and Partially Deterministic State Transitions

The implementation of Algorithm 12 requires the evaluation of the density p(st|st−1). Two

difficulties arise in nonlinear DSGE model applications: first, the density is singular because

some state variables, e.g. the capital stock, may evolve according to a deterministic law

of motion. Second, if the state-transition equation is nonlinear and the innovations do not

enter in an additively separable way, it may be difficult to evaluate the density p(st|st−1, θ)

because of a complicated change of variables. For illustrative purposes, consider a modified

version of the simple state space model of Section 4.3 with state transition equations:

s1,t = Φ1(st−1, εt), s2,t = Φ2(st−1), εt ∼ N(0, 1). (7.27)

Here the transition for the state s2,t (think of the capital accumulation equation in a DSGE

model) is deterministic. Thus the joint distribution of s1,t and s2,t is a mixture of a continuous

and a discrete distribution with a pointmass at s2,t = Φ2(st−1).

Now suppose we define the extended state vector ςt = [s′t, ε
′
t]
′ and augment the state

transitions in (7.27) by the identity εt = εt. Using the independence of the innovation εt

from the lagged states ςt−1, we can factorize the density p(ςt|ςt−1) as

p(ςt|ςt−1) = pε(εt)p(s1,t|st−1, εt)p(s2,t|st−1). (7.28)

Note that p(s1,t|st−1, εt) and p(s2,t|st−1) are pointmasses at s1,t = Φ1(st−1, εt) and s2,t =

Φ2(st−1), respectively. The easiest way of designing an importance distribution gt(ςt|ςt−1)

that has support in the subspace of the state space that satisfies (7.27) is to sample an

innovation εt and iterate the state-transition equation forward. Let gεt(εt|st−1) denote the

importance density for εt. Then

gt(ςt|ςt−1) = gεt(εt|st−1)p(s1,t|st−1, εt)p(s2,t|st−1). (7.29)

In turn,

ωjt =
p(ς̃jt |ς

j
t−1)

gt(ς̃
j
t |ς

j
t−1)

=
pε(ε̃jt)p(s̃

j
1,t|s

j
t−1, ε̃

j
t)p(s̃

j
2,t|s

j
t−1)

gεt(ε̃
j
t |s

j
t−1)p(s̃j1,t|s

j
t−1, ε̃

j
t)p(s̃

j
2,t|s

j
t−1)

=
pε(ε̃jt)

gεt(ε̃
j
t |s

j
t−1)

. (7.30)

Thus, the computation of ωjt only requires the evaluation of the densities for εt.

The derivation of (7.30) may appear a bit obscure because it involves the factorization

of a joint density for a degenerate probability distribution. The reader may wonder why

the Jacobian term that would arise under a careful change-of-variables argument does not
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appear in (7.30). Notice that we are ultimately using (7.30) in an importance sampling

approximation of an integral. The key insight (simplifying the notation considerably) is that

if s = Φ(ε) then ∫
h(s)ps(s)ds =

∫
h(Φ(ε))pε(ε)dε. (7.31)

According to the change-of-variable formula the relationship between the densities ps(·) and

pε(·) is the following. Define Bj, j = 1, . . . , J , as a set of partitions of the domain of ε such

that Φ(s) is monotone in ε. Let Φ−1
j (s) be the inverse with respect to ε on Bj and assume

it has continuous derivatives. Then

ps(s) =
J∑
j=1

pε
(
Φ−1
j (s)

) ∣∣∣∣ ∂∂sΦ−1
j (s)

∣∣∣∣
and we can write ∫

h(s)ps(s)ds =
J∑
j=1

∫
h(s)pε

(
Φ−1
j (s)

) ∣∣∣∣ ∂∂sΦ−1
j (s)

∣∣∣∣ .
Setting εj = Φ−1

j (s), s = Φ(εj), and noting that

∫
h(Φ(ε))pε(ε)dε =

J∑
j=1

∫
Aj

h
(
Φ(εj)

)
pε(εj)dεj

yields the desired result in (7.31). We can now change the forecasting step 2.(a) of Algo-

rithm 12 as follows:

Algorithm 13 (Generalized Bootstrap Particle Filter)

Replace Step 2.(a) in Algorithm 12 by:

2.(a)’ Forecasting st. Draw ε̃jt from density gεt(ε̃t|st−1), let s̃jt = Φ(st−1, ε̃
j
t−1). The impor-

tance weights ωjt are given by (7.30).

The importance sampling distribution gεt(εt|st−1) can be constructed by applying the meth-

ods described previously to a version of the DSGE model with extended state space ςt.
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7.3.2 Degenerate Measurement Error Distributions

We saw in Section 7.1 that the bootstrap particle filter deteriorates as the measurement error

variance decreases. If the measurement error variance Σu = 0, then only particles that can

exactly predict the current-period observation will get non-zero weight. Under a continuous

distribution of the innovations εt the probability of generating such particles in the forecasting

step is zero. Our discussion of the conditionally-optimal importance distribution suggests

that in the absence of measurement errors, we should solve the system of equations

yt = Ψ
(
Φ(sjt−1, ε̃

j
t)
)
, (7.32)

to determine εjt as a function of sjt−1 and the current observation yt. We then can define

ωjt = pε(ε̃jt) and s̃jt = Φ(sjt−1, ε̃
j
t). (7.33)

In a nonlinear state-space system, e.g., one that arises from a higher-order perturbation

solution there maybe be multiple solutions to the system even if the dimension of yt and

εt are equal. Let the solutions be denoted by ε̄jt(k), k = 1, . . . , K. The t subscript and j

superscript indicate that the solutions depend on yt and sjt−1. The importance distribution

represented by the density gεt(ε̃
j
t |s

j
t−1) in (7.30) is now a multinomial distribution of the form

P{ε̃jt = ε̄it(k)} =
pε(ε̄jt(j))∑K
k=1 p

ε(ε̄jt(k))
, k = 1, . . . , K, (7.34)

which leads to

ωjt =
K∑
k=1

pε(ε̄jt(k)). (7.35)

By construction, p(yt|s̃jt) corresponds to a pointmass at yt for each particle j. Thus, we can

define the incremental weight w̃jt in (7.23) simply as w̃jt = ωjt .

There are two computational challenges. First, one has to find all the (real) solutions to

a nonlinear system of equations. For instance, if the DSGE model has been solved with a

second-order perturbation method, then one has to solve a system of quadratic equations

for each particle j to determine the ε̄jt(k)’s. (*** reference to Foerster, Rubio-Ramirez,

Waggoner, and Zha? ***). The second computational problem can be illustrated in the

context of the simple state space model presented in Chapter 4.3:

yt = s1,t + s2,t, s1,t = φ2s1,t−1 + εt, s2,t = φ3s1,t−1 + φ2s1,t−1.
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Note that due to the absence of measurement errors, it is possible to recursively solve for

the entire sequence of particles sj1:T conditional on the initial draws sj0 = (sj1,0, s
j
2,0) and

the observations Y1:T . The particles will be reweighted based on pε(ε̃jt) which captures the

likelihood of observation yt conditional on sjt−1. The resampling step of the filter duplicates

the particles for which pε(ε̃jt) is large. But unlike in the case of a model with measurement

errors, the duplicate particles do not mutate in the subsequent iteration, because if two

particles i and j are identical in period τ , i.e., sjτ = sjτ , then sjt = sjt for t > τ . Thus, the

degeneracy problem does not manifest itself in an uneven distribution of particles. Instead,

it is reflected by the fact that the particle values are mostly identical. This will lead to an

imprecise approximation of the likelihood function, which is not surprising as the algorithm

essentially approximates the integral
∫
p(Y1:T |s0)p(s0)ds0 by sampling sj0 from p(s0) and then

evaluates the Monte Carlo average 1
M

∑M
j=1 p(Y1:T |sj0).

7.4 Improving the Performance of Particle Filters

There exists a large literature on the implementation and the improvement of the particle

filters in Algorithms 11 and 12. Detailed references to this literature are provided, for

instance, in Doucet, de Freitas, and Gordon (2001), Cappé, Godsill, and Moulines (2007),

Doucet and Johansen (2011), Creal (2012). We will focus in this section on a few key

issues that are central to DSGE model applications. First, we will provide some discussion

on how to choose the proposal distribution gt(s̃
j
t |s

j
t−1) for Algorithm 12. Second, we will

consider specific features of state-space representations derived from DSGE models, including

deterministic state transitions and the potential absence of measurement errors. Finally, we

consider alternative versions of the particle filter, including the auxiliary particle filter, a

filter with resample-move step, and a filter for conditionally linear models.

7.4.1 Conditionally-Optimal Importance Distribution

The conditionally-optimal distribution, e.g., Liu and Chen (1998), is defined as the distri-

bution that minimizes the Monte Carlo variation of the importance weights. However, this

notion of optimality conditions on the current observation yt as well as the t − 1 particle

sjt−1. Given (yt, s
j
t−1) the weights w̃jt are constant (as a function of s̃t) if

gt(s̃t|sjt−1) = p(s̃t|yt, sjt−1), (7.36)
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that is, s̃t is sampled from the posterior distribution of the period t state given (yt, s
j
t−1). In

this case

w̃jt =

∫
p(yt|st)p(st|sjt−1)dst. (7.37)

For most DSGE model applications it is not possible to sample directly from p(s̃t|yt, sjt−1).

One notable exception is the case in which the DSGE model takes the form of the linear

Gaussian state-space model (7.2). In this case we can obtain p(s̃t|yt, sjt−1) from the Kalman

filter updating step described in Table 2.1. Let

s̄jt|t−1 = Φ1s
j
t−1 Pt|t−1 = ΦεΣεΦ

′
ε

ȳjt|t−1 = Ψ0 + Ψ1t+ Ψ2s̄
j
t|t−1 Ft|t−1 = Ψ2Pt|t−1Ψ′2 + Σu

s̄jt|t = s̄jt|t−1 + Pt|t−1Ψ′2F
−1
t|t−1(yt − ȳt|t−1) Pt|t = Pt|t−1 − Pt|t−1Ψ′2F

−1
t|t−1Ψ2Pt|t−1.

The conditionally optimal proposal distribution is given by

s̃t|(sjt−1, yt) ∼ N
(
s̄jt|t, Pt|t

)
. (7.38)

In our numerical illustrations we will use (7.38) as a benchmark against which we evaluate

the accuracy of feasible alternatives. If it is not possible to sample directly from p(s̃t|yt, sjt−1),

one could use an accept-reject algorithm as discussed in Künsch (2005). However, for this

approach to work efficiently, the user needs to find a good proposal distribution within the

accept-reject algorithm.

7.4.2 Approximately Conditionally-Optimal Distributions

If sampling from the conditionally-optimal importance distribution is infeasible or computa-

tionally too costly, then one could try to sample from an approximately conditionally-optimal

importance distribution. For instance, if the DSGE model nonlinearity arises from a higher-

order perturbation solution and the nonlinearities are not too strong, then an approximately

conditionally-optimal importance distribution could be obtained by applying the one-step

Kalman filter updating in (7.38) to the first-order approximation of the DSGE model. More

generally, as suggested in Guo, Wang, and Chen (2005), one could use the updating steps of

a conventional nonlinear filter, such as an extended Kalman filter, unscented Kalman filter,

or a Gaussian quadrature filter, to construct an efficient proposal distribution. Approximate

filters for nonlinear DSGE models have been developed by Andreasen (2013) and Kollmann

(2014).



136

7.4.3 Conditional Linear Gaussian Models

Certain DSGE models have a conditional linear structure that can be exploited to improve

the efficiency of the particle filter. These models include the class of Markov switching linear

rational expectations (MS-LRE) models analyzed in Farmer, Waggoner, and Zha (2009) as

well as models that are linear conditional on exogenous stochastic volatility processes, e.g.,

the linearized DSGE model with heteroskedastic structural shocks estimated by Justiniano

and Primiceri (2008) and the long-run risks model studied in Schorfheide, Song, and Yaron

(2014).

For concreteness, consider an MS-LRE model obtained by replacing the fixed target-

inflation rate π∗ in the monetary policy rule (1.23) with a time-varying process π∗t (ςt) of

the form

π∗t = ςtπ
∗
L + (1− ςt)π∗H , P{ςt = l|ςt−1 = l} = ηll, l ∈ {0, 1}. (7.39)

This model was estimated in Schorfheide (2005).1 Log-linearizing the model with Markov-

switching target inflation rate leads to a MS-LRE similar to (2.1), except that the log-

linearized monetary policy rule now contains an intercept that depends on ςt. The solution

to an MS-LRE model can be expressed as

yt = Ψ0(ςt) + Ψ1(ςt)t+ Ψ2(ςt)st + ut, ut ∼ N(0,Σu), (7.40)

st = Φ0(ςt) + Φ1(ςt)st−1 + Φε(ςt)εt, εt ∼ N(0,Σε),

where ςt follows a discrete Markov-switching process. In (7.40) we allow for Markov switches

in all coefficient matrices, which may arise if not only the intercepts but also the slope

coefficients of the linear rational expectations system depend on ςt as, for instance, in Davig

and Leeper (2007) and Bianchi (2013). Solution methods for general MS-LRE models are

provided by Farmer, Waggoner, and Zha (2009).

