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Outline

• Alternative representations of the solution of a DSGE model.

• Fundamentalness and finite VAR representation of DSGE solutions.

• Linking DSGE and VARs with sign restrictions.

• Some empirical concerns.

• Dealing with non-fundamentalness
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1 Solution of DSGE models

• Typical (Log-) linearized solution of a DSGE model is of the form:

2 = A22()2−1 +A21()3 (1)

1 = A11()2−1 +A12()3 (2)

2 = states (endogenous and exogenous), 1 = controls, 3 shocks.

- A()   = 1 2 are time invariant (reduced form) matrices and depend

on , the structural parameters of technologies, policies, etc.

- There are cross equation restrictions since   = 1      appears in

more than one entry of these matrices.



- (1)-(2) is a state space model, with (1) being the transition equation and
(2) the measurement equation.

- If both 2 and 1 are observables (1)-(2) is also a restricted VAR(1).

- Restrictions are on the lag length and on the entries of the coefficient
matrix.

Letting  = [2 1]
0  = 3

A0 =
"
21 0
0 12

#−1
 A() =

"
21 0
0 12

#−1 "
22 0
11 0

#
Then the system is

 = A()−1 +  (3)

- Singular system: dim (3)  (1 + 2).



2 Alternative representations for 1

1) If A12 is invertible
3 = A−112 (1 −A112−1)

2 = A222−1 +A21A−112 (1 −A112−1)

(1− (A22 −A21A−112A11))2 = A21A−112 1
If A22 −A21A−112A11 has all eigenvalues less than 1

2 = (1− (A22 −A21A−112A11))−1A21A−112 1
and

1 = A11(1− (A22 −A21A−112A11))−1A21A−112 1−1 +A123 (4)



- If only 1 is observable, the solution solution is a VAR(∞).

- Does it make sense to assume that A12 is invertible? We need to have
as many controls as shocks. Typically, this condition is not satisfied. Add

measurement error to make this condition work.

- Need invertibility conditions on the eigenvalues of A22 −A21A−112 A11.



2) If A11 is invertible
2−1 = A−111 (1 −A123)

A−111 (1+1 −A123+1) = A22A−111 (1 −A123) +A213

1+1 = A11A22A−111 1 + (A11A21 −A11A22A−111A12)3 +A123+1)

1+1 = A11A22A−111 1 + ( + (A11A21A−112 −A11A22A−111 ))4+1

where 4 ≡ A123.

- If only 1 is observable solution is a VARMA(1,1)

- Does it make sense to assume that A11 is invertible? Need as many

controls as states.

- No need to impose restrictions on the eigenvalues of A22−A21A−112 A11.



3) Final form computations

From 2) 1 = 11−1 +  + 1−1. Then for any (11 
2
1)∙

1− 11 −12
−21 1− 22

¸ ∙
11
21

¸
=

∙
1− 11 12
21 1 + 22

¸ ∙
1
2

¸

Note that (()) = (1 + 11)(1 + 22)− 12212. Then:∙
1 + 22 −21
−12 1 + 11

¸ ∙
1− 11 −12
−21 1− 22

¸ ∙
12
22

¸
= (())

∙
1
2

¸

Under this alternative representation, the solution for 1 is a VARMA(2,2).

• If () is of reduced rank, write () =
"
1 + 11 11
21 1 + 21

#
some

. Then (()) = 1 + (11 + 21).

In this case the solution for 1 is a VARMA(2,1).



2.1 An important digression

The above representations assume that the state 2 is observable. What

if it is not?

- Typically, one needs to compute Kalman filter forecast of it, i.e. ̂2 =

(22 −11)̂2−1 +̂1 where  is the Kalman gain which depends

on the observables 1.

- Adding and subtracting 11̂2 to (2) we have

1 = 11̂2−1 +  (5)

 = 11(2−1 − ̂2−1) +123 (6)



• If the states are not observables and the observable 1 fail to perfectly
reveal them, i.e. 2−1 6= ̂2−1, the innovations of the model include not
only the structural shocks but also the forecast errors make in predicting

the non-observable states.

Why is this relevant? If, for example, news shocks are present, they will

be state variables, but they are not observable. Thus an econometrician

needs to forecast them using the observables.

- The condition that the eigenvalues of (22 − 21
−1
12 11) are all less

than one in modulus implies that Σ = 12Σ3
0
12 and that the forecast

errors disappear

- This condition is equivalent to saying that with the observables variables

we can perfectly reconstruct the unobservable states.



Example 1 Suppose that the capital stock is a state and it is unobservable.
Then the effect of capital as a state can be recovered from a VAR if he

variables included allow to perfectly predict it. Thus, for example, VARs

without investment will not satisfy the condition on the eigenvalues of

(22 −21
−1
12 11)

• Think about the potential structural model which has generated the data
before choosing the variables of a VAR!

When the eigenvalue condition is not satisfied the covariance matrix of

the VAR innovations is strictly larger than the covariance matrix of the

structural innovations.

• 11Σ2
0
11 could be small if 1 reveals well the information about 2.

Thus it is possible to find models which are non-invertible and still VARs

approximately well their dynamics.



Example 2 Sims (2011) consider a standard medium scale New Keynesian model of
the type used in central banks. The model has a technology shock and a news shock
which enter in the model via

ln = + ln−1 +  + − (7)

where − is a a news shocks about the level of the technology known  periods in
advance. This process has the following state space representation

ln = + ln−1 +  + 1−1
1 = 2−1
2 = 3−1

...

−1 = − (8)

Thus, we have trasformed (7) into a vector of process with a ”fake”” state vector .

In the model, agents keep track of the z’s when computing their optimal decisions.
Econometricians do not know or observe the z’s. Thus the state vector cannot, in general,
be observed based on a history of observables TFP.

Given a standard parameterization and  = 4 periods of foresight, the maximum eigenval-

ues of the (22−21
−1
1211) is 1.32. Thus the invertibility conditions fails. Nevertheless



the distortions that an econometrician would generate estimating a VAR on the data sim-

ulated by the model would be small (see below). Here we assume that the identification

of the shocks is corrrect.





Conclusions

- If variables are omitted, the solution of the model has a VAR represen-

tation only in certain (restricted) conditions.

- Even if a VAR representation exists, it may not allow us to recover the

true shocks, if observables do not the information about missing states.

- Invertibility is not a either or propositions. There are non-invertible sys-

tems which could be recovered well with VARs.

- Can we use a finite VAR to approximate a DSGE model? If the eigenvalue

condition holds, generally yes.



3 An alternative setup

Here we use the specification:

 = −1 + (9)

 = −1 +  (10)

() =  (11)

where  is ×1,  is ×1,  is ×1. The difference with the previous
setup is that here endogenous and exogenous states are differentiated.

We want to solve out the  in both cases below. In addition, in one case

 is observable, in the other it is not.



Case 1). Suppose both  and  are observable. Let  = [ ],  ="
 0
 0

#
, =

"



#
and let () =  − 1. Then

 = −1 + (12)

 = 1−1 +  (13)

This is an ARMA(1,1) representation (it is used for example in Kommunjer
and Ng (2011)).

Letting  be the generalized inverse of B,we have

 = ( −−1)
≡ 1(

−1 −−2) +  (14)

Thus

 = −1 +[1
−1 −1

−2] +
= (+1

)−1 −21
−2 + (15)



Note:  is +  × 1 while  is × 1.

- If  = +   = −1 and  = (+ 1)−1 −1−2 +.

• If  is invertible, the