The state-space representation in (7.40) is linear conditional on ςt. In slight abuse of

notation, we abbreviate the transition kernel for ςt by p(ςt|ςt−1) and use the notation p(ςt|Y1:t)

for the distribution of ςt given Y1:t. The joint distribution of (ςt, st) can be factorized as

follows:

p(ςt, st|Y1:t) = p(ςt|Y1:t)p(st|ςt, Y1:t). (7.41)

In conditionally linear Gaussian state-space models, the distribution p(st|ςt, Y1:t) is normal:

st|(ςt, Y1:t) ∼ N
(
s̄t|t(ςt), Pt|t(ς)t

)
. (7.42)

1A richer DSGE model with a Markov switching target inflation rate was subsequently estimated by Liu,

Waggoner, and Zha (2011).
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We abbreviate the density of st|(ςt, Y1:t) by pN
(
st|s̄t|t(ςt), Pt|t(ςt)

)
, where the N subscript

emphasizes the conditional Normal distribution. Because the vector of means s̄t|t(ςt) and the

covariance matrix Pt|t(ς)t are sufficient statistics for the conditional distribution of st, we

approximate (ςt, st)|Y1:t by the the quadruplets {ςjt , s̄
j
t|t, P

j
t|t,W

j
t }Ni=1. The swarm of particles

approximates∫
h(ςt, st)p(ςt, st, Y1:t)d(ςt, st) =

∫ [∫
h(ςt, st)p(st|ςt, Y1:t)dst

]
p(ςt|Y1:t)dςt (7.43)

≈ 1

M

M∑
j=1

[∫
h(ςjt , s

j
t)pN

(
st|s̄jt|t, P

j
t|t
)
dst

]
W j
t .

The Monte Carlo approximation in (7.43) is constructed by first integrating out st|ςjt based

on the conditional Normal distribution which for many functions h(ςt, st) can be done an-

alytically, and then use Monte Carlo averaging to integrate out ςt. This approach is called

Rao-Blackwellization. It is a variance reduction technique that exploits the following in-

equality:

V[h(st, ςt)] = E
[
V[h(st, ςt)|ςt]

]
+ V

[
E[h(st, ςt)|ςt]

]
≥ V

[
E[h(st, ςt)|ςt]

]
. (7.44)

Algorithm 12 can be easily be modified to exploit the conditionally Gaussian structure and

integrate out st|ςt analytically. The modification is due to Chen and Liu (2000) who referred

to the resulting algorithm as mixture Kalman filter (see also Liu, Chen, and Logvinenko

(2001)). Suppose that {ςjt−1, s̄
j
t−1|t−1, P

j
t−1|t−1,W

j
t−1} satisfies (7.43). To forecast the states

in period t, generate ς̃jt from the importance sampling distribution gt(ς̃t|ςjt−1) and define the

importance weights: Define the importance weights

ωjt =
p(ς̃jt |ς

j
t−1)

gt(ς̃
j
t |ς

j
t−1)

. (7.45)

The Kalman filter forecasting step can be used to compute the conditional mean and vari-

ances of st and yt given ς̃jt :

s̃jt|t−1 = Φ0(ς̃jt ) + Φ1(ς̃jt )s
j
t−1

P j
t|t−1 = Φε(ς̃

j
t )Σε(ς̃

j
t )Φε(ς̃

j
t )
′

ỹjt|t−1 = Ψ0(ς̃jt ) + Ψ1(ς̃jt )t+ Ψ2(ς̃jt )s̃
j
t|t−1

F j
t|t−1 = Ψ2(ς̃jt )P

j
t|t−1Ψ2(ς̃jt )

′ + Σu.

(7.46)
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Then,∫
h(ςt, st)p(ςt, st|Y1:t−1d(ςt, st) =

∫ [∫
h(ςt, st)p(st|ςt, Y1:t−1)dst

]
p(ςt|Y1:t−1)dςt (7.47)

≈ 1

M

M∑
j=1

[∫
h(ςjt , s

j
t)pN

(
st|s̃jt|t−1, P

j
t|t−1

)
dst

]
ωjtW

j
t−1

The likelihood approximation is based on the incremental weights w̃jt which are given by

w̃jt = pN
(
yt|ỹjt|t−1, F

j
t|t−1

)
ωjt . (7.48)

The mean ỹjt|t−1 and variance F j
t|t−1 of the regime-conditional predictive distribution were

defined in (7.46). Conditional on ς̃jt we can use the Kalman filter once more to update the

information about st in view of the current observation yt:

s̃jt|t = s̃jt|t−1 + P j
t|t−1Ψ2(ς̃jt )

′(F j
t|t−1

)−1
(yt − ȳjt|t−1)

P̃ j
t|t = P j

t|t−1 − P
j
t|t−1Ψ2(ς̃jt )

′(F j
t|t−1

)−1
Ψ2(ς̃jt )P

j
t|t−1.

(7.49)

Overall, this leads to the following algorithm:

Algorithm 14 (SISR For Conditionally Linear Models)

1. Initialization. (Same as Algorithm 11)

2. Recursion. For t = 1, . . . , T :

(a) Forecasting st. Draw ς̃jt from density gt(ς̃t|ςjt−1, θ), calculate the importance

weights ωjt in (7.45), and compute s̃jt|t−1 and P j
t|t−1 according to (7.46). An ap-

proximation of E[h(st, ςt)|Y1:t−1, θ] is given by (7.47).

(b) Forecasting yt. Compute the incremental weights w̃jt according to (7.48). The

predictive density p(yt|Y1:t−1, θ) can be approximated by

p̂(yt|Y1:t−1, θ) =
1

M

M∑
j=1

w̃jtW
j
t−1. (7.50)

(c) Updating. Define the normalized weights

W̃ j
t =

w̃jtW
j
t−1

1
M

∑M
j=1 w̃

j
tW

j
t−1

(7.51)

and compute s̃jt|t and P̃ j
t|t according to (7.49). An approximation of E[h(ςt, st)|Y1:t, θ]

can be obtained by {ς̃jt , s̃
j
t|t, P̃

j
t|t, W̃

j
t } according to (7.43).
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(d) Selection. Resample {ς̃jt , s̃
j
t|t, P̃

j
t|t, W̃

j
t } to obtain {ςjt , s

j
t|t, P

j
t|t,W

j
t }. (Similar to

Algorithm 11)

3. Likelihood Approximation. (Same as Algorithm 11).

7.4.4 Resample-Move Steps

The resampling step of Algorithms 11 and 12 is designed to equalize the distribution of

particle weights and avoid a degenerate particle distribution. However, as the discussion of

the model without measurement errors in Section 7.3.2 highlighted, it is possible that an

even distribution of particle weights coincides with (nearly) identical particle values (impov-

erishment), which leads to potentially very inaccurate Monte Carlo approximations. While

the sampling of s̃jt from the proposal distribution gt(s̃t|sjt−1) leads to some diversity of the

period t particles even if the t−1 particle values are identical, a mutation step that “jitters”

the particle values after resampling may help to increase the diversity of particle values and

improve the accuracy of the filter. This “jittering” is comparable to the mutation step in

the SMC Algorithm 8, used for posterior inference on the model parameter vector θ. Thus,

the resampling step of the particle filter is augmented by a “move” step as in Berzuini and

Gilks (2001).

The resample-move algorithm presented below is a special case of the algorithm described

in Doucet and Johansen (2011). To understand how a particle filter with resample-move step

works, it is useful to abstract from the resampling first and to introduce the mutation right

after the updating in Step 2.(c) of Algorithm 12. The particle mutation is based on a Markov

transition kernel, which we denote by K(yt,st−1)(st|s̃t). The transition kernel transforms the

particle s̃jt into a particle sjt by sampling from a conditional distribution of st given s̃t. The

transition kernel depends on the current observation yt as well as the period t − 1 value of

the state st−1, which is indicated by the subscript.

We generate the transition kernel from a sequence of MH steps. To simplify the exposition

we focus on the case of a single MH step:

Algorithm 15 (Mutation Step for Resample-Move Algorithm)

1. Draw ςt from a density qt(ςt|s̃jt).
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2. Set sjt = ςt with probability

αt(ςt|s̃jt) = min

{
1,

p(yt|ςt)p(ςt|sjt−1)/qt(ςt|s̃jt)
p(yt|s̃t)p(s̃t|sjt−1)/qt(s̃

j
t |ςt)

}

and sjt = s̃jt otherwise.

By construction, the transition kernel satisfies an important invariance property, which

can be established using the same steps as in Chapter 3.4.2. Write

K(yt,st−1)(st|s̃t) = ut(st|s̃t) + rt(s̃t)δs̃t(st), (7.52)

where

ut(st|s̃t) = αt(st|s̃t)qt(st|s̃t), rt(s̃t) = 1−
∫
ut(st|s̃t)dst (7.53)

One can verify the reversibility property

p(yt|s̃t)p(s̃t|st−1)ut(st|s̃t) = p(yt|st)p(st|st−1)ut(s̃t|st). (7.54)

Using the reversibility result, we obtain the following invariance property∫
K(yt,st−1)(st|s̃t)p(yt|s̃t)p(s̃t|st−1)ds̃t (7.55)

=

∫
p(yt|s̃t)p(s̃t|st−1)ut(st|s̃t)ds̃t +

∫
p(yt|s̃t)p(s̃t|st−1)rt(s̃t)δs̃t(st)ds̃t

=

∫
p(yt|st)p(st|st−1)ut(s̃t|st)ds̃t + p(yt|st)p(st|st−1)rt(st)

= p(yt|st)p(st|st−1).

The second equality follows from (7.54) and the last equality follows from the definition of

the rejection probability rt(·) in (7.53). Suppose that particle values are sampled according

to

s̃jt ∼ gt(s̃
j
t |st−1) and sjt ∼ K(yt,s

j
t−1)(s

j
t |s̃

j
t). (7.56)

Then, we obtain the following approximation:∫
st−1

∫
st

h(st)p(yt|st)p(st|st−1)p(st−1|Y1:t−1)dstdst−1 (7.57)

=

∫
st−1

∫
s̃t

∫
st

h(st)K(yt,st−1)(st|s̃t)
p(yt|s̃t)p(s̃t|st−1)

gt(s̃t|st−1)
gt(s̃t|st−1)dstds̃tdst−1

≈ 1

M

M∑
j=1

h(sjt)w̃
j
tW

j
t−1, where w̃jt =

p(yt|s̃jt)p(s̃
j
t |s

j
t−1)

gt(s̃
j
t |s

j
t−1)
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To complete the heuristic derivations for the resample-move algorithm, notice that we

can introduce a resampling step before the mutation step in which we generate draws

(ŝjt , ŝ
j
t−1) from a multinomial distribution characterized by the support points and weights{

(s̃jt , s
j
t−1), W̃ j

t

}
with W̃ j

t ∝ w̃jtW
j
t−1. Resampling before an MCMC step will always lead to

greater sample diversity than performing the steps in the other order. After the resampling

we can set the weights W j
t = 1 and draw sjt ∼ K(yt,ŝ

j
t−1)(st|ŝ

j
t), which leads to the following

approximation:∫
st−1

∫
st

h(st)p(yt|st)p(st|st−1)p(st−1|Y1:t−1)dstdst−1 ≈
1

M

M∑
j=1

h(sjt)W
j
t . (7.58)

The sequential importance sampling algorithm with resample-move step can be summarized

as follows:

Algorithm 16 (Sequential Importance Sampling with Resample-Move Step)

Replace Step 2.(d) of Algorithm 12 by:

2.(d)’ Resample-Move Step:

(i) Resample the particles via multinomial ressampling. Let {(ŝjt , ŝ
j
t−1}Ni=1 denote N

iid draws from a multinomial distribution characterized by support points and

weights
{
{(s̃jt , s

j
t−1), W̃ j

t

}
and set W j

t = 1.

(ii) Use Algorithm 15 to generate draws sjt from Markov-transition kernel K(yt,ŝ
j
t−1)(st|ŝ

j
t).

7.4.5 Auxiliary Particle Filter

The auxiliary particle filter is due to Pitt and Shephard (1999) (see also Pitt and Shephard

(2001)). The original version of the auxiliary particle filter contained two resampling steps.

However, subsequent research has shown that a single resampling step is preferable. Our

description of the algorithm follows Doucet and Johansen (2011) and has the same structure

as Algorithm 12. Let p̃(yt|st−1) be an approximation of the one-step-ahead predictive density

p(yt|st−1). The density p̃(yt|st−1) can be obtained, for instance, by iterating the state-

transition equation forward (based on the sjt−1’s and draws of εt), averaging the simulated

st’s to form an s̄jt|t and using a modified version of the measurement equation to form a

fat-tailed density p̃(yt|s̄jt|t).
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The auxiliary particle filter is based on two sets of weights. The first set of weights tracks

an auxiliary posterior distribution p̃(st−1|Y1:t) defined as

p̃(st−1|Y1:t) =
p̃(yt|st−1)p(st−1|Y1:t−1)

p̃(yt|Y1:t−1)
, (7.59)

where the auxiliary marginal data density is defined as

p̃(yt|Y1:t−1) =

∫
p̃(yt|st−1)p(st−1|Y1:t−1)dst−1. (7.60)

We will begin the derivations with the assumption that the t−1 particle swarm {sjt−1,W
j
t−1}Mj=1

approximates the auxiliary posterior distribution

1

M

M∑
j=1

h(sjt−1)W j
t−1 ≈

∫
h(st−1)p̃(st−1|Y1:t)dst−1 (7.61)

and then manipulate the particle swarm to obtain an approximation of p̃(st|Y1:t=1). A second

set of weights is introduced subsequently to approximate the posterior of interest p(st|Y1:t).

Suppose that the time t particles s̃jt are sampled from the importance density gt(s̃t|sjt−1).

Now define the incremental weights

w̃jt = p(yt|s̃jt)
p(s̃jt |s

j
t−1)

gt(s̃
j
t |s

j
t−1)

p̃(yt+1|s̃jt)
p̃(yt|s̃jt−1)

. (7.62)

These weights will replace the incremental weights in Equation (7.23) of Algorithm 12. Using

the definitions of p̃(st−1|Y1:t) and w̃jt in (7.59) and (7.62), respectively, we deduce that

1

M

M∑
j=1

h(sjt)w̃
j
tW

j
t−1 (7.63)

≈
∫ ∫

h(st)p(yt|st)
p(st|st−1)p̃(yt+1|st)
gt(st|st−1)p̃(yt|st−1)

gt(st|st−1)p̃(st−1|Y1:t)dst−1dst

=
1

p̃(yt|Y1:t−1)

∫
h(st)p(yt|st)p̃(yt+1|st)

[∫
p(st|st−1)p(st−1|Y1:t−1)dst−1

]
dst.

=
1

p̃(yt|Y1:t−1)

∫
h(st)p̃(yt+1|st)p(yt|st)p(st|Y1:t−1)dst

=
p(yt|Y1:t−1)

p̃(yt|Y1:t−1)

∫
h(st)p̃(yt+1|st)p(st|Y1:t)dst.

The first equality follows from (7.59) and the third equality utilizes Bayes Theorem to obtain

a posterior for st given (yt, Y1:t−1). The normalization factor in front of the last integral is a

nuisance, but it cancels once we take ratios. Define (this derivation ignores the distinction
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between the updated normalized weights W̃ j
t and the weights W j

t after the resampling step

in the particle filter algorithms)

W j
t =

w̃jtW
j
t−1

1
M

∑M
j=1 w̃

j
tW

j
t−1

(7.64)

and notice that

1

M

M∑
j=1

h(sjt)W
j
t ≈

∫
h(st)p̃(yt+1|st)p(st|Y1:t)dst∫
p̃(yt+1|st)p(st|Y1:t)dst

=

∫
h(st)p̃(st|Y1:t+1)dst, (7.65)

which is the time t version of (7.61).

A second set of weights is necessary, because unlike in the original Algorithm 12 the

particle swarm {sjt ,W
j
t } does not deliver approximations to the objects of interest, which

are the predictive likelihood p(yt|Y1:t−1) and p(st|Y1:t). Dividing w̃jt in (7.62) by p̃(yt+1|s̃jt)
yields the alternative weights:

w̄jt = p(yt|s̃jt)
p(s̃jt |s

j
t−1, θ)

gt(s̃
j
t |s

j
t−1, θ)

1

p̃(yt|s̃jt−1)
, W̄ j

t =
w̄jtW

j
t−1

1
M

∑M
j=1 w̄

j
tW

j
t−1

. (7.66)

Using the same steps as in (7.63) one can verify that

1

M

M∑
j=1

h(s̃jt)w̄
j
tW

j
t−1 ≈

1

p̃(yt|Y1:t−1)

∫
h(st)p(yt|st)p(st|Y1:t)dst. (7.67)

It follows immediately that the posterior of st|Y1:t can be approximated according to:∫
h(st)p(st|Y1:t)dst ≈

1

M

M∑
j=1

h(sjt)W̄
j
t . (7.68)

The factor 1/p̃(yt|Y1:t−1) cancels due to the definition of W̄ j
t in (7.66) as a ratio. The approx-

imation of the likelihood increment, on the other hand requires an estimate of p̃(yt|Y1:t−1).

Such an estimate can be obtained from:

1

M

M∑
j=1

1

p̃(yt|sjt−1)
W j
t−1 ≈

∫
1

p̃(yt|st−1)

p̃(yt|st−1)p(st−1|Y1:t−1)

p̃(yt|Y1:t−1)
dst−1 (7.69)

=
1

p̃(yt|Y1:t−1)
.

Here we used (7.59) and (7.61). Thus, we obtain

p(yt|Y1:t−1) ≈

(
1

M

M∑
j=1

w̄jtW
j
t−1

)(
1

M

M∑
j=1

1

p̃(yt|sjt−1)
W j
t−1

)−1

. (7.70)
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The potential advantage of the auxiliary particle filter is that the incremental weights w̄jt

are more stable than in Algorithms 11 and 12. *** this seems advantageous for filtering the

state, but not so much for the likelihood function - because the likelihood function requires

to average 1/p̃(yt|sjt−1). However, also notice that

w̃jt−1

p̃(yt|sjt−1)
=

p(yt−1|s̃jt−1)p(s̃jt |s
j
t−1)

p̃(yt−1|s̃jt−2)gt(s̃
j
t |s

j
t−1)

Flesh this out some more *** Consider the proposal distribution of the bootstrap filter, which

is given by gt(st|st−1) = p(st|st−1). In this case w̄jt = p(yt|s̃jt)/p̃(yt|s
j
t−1) which potentially

has much lower variance than p(yt|s̃jt). As in any importance sampling approximation, it is

important that the density p̃(yt|sjt−1) has fatter tails than p(yt|s̃jt). The auxiliary particle

filter can be summarized as follows:

Algorithm 17 (Auxiliary Particle Filter)

1. Initialization. Draw the initial particles from the distribution sj0
iid∼ p(s0) and set

w̃j0 = p̃(y1|sj0) and W j
0 = w̃j0/

1
M

∑M
j=1 w̃

j
0.

2. Recursion. For t = 1, . . . , T :

(a) Importance Sampling. Draw s̃jt from density gt(s̃t|sjt−1, θ) and compute the

incremental weights w̃jt defined in (7.62) and w̄jt in (7.66). Also compute the

normalized weights W̃ j
t ∝ w̃jt and W̄ j

t ∝ w̄jt .

(b) Forecasting yt. The predictive density p(yt|Y1:t−1, θ) can be approximated by

(7.70).

(c) Updating. An approximation of E[h(st)|Y1:t, θ] is given by (7.68).

(d) Selection. (Same as Algorithm 11)

3. Likelihood Approximation. The approximation of the log likelihood function is

given by

ln p̂(Y1:T |θ) =
T∑
t=1

[
ln

(
1

M

M∑
j=1

w̄jtW
j
t−1

)
− ln

(
1

M

M∑
j=1

1

p̃(yt|sjt−1)
W j
t−1

)]
. (7.71)
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Table 7.1: Parameter Values For Likelihood Evaluation

Parameter θm θl Parameter θm θl

τ 2.09 3.26 κ 0.98 0.89

ψ1 2.25 1.88 ψ2 0.65 0.53

ρr 0.81 0.76 ρg 0.98 0.98

ρz 0.93 0.89 r(A) 0.34 0.19

π(A) 3.16 3.29 γ(Q) 0.51 0.73

σr 0.19 0.20 σg 0.65 0.58

σz 0.24 0.29 ln p(Y |θ) -306.5 -313.4

7.5 Application to the Small-Scale New Keynesian Model

To illustrate the particle filtering techniques, we will use the bootstrap PF, the conditionally-

optimal PF, and the auxiliary PF to evaluate the likelihood function associated with the

small-scale New Keynesian DSGE model. We do so for two parameter vectors, which are

denoted by θm and θl and tabulated in Table 7.1. The value θm is chosen by searching among

the posterior draws (see Chapter 4.2) for θ for the value associated with the highest likelihood.

Note that this value is neither the posterior mode (because the mode is determined by the

product of likelihood and prior) nor necessarily the maximum of the likelihood function

(because the posterior sampler does not necessarily visit the area of the parameter space

in which the likelihood function is maximized). The log likelihood at θm is -306.49. The

second parameter value θl is associated with a lower log likelihood value of -313.36. To put

the likelihood differentials into perspective, twice the log likelihood differential, 13.8, can be

compared to the 5% χ2 critical value for the hypothesis θ = θm versus θ = θl is 22.4. Thus,

while the data prefer θm, they do not provide overwhelming evidence against θm.

The particle filters generate approximations of the period t contribution of the likelihood

function, p̂(yt|Y1:t−1, θ) and the distribution of the filtered states, p̂(st|Y1:t, θ). Because we are

using the linearized version of the small-scale DSGE model, we can compare the approxima-

tions p̂(·) to the exact densities p(·) obtained from the Kalman filter. We begin with a single

run of the filters over the estimation period 1983:I to 2002:IV and compare the output of the

Kalman filter, the bootstrap PF, and the conditionally-optimal PF. To facilitate the use of

particle filters we augment the measurement equation of the DSGE model by independent

measurement errors, whose standard deviations we set to be 20% of the standard deviation
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Figure 7.1: Likelihood Approximation and Filtered State
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Notes: The results depicted in the figure are based on a single run of the bootstrap PF, the

conditionally-optimal PF, and the Kalman filter.

of the observables.2 We use 40,000 particles for the bootstrap PF and 400 particles for the

conditionally-optimal PF.

Throughout this chapter, the bootstrap PF can be viewed as providing a lower bound

on the accuracy of particle-filter-based likelihood approximation, because this filter can eas-

ily be implemented in DSGE model applications provided that the measurement equation

contains measurement errors. The conditionally-optimal filter typically not implementable

for nonlinear DSGE models, but an approximate version that utilizes some other nonlinear

filter to generate the proposal distribution may be implementable. Thus, we view it as a

realistic upper bound on the accuracy that can be achieved with particle filters in DSGE

model applications.

Figure 7.1 depicts the sequence of log-likelihood increments as well as the mean E[ĝt|Y1:t],

where ĝt is the exogenous government spending in percentage deviations from its steady

state. The log-likelihood approximation generated by the conditionally-optimal PF is vi-

sually indistinguishable from the exact log-likelihood. The bootstrap PF approximation

deviates from the actual log likelihood more strongly, in particular in periods in which the

likelihood is low, e.g., around 1986 and 1991. The results for the filtered demand shock are

similar: the approximation of E[gt|Y1:t, θ
m] obtained from the conditionally-optimal PF is

fairly accurate, whereas there is a substantial discrepancy between the estimated path of ĝt

2The measurement error standard deviations are 0.1160 for output growth, 0.2942 for inflation, and 0.4476

for the interest rates
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Figure 7.2: Distribution of Log-Likelihood Approximation Errors
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Notes: Density estimate of ∆̂1 = ln p̂(Y |θ)− ln p(Y |θ) based on 100 runs of the PF.

produced by the Kalman filter and the bootstrap PF. A gap of about 2 percentages opens

up in 1991, at the same time when the log likelihood drops below -10. Due to the persistence

in the ĝt process (ρg = 0.98), the gap does not close for the remainder of the sample.

To assess the accuracy of the particle filter approximation of the likelihood function we

will now run the filters repeatedly and examine the sampling properties of the discrepancy

∆̂1 = ln p̂(Y1:T |θ)− ln p(Y1:θ). (7.72)

The results are depicted in Figure 7.2. The left panel compares the accuracy of the bootstrap

filter for θm and θl. Conditional on θm most of the simulated values for ∆̂1 fall in the

range from -8 to 5 log-likelihood units. At θl the dispersion of ∆̂1 is much larger and

more skewed toward the left, encompassing values from -20 to 5. The deterioration of fit

is associated with a deterioration in the approximation accuracy. This is not surprising

because the bootstrap PF generates proposal draws for st through forward simulation of the

state-transition equation. The worse the fit of the model, the greater the mismatch between

the proposal distribution and the target posterior distribution of st.

The right panel of Figure 7.2 compares the distribution of ∆̂1 for the bootstrap and the

conditionally-optimal PF. The latter is a lot more precise than the former and the empirical

distribution of ∆̂1 is tightly centered around zero. The biases and standard deviations of ∆̂1

for the two filters are summarized in Table 7.2. Conditional on θm, the standard deviation

of ∆̂1 is about six times larger for the bootstrap PF than for the conditionally-optimal PF.

Changing the parameter to θl increases the standard deviation by a factor of 2.3 (1.4) for the
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Table 7.2: Summary Statistics for Particle Filters

Bootstrap Cond. Opt. Auxiliary

Number of Particles M 40,000 400 40,000

Number of Repetitions 100 100 100

High Posterior Density: θ = θm

Bias ∆̂1 -1.39 -0.10 -2.83

StdD ∆̂1 2.03 0.37 1.87

Bias ∆̂2 0.32 -0.03 -0.74

Low Posterior Density: θ = θl

Bias ∆̂1 -7.01 -0.11 -6.44

StdD ∆̂1 4.68 0.44 4.19

Bias ∆̂2 -0.70 -0.02 -0.50

Notes: The likelihood discrepancies ∆̂1 and ∆̂2 are defined in (7.72) and (7.73).

bootstrap PF (conditionally-optimal PF). Thus, the bootstrap PF is much more sensitive to

the fit of the model specification that the conditionally-optimal PF.

As an alternative to the bootstrap PF and the conditionally-optimal PF we also consider

the auxiliary PF. The distribution of log-likelihood approximation errors ∆̂1 is plotted in

Figure 7.3. Visually, results from the auxiliary PF and the bootstrap PF are very similar.

For θm the downward bias is a bit more pronounced for the auxiliary PF, whereas for θl the

distribution of ∆̂1 is less skewed to the left. The last column of Table 7.2 reports sample

moments for ∆̂1 and ∆̂2. While the auxiliary PF is able to reduce the variability of the

log likelihood discrepancies, the small-sample bias for ∆̂1 increases by a factor of 2 for θm

compared to the bootstrap PF.

In Chapters 8 and 9 we will embed a particle filter into a posterior sampler. This is nec-

essary to implement posterior inference for a nonlinear DSGE model. The key requirement

for such algorithms to generate draws that can be used to consistently approximate mo-

ments and quantiles of the posterior distribution of θ based on a finite number of particles

M is that the particle filter generates an unbiased approximation of the likelihood function

p(Y1:T |θ) and its increments p(yt|Y1:t−1, θ). While particle filter likelihood approximations are

unbiased in theory, in practice the sampling distribution of the approximation may be highly
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Figure 7.3: Distribution of Log-Likelihood Approximation Errors
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skewed and fat-tailed, such that finite sample averages across a modest number of repetitions

may appear biased. This may translate into slow convergence (or failure of convergence) of

posterior samplers that rely on particle filter approximations.

In Figure 7.2 we focused on the distribution of the log likelihood approximation ln p̂(Y1:T |θ)
and it is quite apparent that it provides a downward-biased estimate of ln p(Y1:T |θ). The

negative bias is expected from Jensen’s inequality if the approximation of the likelihood

function is unbiased, because the logarithmic transformation is concave. Assessing the bias

of p̂(Y1:T |θ) is numerically delicate because exponentiating a log-likelihood value of around

-300 leads to a missing value. Instead, we will consider the following statistic:

∆̂2 =
p̂(Y1:T |θ)
p(Y1:T |θ)

− 1 = exp[ln p̂(Y1:T |θ)− ln p(Y1:T |θ)]− 1. (7.73)

The computation of ∆̂2 requires us to exponentiate the difference in log-likelihood values,

which is feasible of the particle filter approximation is reasonably accurate. If the particle

filter approximation is unbiased, then the sampling mean of ∆̂2 is equal to zero.

By construction, ∆̂2 is bounded below by -1. The right panel of Figure 7.2 suggests that

for the bootstrap PF, we expect the distribution of ∆̂2 to have significant mass near -1 (note

that exp[−5] ≈ 0.007) and a long right tail (exp[3] ≈ 20). Table 7.2 reports the means

of ∆̂2 across 100 repetitions: for the conditionally-optimal PF the means given θm and θl

are essentially zero. For the bootstrap PF the mean is close zero conditional on θm, but

substantially below zero for θl. The auxiliary PF is not able to reduce the small-sample bias

of ∆̂2 compared to the bootstrap PF. In fact, at θm the bias of the auxiliary PF is more than

twice as large (in absolute terms) as the bias of the bootstrap filter.
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Figure 7.4: Particle Filtering During the Great Recession and Beyond
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By construction, the accuracy of the bootstrap PF is very sensitive to outliers in the

observations. To the extent that outliers are unlikely under the entertained DSGE model,

the forward simulation of the state vector is unlikely to yield many proposed states s̃jt that

can rationalize the observation yt. This leads to an uneven distribution of particle weights

and inaccurate Monte Carlo approximations. The recent Great Recession in 2008-09 was

a large outlier from the perspective of DSGE models (as well as other popular time series

models). Holding the parameter values θm and θl fixed, we now run the filters on the sample

2003:I to 2013:IV. Results are depicted in Figure 7.4.

The top left panel of Figure 7.4 depicts the sequence of log-likelihood increments. In

2008:IV, which is when output growth collapsed, the log-likelihood increment is substantially

lower than in any other period. The conditionally-optimal PF still does well in tracking the

actual likelihood, whereas the bootstrap PF approximation becomes highly inaccurate. The
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bootstrap PF underestimates the likelihood increment by about 250 units on a log scale.

Interestingly, the bootstrap PF recovers fairly quickly in subsequent periods. The top right

panel depicts 90% bands for the approximations of the likelihood increments across the 100

repetitions. The width of the band for the bootstrap PF is generally less on 1 unit on the log

scale. The bottom panel shows the log standard deviation of the log-likelihood increments.

For the conditionally-optimal PF the log standard deviation stays fairly stable over time,

though there appears to be a slight increase after 2008. For the bootstrap PF, the standard

deviations are generally larger than for the conditionally-optimal PF and there is a large

spike in 2008:Q4.

7.6 Application to the SW Model

Our second application of the particle filter considers the SW model. From a computational

perspective, the SW model differs from the small-scale DSGE model in terms of the number

of observables used in the estimation and with respect to the number of latent state variables.

For the estimation of the small-scale New Keynesian model we used three observables and

the model has one endogenous state variable and three exogenous shocks. The SW model

is estimated based on seven variables and it has more than a dozen state variables. We

will examine the extent to which the increased model size leads to a deterioration of the

accuracy of the particle filter approximation. The large state space makes it more difficult

to accurately integrate out the hidden state-variables with the filter, and the relatively large

number of observables creates a potential for model misspecification, which in turn may

lead to a deterioration of the bootstrap PF. Recall that the bootstrap PF is sensitive to the

accuracy of forecasts of yt based on the distribution st−1|Y1:t−1.

As in the previous section, we compute the particle filter approximations conditional on

two sets of parameter values, θm and θl, which are summarized in Table 7.3. θm is the

parameter vector associated with the highest likelihood value among the draws that we

previously generated with our posterior sampler. θl is a parameter vector that attains a

lower likelihood value. The log likelihood difference between the two parameter vectors is

approximately 13. The standard deviations of the measurement errors are chosen to be

approximately 20% of the sample standard deviation of the time series.3 We run the filter

3The standard deviations for the measurement errors are: 0.1731 (output growth), 0.1394 (consumption

growth), 0.4515 (investment growth), 0.1128 (wage growth), 0.5838 (log hours), 0.1230 (inflation), 0.1653

(interest rates).
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Table 7.3: Parameter Values For Likelihood Evaluation

Parameter θm θl Parameter θm θl

100(β−1 − 1) 0.159 0.182 π̄ 0.774 0.571

l̄ -1.078 0.019 α 0.181 0.230

σ 1.016 1.166 Φ 1.342 1.455

ϕ 6.625 4.065 h 0.597 0.511

ξw 0.752 0.647 σl 2.736 1.217

ξp 0.861 0.807 ιw 0.259 0.452

ιp 0.463 0.494 ψ 0.837 0.828

rπ 1.769 1.827 ρ 0.855 0.836

ry 0.090 0.069 r∆y 0.168 0.156

ρa 0.982 0.962 ρb 0.868 0.849

ρg 0.962 0.947 ρi 0.702 0.723

ρr 0.414 0.497 ρp 0.782 0.831

ρw 0.971 0.968 ρga 0.450 0.565

µp 0.673 0.741 µw 0.892 0.871

σa 0.375 0.418 σb 0.073 0.075

σg 0.428 0.444 σi 0.350 0.358

σr 0.144 0.131 σp 0.101 0.117

σw 0.311 0.382 ln p(Y |θ) -943.00 -956.06

over the period 1966:Q1 to 2004:Q4.

Figure 7.5 depicts density plots of the log likelihood discrepancy ∆̂1 for the bootstrap PF

and the conditionally-optimal PF. A comparison to Figure 7.2 highlights that the accuracy

of the PF deteriorates substantially by moving from a small-scale DSGE model to a medium-

scale DSGE model. The results depicted in the top row of Figure 7.5 are based on 40,000

particles for the bootstrap particle filter, which is the same number of particles used for the

small-scale DSGE model. According to Table 7.4, the bias of ∆̂1 at θm is -238.49 and the

standard deviation is 68.28. The corresponding sample moments obtained for the small-scale

model are -1.39 and 2.03.

Increasing the number of particles from 40,000 to 400,000 improves the accuracy of the filter

somewhat as shown in the bottom row of Figure 7.5, but also increases the computational
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Figure 7.5: Bias of Likelihood Approximation
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Notes: Density estimate of ∆̂1 = ln p̂(Y |θ) − ln p(Y |θ). (1,1) θm: BS-PF (40,000) versus

CO-PF (4,000); (1,2) θl: BS-PF (40,000) versus CO-PF (4,000); (2,1) θm: BS-PF (400,000)

versus CO-PF (4,000); (2,2) θl: BS-PF (400,000) versus CO-PF (4,000).

time. For the conditionally-optimal PF we used 4,000 particles which is 10 times more than

for the small-scale DSGE model. Compared to the bootstrap PF, there is a substantial gain

from using the refined proposal distribution. According to Table 7.4 the small-sample bias

of ∆̂1 drops by more than a factor of 20 and the standard deviation is reduced by more than

a factor of 15 relative to the bootstrap PF with 40,000 particles. Unlike for the small-scale

DSGE model, the likelihood approximation of the conditionally-optimal PF appears to be

biased in the small sample: the means of ∆̂2 are -0.87 and -0.97 for θm and θl, respectively.

The left panel of Figure 7.6 plots the filtered exogenous shock process ĝt from a single

run of the Kalman filter, the bootstrap PF, and the conditionally-optimal PF. In the first

half of the sample, the conditionally-optimal PF tracks E[ĝt|Y1:t] very closely. In the early

1980s a gap between the conditionally-optimal PF approximation and the true mean of ĝt

opens up and for a period of about 40 quarters, the bootstrap PF approximation follows the
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Table 7.4: Summary Statistics for Particle Filters, SW Model

Bootstrap Cond. Opt.

Number of Particles M 40,000 400,000 4,000 40,000

Number of Repetitions 100 100 100 100

High Posterior Density: θ = θm

Bias ∆̂1 -238.49 -118.20 -8.55 -2.88

StdD ∆̂1 68.28 35.69 4.43 2.49

Bias ∆̂2 -1.00 -1.00 -0.87 -0.41

Low Posterior Density: θ = θl

Bias ∆̂1 -253.89 -128.13 -11.48 -4.91

StdD ∆̂1 65.57 41.25 4.98 2.75

Bias ∆̂2 -1.00 -1.00 -0.97 -0.64

Notes: The likelihood discrepancies ∆̂1 and ∆̂2 are defined in (7.72) and (7.73).

path of E[ĝt|Y1:t] more closely. The right panel of the figure shows the standard deviation of

the two particle filter approximations across 100 repetitions. The conditionally-optimal PF

produces a more accurate approximation than the bootstrap PF, but both approximations

are associated with considerable variability. For the conditionally-optimal PF, the smallest

value of the standard deviation of Ê[ĝt|Y1:t] is 0.4 and the largest value is 1.4

7.7 Computational Considerations

The illustrations in Sections 7.5 and 7.6 highlighted that a careful specification of the pro-

posal distribution in the SISR Algorithm 12 is very important. Because of the ease of

implementation, the results for the bootstrap PF provide a lower bound on the accuracy

of particle filter approximations for DSGE model likelihood functions, whereas the results

from the conditionally-optimal PF provide an upper bound, that in applications with non-

linear DSGE models will be unattainable. As discussed in Section 7.4.2, an approximate

conditionally-optimal filter could be obtained by using an extended Kalman filter or an un-

scented Kalman filter to construct an efficient proposal distribution. If the nonlinearities

in the DSGE model are mild, then a Kalman filter updating step applied to a linearized
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Figure 7.6: Filtered ĝt
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version of the DSGE model could be used to obtain a good proposal distribution. While the

computation of efficient proposal distribution requires additional time, it makes it possible

to reduce the number of particles, which can speed up the particle filter considerably.

While it is possible to parallelize the forecasting steps of the particle filter algorithms, a

massive parallelization is difficult because of the high communication costs in the subsequent

updating and selection steps. In fact the speed of the resampling routine may become the

biggest bottleneck and it is important to use a fast routine, e.g., stratified resampling. DSGE

model solutions often generate redundant state variables. In high-dimensional systems it is

useful to reduce the dimension of the state vector to its minimum. This reduces the memory

requirements to store the particles and it avoids numerical difficulties that may arise from

singularities in the distribution of the states.
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Chapter 8

Combining Particle Filters with MH

Samplers

We previously focused on the particle-filter approximation of the likelihood function of a po-

tentially nonlinear DSGE model. In order to conduct Bayesian inference, the approximate

likelihood function has to be embedded into a posterior sampler. We begin by combining

the particle filtering methods of Chapter 7 with the MCMC methods of Chapter 4. In a nut-

shell, we replace the actual likelihood functions that appear in the formula for the acceptance

probability α(ϑ|θi−1) in Algorithm 4 by particle filter approximations p̂(Y |θ). This idea was

first proposed for the estimation of nonlinear DSGE models by Fernández-Villaverde and

Rubio-Ramı́rez (2007). We refer to the resulting algorithm as PFMH algorithm. It is a spe-

cial case of a larger class of algorithms called particle Markov chain Monte Carlo (PMCMC).

The theoretical properties of PMCMC methods were established in Andrieu, Doucet, and

Holenstein (2010). Applications of PF-MH algorithms in other areas of econometrics are

discussed in Flury and Shephard (2011).

8.1 The PFMH Algorithm

The statistical theory underlying the PFMH algorithm is very complex and beyond the scope

of this book. We refer the interested reader to Andrieu, Doucet, and Holenstein (2010) for a

careful exposition. Below we will sketch the main idea behind the algorithm. The exposition

is based on Flury and Shephard (2011). We will distinguish between {p(Y |θ), p(θ|Y ), p(Y )}
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and {p̂(Y |θ), p(θ|Y ), p(Y )}. The first triplet consists of the exact likelihood function p(Y |θ)
and the resulting posterior distribution and marginal data density defined as

p(θ|Y ) =
p(Y |θ)p(θ)
p(Y )

, p(Y ) =

∫
p(Y |θ)p(θ)dθ. (8.1)

The second triplet consists of the particle filter approximation of the likelihood function

denoted by p̂(Y |θ) and the resulting posterior and marginal data density:

p̂(θ|Y ) =
p̂(Y |θ)p(θ)
p̂(Y )

, p̂(Y ) =

∫
p̂(Y |θ)p(θ)dθ. (8.2)

By replacing the exact likelihood function p(θ|Y ) with the particle filter approximation

p̂(Y |θ) in Algorithm 4 one might expect to obtain draws from the approximate posterior

p̂(θ|Y ) instead of the exact posterior p(θ|Y ). The surprising implication of the theory devel-

oped in Andrieu, Doucet, and Holenstein (2010) is that the distribution of draws from the

PFMH algorithm that replaces p(Y |θ) by p̂(Y |θ) in fact does converge to the exact posterior.

The algorithm takes the following form:

Algorithm 18 (PFMH Algorithm) For i = 1 to N :

1. Draw ϑ from a density q(ϑ|θi−1).

2. Set θi = ϑ with probability

α(ϑ|θi−1) = min

{
1,

p̂(Y |ϑ)p(ϑ)/q(ϑ|θi−1)

p̂(Y |θj−1)p(θi−1)/q(θi−1|ϑ)

}
and θi = θi−1 otherwise. The likelihood approximation p̂(Y |ϑ) is computed using Algo-

rithm 12.

Any of the particle filters described in Chapter 7 could be used in the PFMH algorithm.

For concreteness, we used the SISR filter described in Algorithm 12. At each iteration the

filter generates draws s̃jt from the proposal distribution gt(·). Let S̃t =
(
s̃1
t , . . . , s̃

M
t

)′
and

denote the entire sequence of draws by S̃1:M
1:T . In the selection step we are using multinomial

resampling to determine the ancestor for each particle in the next iteration. Thus, we can

define a random variable Ajt that contains this ancestry information. For instance, suppose

that during the resampling particle j = 1 was assigned the value s̃10
t then A1

t = 10. Note

that the Ajt ’s are random variables whose values are determined during the selection step.

Let At =
(
A1
t , . . . , A

N
t

)
and use A1:T to denote the sequence of At’s.
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The PFMH algorithm operates on a probability space that includes the parameter vector θ

as well as S̃1:T and A1:T . We use U1:T to denote the sequence of random vectors that are used

to generate S̃1:T and A1:T . U1:T can be thought of as an array of iid uniform random numbers.

The transformation of U1:T into (S̃1:T , A1:T ) typically depends of θ and Y1:T because the

proposal distribution gt(s̃t|sjt−1) in Algorithm 12 depends both on the current observation yt

as well as the parameter vector θ which enters measurement and state-transitions equations,

see (7.1).

For concreteness, consider the conditionally-optimal particle filter for a linear state-space

model described in Chapter 7.4.1. Implementation of this filter requires sampling from a

N(s̄jt|t, Pt|t) distribution for each particle j. The mean of this distribution depends on yt

and both mean and covariance matrix depend on θ through the system matrices of the

state-space representation 7.2. Draws from this distribution can in principle be obtained, by

sampling iid uniform random variates, using a probability integral transform to convert them

into iid draws from a standard normal distribution, and then converting them into draws

from a N(s̄ft|t, Pt|t). Likewise, in the selection step, the multinomial resampling could be

implemented based on draws from iid uniform random variables. Therefore, we can express

the particle filter approximation of the likelihood function as

p̂(Y1:T |θ) = g(Y1:T |θ, U1:T ). (8.3)

where

U1:T ∼ p(U1:T ) =
T∏
t=1

p(Ut). (8.4)

The PFMH algorithm can be interpreted as operating on an enlarged probability space for

the (Y1:T , θ, U1:T ). Define the joint distribution

pg
(
Y1:T , θ, U1:T

)
= g(Y1:T |θ, U1:T )p

(
U1:T

)
p(θ). (8.5)

The PFMH algorithm samples from the joint posterior

pg
(
θ, U1:T |Y1:T

)
∝ g(Y |θ, U1:T )p

(
U1:T

)
p(θ) (8.6)

and discards the draws of
(
U1:T

)
. For this procedure to be valid, it has to be the case

that marginalizing the joint posterior pg
(
θ, U1:T |Y1:T

)
with respect to

(
U1:T

)
yields the exact

posterior p(θ|Y1:T ). In other words, we require that the particle filter produces an unbiased

simulation approximation of the likelihood function for all values of θ:

E[p̂(Y1:T |θ)] =

∫
g(Y1:T |θ, U1:T )p

(
U1:T

)
dθ = p(Y1:T |θ). (8.7)
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Del Moral (2004) has shown that particle filters indeed deliver unbiased estimates of the

likelihood function.

It turns out that the acceptance probability for the MH algorithm that operates on the

enlarged probability space can be directly expressed in terms of the particle filter approx-

imation p̂(Y1:T |θ). Omitting the 1 : T subscript from Y and U , the proposal distribution

for (ϑ, U∗1:T ) in the MH algorithm is given by q(ϑ|θ(i−1))p(U∗1:T ) but there is no need to keep

track of the draws (U∗1:T ). The acceptance ratio for Algorithm 18 can be written as follows.

α(ϑ|θi−1) = min

1,

g(Y |ϑ,U∗)p(U∗)p(ϑ)

q(ϑ|θ(i−1))p(U∗)

g(Y |θ(i−1),U(i−1))p(U(i−1))p(θ(i−1))

q(θ(i−1)|θ∗)p(U(i−1))

 (8.8)

= min

{
1,

p̂(Y |ϑ)p(ϑ)
/
q(ϑ|θ(i−1))

p̂(Y |θ(i−1))p(θ(i−1))
/
q(θ(i−1)|ϑ)

}
.

The terms p(U∗) and p(U (i−1)) cancel from the expression in the first line of (8.8) and it

suffices to keep track of the particle filter likelihood approximations p̂(Y |ϑ) and p̂(Y |θ(i−1)).

8.2 Application to the Small-Scale New Keynesian Model

We now apply the PFMH algorithm to the small-scale New Keynesian model, which is es-

timated over the period 1983:I to 2002:IV. We use the 1-block RWMH-V algorithm and

combine it with the Kalman filter, the bootstrap PF, and the conditionally optimal PF.

According to the theory sketched in the previous section the PFMH algorithm should accu-

rately approximate the posterior distribution of the DSGE model parameters. Our results

are based on 20 runs of each algorithm. In each run we generate 100,000 posterior draws

and discard the first 50,000. As in Chapter 7.5, we use 40,000 particles for the bootstrap

filter and 400 particles for the conditionally-optimal filter. A single run of the RWMH-V

algorithm takes 1:30 minutes with the Kalman filter, approximately 40 minutes with the

conditionally-optimal PF, and approximately 1 day with the bootstrap PF.

The results are summarized in Table 8.2. Most notably, despite the inaccurate likelihood

approximation of the bootstrap PF documented in Chapter 7.5, the PFMH works remark-

ably well. Columns 2 to 4 of the table report posterior means which are computed by pooling

the draws generated by the 20 runs of the algorithms. Except for some minor discrepancies

in the posterior mean for τ and r(A), which are parameters with a high posterior variance,

the posterior mean approximations are essentially identical for all three likelihood evaluation
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Table 8.1: Accuracy of MH Approximations

Posterior Mean (Pooled) 5th and 95th Percentiles (Pooled) Std Dev of Means

KF CO-PF BS-PF KF CO-PF BS-PF KF CO-PF BS-PF

τ 2.64 2.63 2.68 [ 1.80, 3.60] [ 1.79, 3.60] [ 1.85, 3.71] 0.015 0.017 0.157

κ 0.82 0.82 0.83 [ 0.56, 0.99] [ 0.56, 0.99] [ 0.59, 0.99] 0.006 0.004 0.037

ψ1 1.87 1.87 1.87 [ 1.50, 2.28] [ 1.50, 2.28] [ 1.49, 2.28] 0.009 0.01 0.085

ψ2 0.64 0.64 0.64 [ 0.23, 1.22] [ 0.23, 1.20] [ 0.23, 1.16] 0.01 0.006 0.068

ρr 0.75 0.75 0.75 [ 0.68, 0.81] [ 0.68, 0.81] [ 0.68, 0.80] 0.001 0.001 0.012

ρg 0.98 0.98 0.98 [ 0.95, 1.00] [ 0.96, 1.00] [ 0.96, 1.00] 0.001 0 0.005

ρz 0.88 0.88 0.88 [ 0.83, 0.92] [ 0.83, 0.92] [ 0.83, 0.92] 0.001 0.001 0.007

r(A) 0.44 0.44 0.46 [ 0.05, 0.99] [ 0.05, 0.98] [ 0.06, 0.98] 0.012 0.01 0.092

π(A) 3.32 3.33 3.31 [ 2.81, 3.82] [ 2.82, 3.82] [ 2.81, 3.80] 0.013 0.011 0.09

γ(Q) 0.59 0.59 0.59 [ 0.36, 0.81] [ 0.37, 0.81] [ 0.37, 0.82] 0.005 0.005 0.035

σr 0.24 0.24 0.24 [ 0.20, 0.29] [ 0.20, 0.29] [ 0.20, 0.29] 0.001 0.001 0.008

σg 0.68 0.68 0.68 [ 0.58, 0.79] [ 0.58, 0.79] [ 0.58, 0.79] 0.002 0.001 0.017

σz 0.32 0.32 0.32 [ 0.27, 0.38] [ 0.27, 0.38] [ 0.27, 0.38] 0.001 0.001 0.01

ln p̂(Y ) -357.10 -357.11 -361.58 0.033 0.026 1.776

Notes: Results are based on 20 runs of the PF-RWMH-V algorithm. Each run of the

algorithm generates 100,000 draws and the first 50,000 are discarded. The likelihood function

is computed with the Kalman filter (KF), bootstrap particle filter (BS-PF) or conditionally-

optimal particle filter (CO-PF). “Pooled” means that we are pooling the draws from the 20

runs to compute posterior statistics. The BS-PF uses 40,000 particles, whereas the CO-PF

uses 400 particles.

methods. There is slightly more variation in the estimated quantiles of the posterior distribu-

tion, but overall the three algorithms are in agreement. The last three columns of Table 8.2

contain the standard deviations of the posterior mean estimates across the 20 runs. Not

surprisingly, the posterior sampler that is based on the bootstrap PF is the least accurate.

The standard deviations are 2 to 4 times as large as for the samplers that utilize either the

Kalman filter or the conditionally-optimal PF. As stressed in Section 8.1 the most important

requirement for PFMH algorithms is that the particle filter approximation is unbiased – it

does not have to be exact.
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8.3 Application to the SW Model

We now use the PF-RWMH-V algorithm to estimate the SW model. Unlike in Chapter 6.2,

where we used a more diffuse prior distribution to estimate the SW model, we now revert back

to the prior originally specified by Smets and Wouters (2007). This prior is summarize in

Table A-2 in the Appendix. As shown in Herbst and Schorfheide (2014), under the original

prior distribution the RWMH algorithm is much better behaved than under our diffuse

prior, because it leads to a posterior distribution that does not exhibit multiple modes. The

estimation sample is 1966:I to 2004:IV. Using the RWMH-V algorithm, we estimate the

model posteriors using the Kalman Filter and the conditionally-optimal PF.

The results are summarized in Table 8.2. Due to the computational complexity of the

PF-RWMH-V algorithm, the results reported in the table are based on 10,000 instead of

100,000 draws from the posterior distribution. We used the conditionally-optimal PF with

40,000 particles and a single-block RWMH-V algorithm in which we scaled the posterior

covariance matrix that served as covariance matrix of the proposal distribution by c2 = 0.252

for the KF and c2 = 0.052 for the conditionally-optimal PF. This leads to acceptance rates

of 33% for the KF and 24% for the PF. In our experience, the noisy approximation of

the likelihood function through the PF makes it necessary to reduce the variance of the

proposal distribution to maintain a targeted acceptance rate. In the SW application the

proposed moves using the PF approximation are about five times smaller than under the

exact KF likelihood function. This increases the persistence of the Markov chain and leads

to a reduction in accuracy. Because of the difference in precision of PF approximations at

different points in the parameter space, the RWMH-V acceptance rates will vary much more

across chains. For example, the standard deviation of the acceptance rate for the CO-PF

PMCMC is 0.09, about ten times larger than for the KF runs.

While the pooled posterior means using the KF and the conditionally-optimal PF reported

in Table 8.2 are very similar, the standard deviation of the means across runs is three to

five times larger if the PF approximation of the likelihood function is used. Because the

PF approximation of the log likelihood function is downward-biased the log marginal date

density approximation obtained with the PF is much smaller than the one obtained with the

KF.

Reducing the number of particles for the conditionally-optimal PF to 4,000 or switching

to the bootstrap OF with 40,000 or 400,000 particles was not successful in the sense that the

acceptance rate quickly dropped to zero. Reducing the variance of the proposal distribution
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did not solve the problem because to obtain a nontrivial acceptance rate the step-size had to

be so small that the sampler would not be able to traverse the high posterior density region of

the parameter space in a reasonable amount of time. In view of the accuracy of the likelihood

approximation reported in Table 7.4 this is not surprising. The PF approximations are highly

volatile and even though the PF approximation is unbiased in theory, finite sample averages

appear to be severely biased. In a nutshell, if the variation in the likelihood conditional on

a particular value of θ is much larger than the variation that we observe along a Markov

chain (evaluating the likelihood for the sequence θi, i = 1, . . . , N) that is generated by using

the exact likelihood function, the sampler easily gets stuck. Once the PF has generated

a positive outlier estimate of p(Y |θ) is obtained, it becomes extremely difficult to move to

a nearby θ because most of the PF evaluations underestimate p(Y |θ) and θ close to one

another are unlikely to differ in likelihood by much.

8.4 Computational Considerations

We implement the PFMH algorithm on a single machine, utilizing up to twelve cores. Ef-

ficient parallelization of the algorithm is difficult, because it is challenging to parallelize

MCMC algorithms and it is not profitable to use distributed memory parallelization for

the filter. For the small-scale DSGE model it takes (HH:MM:SS) 30:20:33 hours to gen-

erate 100,000 parameter draws using the bootstrap PF with 40,000 particles. Under the

conditionally-optimal filter we only use 400 particles, which reduces the run time to 00:39:20

minutes. Thus, with the conditionally-optimal filter, the PFMH algorithm runs about 50

times faster and delivers highly accurate approximations of the posterior means. For the SW

model the computational time is substantially larger. It took 05:14:20:00 (DD:HH:MM:SS)

days to generate 10,000 draws using the conditionally-optimal PF with 40,000 particles.

In practical applications with nonlinear DSGE models the conditionally-optimal PF that

we used in our numerical illustrations is typically not available and has to be replaced by

one of the other filters, possibly an approximately conditionally-optimal PF. Having a good

understanding of the accuracy of the PF approximation is crucial. Thus, we recommend to

assess the variance of the likelihood approximation at various points in the parameter space

as we did in Chapters 7.5 and 7.6 and to tailor the filter until it is reasonably accurate.

To put the accuracy of the filter approximation into perspective, one could compare it to

the variation in the likelihood function of a linearized DSGE model fitted to the same data,

along a sequence of posterior draws θi. If the variation in the likelihood function due to the
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PF approximation is larger than the variation generated by moving through the parameter

space, the PF-MH algorithm is unlikely to produce reliable results.

In general, likelihood evaluations for nonlinear DSGE models are computationally very

costly. Rather than spending computational resources on tailoring the proposal density for

the PF to reduce the number of particles, one can also try to lower the number of likelihood

evaluations in the MH algorithm. Smith (2012) developed a PFMH algorithm based on

surrogate transitions. In a nutshell the algorithm proceeds as follows. Instead of evaluating

the posterior density (and thereby the DSGE model likelihood function) for every proposal

draw ϑ, one first evaluates the likelihood function for an approximate model, e.g., a linearized

DSGE model, or an uses a fast approximate filter, e.g., an extended Kalman filter, to obtain

a likelihood value for the nonlinear model. Using the surrogate likelihood, one can compute

the acceptance probability α. For ϑ’s rejected in this step, one never has to execute the time-

consuming PF computations. If the proposed draw ϑ is accepted in the first stage, then a

second randomization that requires the evaluation of the actual likelihood is necessary to

determine whether θi = ϑ or θi = θi−1. If the surrogate transition is well tailored, then the

acceptance probability in the second step is high and the overall algorithm accelerates the

posterior sampler by reducing the number of likelihood evaluations for poor proposals ϑ.



165

Table 8.2: Accuracy of MH Approximations

Posterior Mean (Pooled) 5th and 95th Percentiles (Pooled) Std Dev of Means

KF CO-PF KF CO-PF KF CO-PF

(100β−1 − 1) 0.14 0.15 [ 0.06, 0.23] [ 0.06, 0.24] 0.014 0.047

π̄ 0.73 0.74 [ 0.56, 0.93] [ 0.60, 0.92] 0.026 0.082

l̄ 0.44 0.38 [-0.97, 1.89] [-0.81, 1.62] 0.177 0.607

α 0.19 0.20 [ 0.17, 0.23] [ 0.17, 0.22] 0.004 0.013

σc 1.49 1.43 [ 1.29, 1.70] [ 1.25, 1.65] 0.019 0.099

Φ 1.47 1.45 [ 1.35, 1.60] [ 1.32, 1.57] 0.014 0.064

ϕ 5.31 5.24 [ 3.79, 7.12] [ 3.95, 6.77] 0.164 0.729

h 0.70 0.72 [ 0.63, 0.77] [ 0.66, 0.77] 0.008 0.030

ξw 0.74 0.75 [ 0.64, 0.83] [ 0.68, 0.83] 0.013 0.032

σl 2.27 2.24 [ 1.25, 3.39] [ 1.39, 3.33] 0.128 0.488

ξp 0.71 0.71 [ 0.61, 0.80] [ 0.61, 0.80] 0.014 0.051

ιw 0.54 0.54 [ 0.38, 0.69] [ 0.38, 0.72] 0.015 0.095

ιp 0.48 0.51 [ 0.32, 0.64] [ 0.35, 0.65] 0.016 0.092

ψ 0.46 0.44 [ 0.27, 0.66] [ 0.26, 0.59] 0.024 0.085

rπ 2.10 2.05 [ 1.80, 2.39] [ 1.80, 2.29] 0.030 0.125

ρ 0.80 0.80 [ 0.75, 0.85] [ 0.76, 0.85] 0.007 0.021

ry 0.13 0.12 [ 0.08, 0.18] [ 0.08, 0.18] 0.008 0.024

r∆y 0.21 0.22 [ 0.17, 0.26] [ 0.17, 0.26] 0.006 0.024

ρa 0.96 0.96 [ 0.94, 0.98] [ 0.94, 0.97] 0.003 0.009

ρb 0.21 0.21 [ 0.07, 0.37] [ 0.07, 0.37] 0.023 0.082

ρg 0.97 0.97 [ 0.93, 0.99] [ 0.92, 0.99] 0.003 0.021

ρi 0.71 0.71 [ 0.62, 0.81] [ 0.60, 0.82] 0.013 0.062

ρr 0.53 0.52 [ 0.28, 0.74] [ 0.28, 0.71] 0.038 0.116

ρp 0.81 0.81 [ 0.60, 0.95] [ 0.65, 0.95] 0.033 0.080

ρw 0.94 0.94 [ 0.90, 0.98] [ 0.90, 0.97] 0.004 0.021

ρga 0.40 0.39 [ 0.16, 0.67] [ 0.07, 0.61] 0.031 0.133

µp 0.67 0.66 [ 0.43, 0.85] [ 0.40, 0.85] 0.038 0.120

µw 0.81 0.81 [ 0.69, 0.90] [ 0.68, 0.90] 0.011 0.063

σa 0.33 0.35 [ 0.27, 0.40] [ 0.26, 0.41] 0.006 0.041

σb 0.24 0.24 [ 0.20, 0.28] [ 0.19, 0.28] 0.005 0.027

σg 0.50 0.49 [ 0.45, 0.56] [ 0.43, 0.55] 0.008 0.036

σi 0.43 0.44 [ 0.36, 0.52] [ 0.34, 0.55] 0.008 0.063

σr 0.14 0.14 [ 0.10, 0.18] [ 0.10, 0.19] 0.005 0.022

σp 0.13 0.12 [ 0.10, 0.16] [ 0.10, 0.15] 0.004 0.016

σw 0.21 0.21 [ 0.18, 0.25] [ 0.18, 0.25] 0.003 0.017

ln p̂(Y ) -964.44 -1036.74 0.298 16.804

Notes: Results are based on 20 runs of the PF-RWMH-V algorithm. Each run of the

algorithm generates 10,000 draws. The likelihood function is computed with the Kalman

filter (KF) or conditionally-optimal particle filter (CO-PF). “Pooled” means that we are

pooling the draws from the 20 runs to compute posterior statistics. The CO-PF uses 40,000

particles to compute the likelihood.
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Chapter 9

Combining Particle Filters with SMC

Samplers

We now combine the SMC algorithm of Chapter 5 with the particle filter approximation of

the likelihood function developed in Chapter 7 to develop an SMC2 algorithm. Reference:

Chopin, Jacob, and Papaspiliopoulos (2012)

9.1 An SMC2 Algorithm

As with the PFMH algorithm, our goal is to obtain a posterior sampler for the DSGE model

parameters for settings in which the likelihood function of the DSGE model cannot be eval-

uated with the Kalman filter. Starting point is the SMC Algorithm 8. However, we make a

number of modifications to our previous algorithm. Some of these modifications are impor-

tant, others are merely made to simplify the exposition. First and foremost, we add data

sequentially to the likelihood function rather than tempering the entire likelihood function:

we consider the sequence of posteriors πDn (θ) = p(θ|Y1:tn), defined in (5.2, where tn = bφnT c.
The advantage of using data tempering are that the particle filter can deliver an unbiased

estimate of the incremental weight p(Ytn−1+1:tn|θ) in the correction step, whereas the estimate

of a concave transformation p(Y1:T |θ)φn−φn−1 tends to be biased. Moreover, in general one

has to evaluate the likelihood only for tn observations instead of all T observations, which

can speed up computations considerably.

Second, the evaluation of the incremental and the full likelihood function in the correc-

tion and mutation steps of Algorithm 8 are replaced by the evaluation of the respective
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Table 9.1: Particle System for SMC2 Sampler After Stage n

Parameter State

(θ1
n,W

1
n) (s1,1

tn ,W
1,1
tn ) (s1,2

tn ,W
1,2
tn ) · · · (s1,M

tn ,W1,M
tn )

(θ2
n,W

2
n) (s2,1

tn ,W
2,1
tn ) (s2,2

tn ,W
2,2
tn ) · · · (s2,M

tn ,W2,M
tn )

...
...

...
. . .

...

(θNn ,W
N
n ) (sN,1tn ,WN,1

tn ) (sN,2tn ,WN,2
tn ) · · · (sN,Mtn ,WN,M

tn )

particle filter approximations. Using the same notation as in (8.3), we write the particle

approximations as

p̂(ytn−1+1:tn|Y1:tn−1|θ) = g(ytn−1+1:tn|Y1:tn−1 , θ, U1:tn), p̂(Y1:tn|θn) = g(Y1:tn|θn, U1:tn). (9.1)

As before, U1:tn is an array of iid uniform random variables generated by the particle filter

with density p(U1:tn), see (8.4). The approximation of the likelihood increment also de-

pends on the entire sequence p(U1:tn), because of the recursive structure of the filter: the

particle approximation of p(stn−1+1|Y1:tn−1 , θ) is dependent on the particle approximation of

p(stn−1 |Y1:tn−1 , θ). The distribution of U1:tn does neither depend on θ nor on Y1:tn and can be

factorized as

p(U1:tn) = p(U1:t1)p(Ut1+1:t2) · · · p(Utn−1+1:tn). (9.2)

To describe the particle system we follow the convention of Chapter 5 and index the

parameter vector θ by the stage n of the SMC algorithm and write θn. The particles generated

by the SMC sampler are indexed i = 1, . . . , N and the particles generated by the particle

filter are indexed j = 1, . . . ,M . At stage n we have a particle system {θin,W i
n}Ni=1 that

represents the posterior distribution p(θn|Y1:tn). Moreover, for each θin we have a particle

system that represents the distribution p(st|Y1:tn , θ
i
n). To distinguish the weights used for

the particle values that represent the conditional distribution of θt from the weights used

to characterize the conditional distribution of st, we denote the latter by W instead of W .

Moreover, because the distribution of the states is conditional on the value of θ, we use i, j

superscripts: {si,jt ,W
i,j
t }Mj=1. The particle system can be arranged in the matrix form given

in Table 9.1.

Finally, to streamline the notation used in the description of the algorithm, we assume

that during each stage n exactly one observation is added to the likelihood function. Thus,
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we can write θt instead of θn and Y1:t instead of Y1:tn and the number of stages is Nφ = T .

Moreover, we resample the θ particles at every iteration of the algorithm (which means we

do not have to keep track of the resampling indicator ρt) and we only use one MH step in

the mutation phase.

Algorithm 19 (SMC2)

1. Initialization. Draw the initial particles from the prior: θi0
iid∼ p(θ) and W i

0 = 1,

i = 1, . . . , N .

2. Recursion. For t = 1, . . . , T ,

(a) Correction. Reweight the particles from stage t− 1 by defining the incremental

weights

w̃it = p̂(yt|Y1:t−1, θ
i
t−1) = g(yt|Y1:t−1, θ

i
t−1, U

i
1:t) (9.3)

and the normalized weights

W̃ i
t =

w̃inW
i
t−1

1
N

∑N
i=1 w̃

i
tW

i
t−1

, i = 1, . . . , N. (9.4)

An approximation of Eπt [h(θ)] is given by

h̃t,N =
1

N

N∑
i=1

W̃ i
th(θit−1). (9.5)

(b) Selection. Resample the particles via multinomial resampling. Let {θ̂it}Mi=1 denote

M iid draws from a multinomial distribution characterized by support points and

weights {θit−1, W̃
i
t }Mj=1 and set W i

t = 1. Define the vector of ancestors At with

elements Ait by setting Ait = k if the ancestor of resampled particle i is particle k,

that is, θ̂it = θkt−1.

An approximation of Eπt [h(θ)] is given by

ĥt,N =
1

N

N∑
j=1

W i
th(θ̂it). (9.6)

(c) Mutation. Propagate the particles {θ̂it,W i
t } via 1 step of an MH algorithm. The

proposal distribution is given by

q(ϑit|θ̂it)p(U∗i1:t) (9.7)
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and the acceptance ratio can be expressed as

α(ϑit|θ̂it) = min

{
1,
p̂(Y1t |ϑit)p(ϑit)/q(ϑit|θ̂it)
p̂(Y1t|θ̂it)p(θ̂it)/q(θ̂it|ϑit)

}
. (9.8)

An approximation of Eπt [h(θ)] is given by

h̄t,N =
1

N

N∑
i=1

h(θit)W
i
t . (9.9)

3. For t = T the final importance sampling approximation of Eπ[h(θ)] is given by:

h̄T,N =
N∑
i=1

h(θiT )W i
T . (9.10)

A formal analysis of SMC2 algorithms is provided in Chopin, Jacob, and Papaspiliopou-

los (2012). We will provide a heuristic explanation of why the algorithm correctly approx-

imates the target posterior distribution and comment on some aspects of the implementa-

tion. At the end of iteration t − 1 the algorithm has generated particles {θit−1,W
i
t−1}Ni=1.

For each parameter value θit−1 there is also a particle filter approximation of the likelihood

function p̂(Y1:t−1|θit−1), a swarm of particles {si,jt−1,W
i,j
t−1}Mj=1 that represents the distribution

p(st−1|Y1:t−1, θ
i
t−1) and the sequence of random vectors U i

1:t−1 that underlies the simulation

approximation of the particle filter. To gain an understanding of the algorithm it is useful

to focus on the triplets {θit−1, U
i
1:t−1,W

i
t−1}Ni=1. Suppose that

∫ ∫
h(θ, U1:t−1)p(U1:t−1)p(θ|Y1:t−1)dU1:t−1dθ ≈

1

N

N∑
i=1

h(θit−1, U
i
1:t−1)W i

t−1.. (9.11)

This implies that we obtain the familiar approximation for functions h(·) that do not depend

on U1:t−1 ∫
h(θ)p(θ|Y1:t−1)dθ ≈ 1

N

N∑
i=1

h(θit−1)W i
t−1. (9.12)

Correction Step. The incremental likelihood p̂(yt|Y1:t−1, θ
i
t−1) can be evaluated by iterating

the particle filter forward for one period, starting from {si,jt−1,W
i,j
t−1}Mj=1. Using the notation

in (9.1), the particle filter approximation of the likelihood increment can be written as

p̂(yt|Y1:t−1, θ
i
t−1) = g(yt|Y1:t−1, U

i
1:t, θ

i
t−1). (9.13)
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The value of the likelihood function for Y1:t can be tracked recursively as follows:

p̂(Y1:t|θit−1) = p̂(yt|Y1:t−1, θ
i
t−1)p̂(Y1:t−1|θit−1) (9.14)

= g(yt|Y1:t, U
i
1:t, θ

i
t−1)g(Y1:t−1|U i

1:t−1, θ
i
t−1)

= g(Y1:t|U i
1:t, θ

i
t−1).

The last equality follows because conditioning g(Y1:t−1|U i
1:t−1, θ

i
t−1) also on Ut does not change

the particle filter approximation of the likelihood function for Y1:t−1.

By induction, we can deduce from (9.11) that the Monte Carlo average 1
N

∑N
i=1 h(θit−1)w̃itW

i
t−1

approximates the following integral∫ ∫
h(θ)g(yt|Y1:t−1, U1:t, θ)p(U1:t)p(θ|Y1:t−1)dU1:tdθ (9.15)

=

∫
h(θ)

[∫
g(yt|Y1:t−1, U1:t, θ)p(U1:t)dU1:t

]
p(θ|Y1:t−1)dθ.

Provided that the particle filter approximation of the likelihood increment is unbiased, that

is, ∫
g(yt|Y1:t−1, U1:t, θ)p(U1:t)dU1:t = p(yt|Y1:t−1, θ) (9.16)

for each θ, we deduce that h̃t,N is a consistent estimator of Eπt [h(θ)].

Selection Step. The selection step Algorithm 19 is very similar to Algorithm 8. To simplify

the description of the SMC2 algorithm, we are resampling in every iteration. Moreover, we

are keeping track of the ancestry information in the vector At. This is important, because

for each resampled particle i we not only need to know its value θ̂it but we also want to

track the corresponding value of the likelihood function p̂(Y1:t|θ̂it) as well as the particle

approximation of the state, given by {si,jt ,W
i,j
t }, and the set of random numbers U i

1:t. In

the implementation of the algorithm, the likelihood values are needed for the mutation step

and the state particles are useful for a quick evaluation of the incremental likelihood in the

correction step of iteration t + 1 (see above). The U i
1:t’s are not required for the actual

implementation of the algorithm but are useful to provide a heuristic explanation for the

validity of the algorithm.

Mutation Step. The mutation step essentially consists of one iteration of the PFMH al-

gorithm described in Chapter 8.1. For each particle i there is a proposed value ϑit and an

associated particle filter approximation p̂(Y1:t|ϑit) of the likelihood and sequence of random

vectors U∗1:t drawn from the distribution p(U1:t) in (9.2). As in (8.8), the densities p(U i
1:t)
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and p(U∗1:t) cancel from the formula for the acceptance probability α(ϑit|θ̂it). For the imple-

mentation it is important to record the likelihood value as well as the particle system for the

state st for each particle θit.

9.2 Application to the Small-Scale New Keynesian Model

We now present an application of the SMC2 algorithm to the small-scale DSGE model. The

results in this section can be compared to the results obtained in Chapter 8.2. Because the

SMC2 algorithm requires an unbiased approximation of the likelihood function, we will use

data tempering instead of likelihood tempering as in Chapter 5.3. Overall, we compare the

output of four algorithms: SMC2 based on the conditionally-optimal PF; SMC2 based on

the bootstrap PF; SMC based on the Kalman filter likelihood function using data tempering;

SMC based on the Kalman filter likelihood function using likelihood tempering. In order

to approximate the likelihood function with the particle filter, we are using M = 40, 000

particles for the bootstrap PF and M = 400 particles for the conditionally-optimal PF.

The approximation of the posterior distribution is based on N = 4, 000 particles for θ,

Nφ = T + 1 = 81 stages under data tempering, and Nblocks = 3 blocks for the mutation step.

Table 9.2 summarizes the results from running each algorithm 20 times. We report pooled

posterior means from the output of the 20 runs as well as the standard deviation of the

posterior mean approximations across the 20 runs. The results in the column labeled KF(L)

are based on the Kalman filter likelihood evaluation and obtained from the same algorithm

that was used in Chapter 5.3. The results in column KF(D) are also based on the Kalman

filter, but the SMC algorithm uses data tempering instead of likelihood tempering. The

columns CO-PF and BS-BF contain SMC2 results based on the conditionally-optimal and

the bootstrap PF, respectively. The pooled means of the DSGE model parameters com-

puted from output of the KF(L), KF(D), and CO-PF algorithms are essentially identical.

The log marginal data density approximations are less accurate than the posterior mean

approximations and vary for the first three algorithms from -358.75 to -356.33.

A comparison of the standard deviations indicates that moving from likelihood tempering

to data tempering leads to a deterioration of accuracy. For instance, the standard deviation

of the log marginal data density increases from 0.12 to 1.19. As discussed in Chapter 5.3

in DSGE model applications it is important to use a convex tempering schedule that adds

very little likelihood information in the initial stages. The implied tempering schedule of our
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Table 9.2: Accuracy of SMC2 Approximations

Posterior Mean (Pooled) Std Dev of Means

KF(L) KF(D) CO-PF BS-PF KF(L) KF(D) CO-PF BS-PF

τ 2.65 2.68 2.67 2.60 0.009 0.031 0.06 0.514

κ 0.81 0.81 0.81 0.82 0.003 0.005 0.017 0.069

ψ1 1.87 1.89 1.88 1.80 0.005 0.015 0.025 0.225

ψ2 0.66 0.66 0.68 0.59 0.005 0.018 0.023 0.193

ρr 0.75 0.75 0.75 0.73 0.001 0.002 0.006 0.026

ρg 0.98 0.98 0.98 0.97 0 0.001 0.005 0.008

ρz 0.88 0.88 0.88 0.86 0.001 0.002 0.003 0.012

r(A) 0.45 0.46 0.46 0.30 0.004 0.025 0.048 0.324

π(A) 3.32 3.30 3.28 3.44 0.006 0.031 0.074 0.275

γ(Q) 0.59 0.59 0.58 0.66 0.003 0.013 0.031 0.123

σr 0.24 0.24 0.24 0.23 0.001 0.001 0.003 0.023

σg 0.68 0.68 0.68 0.72 0.001 0.001 0.005 0.069

σz 0.32 0.32 0.32 0.36 0.001 0.001 0.004 0.04

σz 0.32 0.32 0.32 0.36 0.001 0.001 0.004 0.04

ln p(Y ) -358.75 -357.34 -356.33 -340.47 0.120 1.191 4.374 14.49

Notes: Preliminary results. D is data tempering and L is likelihood tempering. KF is Kalman

filter, CO-PF is conditionally-optimal PF, BS-PF is bootstrap PF. CO-PF and BS-PF use

data tempering.

sequential estimation procedure is linear and adds a full observation in stage n = 2 (recall

that n = 1 corresponds to sampling from the prior distribution). Replacing the Kalman filter

evaluation of the likelihood function by the conditionally-optimal particle filter, increases the

standard deviations further. Compared to KF(D) the standard deviations of the posterior

mean approximations increase by factors ranging from 1.5 to 5. A comparison with Table 8.2

indicates that the SMC algorithm is more sensitive to the switch from the Kalman filter

likelihood to the particle filter approximation. Using the conditionally-optimal particle filter,

there seems to be no deterioration in accuracy of the RWMH algorithm. Finally, replacing

the conditionally-optimal PF by the bootstrap PF leads to an additional deterioration in

accuracy. Compared to KF(D) the standard deviations for the BS-PF approach are an

order of magnitude larger. Nonetheless, the pooled posterior means are fairly close to those

obtained from the other three algorithms.
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9.3 Computational Considerations

The SMC2 results reported in Table 9.2 are obtained by utilizing 40 processors. We paral-

lelized the likelihood evaluations p̂(Y1:t|θit) for the θit particles rather than the particle filter

computations for the swarms {si,jt ,W
i,j
t }Mj=1. The likelihood evaluations are computationally

costly and do not require communication across processors. The run time for the SMC2 with

conditionally-optimal PF (N = 4, 000, M = 400) is 23:24 minutes, where as the algorithm

with bootstrap PF (N = 4, 000 and M = 40, 000) runs for 08:05:35 hours. The bootstrap

PF performs poorly in terms of accuracy and runtime.

After running the particle filter for the sample Y1:t−1 once could in principle save the

particle swarm for the final state st−1 for each θit. In the period t forecasting step, this

information can then be used to quickly evaluate the likelihood increment. In our experience

with the small-scale DSGE model, the sheer memory size of the objects (in the range of

10-20 gigabytes) precluded us from saving the t − 1 state particle swarms in a distributed

parallel environment in which memory transfers are costly. Instead, we re-computed the

entire likelihood for Y1:t in each iteration.

Our sequential (data-tempering) implementation of the SMC2 algorithm suffers from par-

ticle degeneracy in the intial stages, i.e., for small sample sizes. Instead of initially sampling

from the prior distribution, one could initialize the algorithm by using an importance sampler

with a student-t proposal distribution that approximates the posterior distribution obtained

conditional on a small set of observations, e.g., Y1:2 or Y1:5, as suggested in Creal (2007).
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Appendix A

Model Descriptions

A.1 The Smets-Wouters Model

The equilibrium conditions of the Smets and Wouters (2007) model take the following form:

A-1



A-2

ŷt = cy ĉt + iy ît + zyẑt + εgt (A.1)

ĉt =
h/γ

1 + h/γ
ĉt−1 +

1

1 + h/γ
Etĉt+1 +

wlc(σc − 1)

σc(1 + h/γ)
(l̂t − Etl̂t+1) (A.2)

− 1− h/γ
(1 + h/γ)σc

(r̂t − Etπ̂t+1)− 1− h/γ
(1 + h/γ)σc

εbt

ît =
1

1 + βγ(1−σc)
ît−1 +

βγ(1−σc)

1 + βγ(1−σc)
Etît+1 +

1

ϕγ2(1 + βγ(1−σc))
q̂t + εit (A.3)

q̂t = β(1− δ)γ−σcEtq̂t+1 − r̂t + Etπ̂t+1 + (1− β(1− δ)γ−σc)Etr̂kt+1 − εbt (A.4)

ŷt = Φ(αk̂st + (1− α)l̂t + εat ) (A.5)

k̂st = k̂t−1 + ẑt (A.6)

ẑt =
1− ψ
ψ

r̂kt (A.7)

k̂t =
(1− δ)
γ

k̂t−1 + (1− (1− δ)/γ)̂it + (1− (1− δ)/γ)ϕγ2(1 + βγ(1−σc))εit (A.8)

µ̂pt = α(k̂st − l̂t)− ŵt + εat (A.9)

π̂t =
βγ(1−σc)

1 + ιpβγ(1−σc)
Etπ̂t+1 +

ιp
1 + βγ(1−σc)

π̂t−1 (A.10)

− (1− βγ(1−σc)ξp)(1− ξp)
(1 + ιpβγ(1−σc))(1 + (Φ− 1)εp)ξp

µ̂pt + εpt

r̂kt = l̂t + ŵt − k̂st (A.11)

µ̂wt = ŵt − σl l̂t −
1

1− h/γ
(ĉt − h/γĉt−1) (A.12)

ŵt =
βγ(1−σc)

1 + βγ(1−σc)
(Etŵt+1 + Etπ̂t+1) +

1

1 + βγ(1−σc)
(ŵt−1 − ιwπ̂t−1) (A.13)

−1 + βγ(1−σc)ιw
1 + βγ(1−σc)

π̂t −
(1− βγ(1−σc)ξw)(1− ξw)

(1 + βγ(1−σc))(1 + (λw − 1)εw)ξw
µ̂wt + εwt

r̂t = ρr̂t−1 + (1− ρ)(rππ̂t + ry(ŷt − ŷ∗t )) (A.14)

+r∆y((ŷt − ŷ∗t )− (ŷt−1 − ŷ∗t−1)) + εrt .
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The exogenous shocks evolve according to

εat = ρaε
a
t−1 + ηat (A.15)

εbt = ρbε
b
t−1 + ηbt (A.16)

εgt = ρgε
a
t−1 + ρgaη

a
t + ηgt (A.17)

εit = ρiε
i
t−1 + ηit (A.18)

εrt = ρrε
r
t−1 + ηrt (A.19)

εpt = ρrε
p
t−1 + ηpt − µpη

p
t−1 (A.20)

εwt = ρwε
w
t−1 + ηwt − µwηwt−1. (A.21)

The counterfactual no-rigidity prices and quantities evolve according to

ŷ∗t = cy ĉ
∗
t + iy î

∗
t + zyẑ

∗
t + εgt (A.22)

ĉ∗t =
h/γ

1 + h/γ
ĉ∗t−1 +

1

1 + h/γ
Etĉ

∗
t+1 +

wlc(σc − 1)

σc(1 + h/γ)
(l̂∗t − Etl̂∗t+1) (A.23)

− 1− h/γ
(1 + h/γ)σc

r∗t −
1− h/γ

(1 + h/γ)σc
εbt

î∗t =
1

1 + βγ(1−σc)
î∗t−1 +

βγ(1−σc)

1 + βγ(1−σc)
Etî
∗
t+1 +

1

ϕγ2(1 + βγ(1−σc))
q̂∗t + εit (A.24)

q̂∗t = β(1− δ)γ−σcEtq̂∗t+1 − r∗t + (1− β(1− δ)γ−σc)Etrk∗t+1 − εbt (A.25)

ŷ∗t = Φ(αks∗t + (1− α)l̂∗t + εat ) (A.26)

k̂s∗t = k∗t−1 + z∗t (A.27)

ẑ∗t =
1− ψ
ψ

r̂k∗t (A.28)

k̂∗t =
(1− δ)
γ

k̂∗t−1 + (1− (1− δ)/γ)̂it + (1− (1− δ)/γ)ϕγ2(1 + βγ(1−σc))εit (A.29)

ŵ∗t = α(k̂s∗t − l̂∗t ) + εat (A.30)

r̂k∗t = l̂∗t + ŵ∗t − k̂∗t (A.31)

ŵ∗t = σl l̂
∗
t +

1

1− h/γ
(ĉ∗t + h/γĉ∗t−1). (A.32)
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The steady state (ratios) that appear in the measurement equation or the log-linearized

equilibrium conditions are given by

γ = γ̄/100 + 1 (A.33)

π∗ = π̄/100 + 1 (A.34)

r̄ = 100(β−1γσcπ∗ − 1) (A.35)

rkss = γσc/β − (1− δ) (A.36)

wss =

(
αα(1− α)(1−α)

Φrkss
α

) 1
1−α

(A.37)

ik = (1− (1− δ)/γ)γ (A.38)

lk =
1− α
α

rkss
wss

(A.39)

ky = Φl
(α−1)
k (A.40)

iy = (γ − 1 + δ)ky (A.41)

cy = 1− gy − iy (A.42)

zy = rkssky (A.43)

wlc =
1

λw

1− α
α

rkssky
cy

. (A.44)

The measurement equations take the form:

Y GRt = γ̄ + ŷt − ŷt−1 (A.45)

INFt = π̄ + π̂t

FFRt = r̄ + R̂t

CGRt = γ̄ + ĉt − ĉt−1

IGRt = γ̄ + ît − ît−1

WGRt = γ̄ + ŵt − ŵt−1

HOURSt = l̄ + l̂t.

The diffuse prior distribution for the parameters of the SW model is summarized in Table A-

1.
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Table A-1: Diffuse Prior for SW Model

Parameter Type Para (1) Para (2) Parameter Type Para (1) Para (2)

ϕ Normal 4.00 4.50 α Normal 0.30 0.15

σc Normal 1.50 1.11 ρa Uniform 0.00 1.00

h Uniform 0.00 1.00 ρb Uniform 0.00 1.00

ξw Uniform 0.00 1.00 ρg Uniform 0.00 1.00

σl Normal 2.00 2.25 ρi Uniform 0.00 1.00

ξp Uniform 0.00 1.00 ρr Uniform 0.00 1.00

ιw Uniform 0.00 1.00 ρp Uniform 0.00 1.00

ιp Uniform 0.00 1.00 ρw Uniform 0.00 1.00

ψ Uniform 0.00 1.00 µp Uniform 0.00 1.00

Φ Normal 1.25 0.36 µw Uniform 0.00 1.00

rπ Normal 1.50 0.75 ρga Uniform 0.00 1.00

ρ Uniform 0.00 1.00 σa Inv. Gamma 0.10 2.00

ry Normal 0.12 0.15 σb Inv. Gamma 0.10 2.00

r∆y Normal 0.12 0.15 σg Inv. Gamma 0.10 2.00

π Gamma 0.62 0.30 σi Inv. Gamma 0.10 2.00

100(β−1 − 1) Gamma 0.25 0.30 σr Inv. Gamma 0.10 2.00

l Normal 0.00 6.00 σp Inv. Gamma 0.10 2.00

γ Normal 0.40 0.30 σw Inv. Gamma 0.10 2.00

Notes: Para (1) and Para (2) correspond to the mean and standard deviation of the Beta,

Gamma, and Normal distributions and to the upper and lower bounds of the support for

the Uniform distribution. For the Inv. Gamma distribution, Para (1) and Para (2) refer to

s and ν, where p(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

. The following parameters are fixed during the

estimation: δ = 0.025, gy = 0.18, λw = 1.50, εw = 10.0, and εp = 10.
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Table A-2: SW Model: Standard Prior

Parameter Type Para (1) Para (2) Parameter Type Para (1) Para (2)

ϕ Normal 4.00 1.50 α Normal 0.30 0.05

σc Normal 1.50 0.37 ρa Beta 0.50 0.20

h Beta 0.70 0.10 ρb Beta 0.50 0.20

ξw Beta 0.50 0.10 ρg Beta 0.50 0.20

σl Normal 2.00 0.75 ρi Beta 0.50 0.20

ξp Beta 0.50 0.10 ρr Beta 0.50 0.20

ιw Beta 0.50 0.15 ρp Beta 0.50 0.20

ιp Beta 0.50 0.15 ρw Beta 0.50 0.20

ψ Beta 0.50 0.15 µp Beta 0.50 0.20

Φ Normal 1.25 0.12 µw Beta 0.50 0.20

rπ Normal 1.50 0.25 ρga Beta 0.50 0.20

ρ Beta 0.75 0.10 σa Inv. Gamma 0.10 2.00

ry Normal 0.12 0.05 σb Inv. Gamma 0.10 2.00

r∆y Normal 0.12 0.05 σg Inv. Gamma 0.10 2.00

π Gamma 0.62 0.10 σi Inv. Gamma 0.10 2.00

100(β−1 − 1) Gamma 0.25 0.10 σr Inv. Gamma 0.10 2.00

l Normal 0.00 2.00 σp Inv. Gamma 0.10 2.00

γ Normal 0.40 0.10 σw Inv. Gamma 0.10 2.00

Notes: Para (1) and Para (2) correspond to the mean and standard deviation of the Beta,

Gamma, and Normal distributions and to the upper and lower bounds of the support for

the Uniform distribution. For the Inv. Gamma distribution, Para (1) and Para (2) refer to

s and ν, where p(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

.

The standard prior distribution for the parameters of the SW model is summarized in Ta-

ble ??
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A.2 The Fiscal Policy Model

Log linear equilibrium conditions:

ûbt −
γ(1 + h)

1− h
Ĉt +

γh

1− h
Ĉt−1 −

τ c

1 + τ c
τ̂ ct = R̂t −

τ c

1 + τ c
Etτ̂

c
t+1 + Etu

b
t+1 −

γ

1− h
EtĈt+1

(A.46)

ûlt + (1 + κ)l̂t +
τ c

1 + τ c
τ̂ ct = Ŷt −

τ l

1 + τ l
τ̂ lt −

γ

1− h
Ĉt +

γh

1− h
Ĉt−1 (A.47)

q̂t = Etû
b
t+1 −

γ

1− h
EtĈt+1 +

γ(1 + h)

1− h
Ĉt −

τ c

1 + τ c
Etτ

c
t+1 − ûbt −

γh

1− h
Ĉt−1+ (A.48)

τ c

1 + τ c
τ̂ ct + β(1− τ k)αY

K
EtŶt+1 − β(1− τ k)αY

K
K̂t − βτ kα

Y

K
Etτ̂

k
t+1 − βδ1Etν̂t+1] + β(1− δ0)Etq̂t+1

Yt −
τ k

1− τ k
τ̂ kt − K̂t+1 = q̂t +

(
1 +

δ2

δ0

)
ν̂t (A.49)

1

s′′(1)
q̂t + (1− β)Ît + Ît−1 + βEtû

i
t + βEtû

i
t+1 = 0 (A.50)

Y Ŷt = CĈt +GĜt + IÎt (A.51)

K̂t = (1− δ0)Kt−1 + δ1ν̂t + δ0It (A.52)

BB̂t + τ kαY (τ̂ kt + Ŷt) + τ l(1− α)Y (τ̂ lt + Ŷt) + τ cC(τ̂ ct + Ĉt) =
B

β
R̂t−1 +

B

β
B̂t−1 +GĜt + ZẐt

(A.53)

Ŷt = ûat + ανt + αK̂t−1 + (1− α)L̂t. (A.54)

Tax Processes:

τ̂ kt = ϕkŶt + γkB̂t−1 + φklû
l
t + φkcû

c
t + ûkt , (A.55)

τ̂ lt = ϕlŶt + γlB̂t−1 + φklû
l
t + φlcû

c
t + ûlt, (A.56)

τ̂ ct = φkcû
c
t + φclû

c
t + ûct . (A.57)
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Table A-3: Fiscal Model: Posterior Moments - Part 2

Based on LPT Prior Based on Diff. Prior

Mean [5%, 95%] Int. Mean [5%, 95%] Int.

Endogenous Propagation Parameters

γ 2.5 [ 1.82, 3.35] 2.5 [ 1.81, 3.31]

κ 2.4 [ 1.70, 3.31] 2.5 [ 1.74, 3.37]

h 0.57 [ 0.46, 0.68] 0.57 [ 0.46, 0.67]

s′′ 7.0 [ 6.08, 7.98] 6.9 [ 6.06, 7.89]

δ2 0.25 [ 0.16, 0.39] 0.24 [ 0.16, 0.37]

Endogenous Propagation Parameters

ρa 0.96 [ 0.93, 0.98] 0.96 [ 0.93, 0.98]

ρb 0.65 [ 0.60, 0.69] 0.65 [ 0.60, 0.69]

ρl 0.98 [ 0.96, 1.00] 0.98 [ 0.96, 1.00]

ρi 0.48 [ 0.38, 0.57] 0.47 [ 0.37, 0.57]

ρg 0.96 [ 0.94, 0.98] 0.96 [ 0.94, 0.98]

ρtk 0.93 [ 0.89, 0.97] 0.94 [ 0.88, 0.98]

ρtl 0.98 [ 0.95, 1.00] 0.93 [ 0.86, 0.98]

ρtc 0.93 [ 0.89, 0.97] 0.97 [ 0.94, 0.99]

ρz 0.95 [ 0.91, 0.98] 0.95 [ 0.91, 0.98]

σb 7.2 [ 6.48, 8.02] 7.2 [ 6.47, 8.00]

σl 3.2 [ 2.55, 4.10] 3.2 [ 2.55, 4.08]

σi 5.7 [ 4.98, 6.47] 5.6 [ 4.98, 6.40]

σa 0.64 [ 0.59, 0.70] 0.64 [ 0.59, 0.70]



Appendix B

Data Sources

B.1 Small-Scale New Keynesian DSGE Model

The data from the estimation comes from ??. Here we detail the construction of the extended

sample (2003:I to 2013:IV) for 7.5.

1. Per Capita Real Output Growth Take the level of real gross domestic product,

(FRED mnemonic “GDPC1”), call it GDPt. Take the quarterly average of the Civilian

Non-institutional Population (FRED mnemonic “CNP16OV” / BLS series “LNS10000000”),

call it POPt. Then,

Per Capita Real Output Growth = 100

[
log

(
GDPt
POPt

)
− log

(
GDPt−1

POPt−1

)]
.

2. Annualized Inflation. Take the CPI price level, (FRED mnemonic “CPIAUCSL”),

call it CPIt. Then,

Annualized Inflation = 400 log

(
CPIt
CPIt−1

)
.

3. Federal Funds Rate. Take the effective federal funds rate (FRED mnemonic “FED-

FUNDS”), call it FFRt. Then,

Federal Funds Rate = FFRt/4.

A-9
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B.2 Smets-Wouters Model

[FROM CHUNG, HERBST, KILEY] The data covers 1966:Q1 to 2004:Q4. The construction

follows that of Smets and Wouters (2007). Output data come from the NIPA; other sources

are noted in the exposition.

1. Per Capita Real Output Growth. Take the level of real gross domestic product,

(FRED mnemonic “GDPC1”), call it GDPt. Take the quarterly average of the Civilian

Non-institutional Population (FRED mnemonic “CNP16OV” / BLS series “LNS10000000”),

normalized so that it’s 1992Q3 value is one, call it POPt. Then,

Per Capita Real Output Growth = 100

[
log

(
GDPt
POPt

)
− log

(
GDPt−1

POPt−1

)]
.

2. Per Capita Real Consumption Growth. Take the level of personal consumption

expenditures (FRED mnemonic “PCEC”), call it CONSt. Take the level of the GDP

price deflator (FRED mnemonic “GDPDEF”), call it GDPPt. Then

Per Capita Real Consumption Growth = 100

[
log

(
CONSt

GDPPtPOPt

)
− log

(
CONSt−1

GDPPt−1POPt−1

)]
.

3. Per Capita Real Investment Growth. Take the level of fixed private investment

(FRED mnemonic “FPI”), call it INVt. Then,

Per Capita Real Investment Growth = 100

[
log

(
INVt

GDPPtPOPt

)
− log

(
INVt−1

GDPPt−1POPt−1

)]
.

4. Per Capita Real Wage Growth. Take the BLS measure of compensation per

hour for the nonfarm business sector (FRED mnemonic “COMPNFB” / BLS series

“PRS85006103”), call it Wt. Then

Per Capita Real Wage Growth = 100

[
log

(
Wt

GDPPt

)
− log

(
Wt−1

GDPPt−1

)]
.

5. Per Capita Hours Index. Take the index of average weekly nonfarm business hours

(FRED mnemonic / BLS series “PRS85006023”), call it HOURSt. Take the number of

employed civilians (FRED mnemonic “CE16OV”), normalized so that its 1992Q3 value

is 1, call it EMPt. Then,

Per Capita Hours = 100 log

(
HOURStEMPt

POPt

)
.

The series is then demeaned.
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6. Inflation. Take the GDP price deflator, then

Inflation = 100 log

(
GDPPt
GDPPt−1

)
.

7. Federal Funds Rate. Take the effective federal funds rate (FRED mnemonic “FED-

FUNDS”), call it FFRt. Then,

Federal Funds Rate = FFRt/4.

B.3 Fiscal Policy Model


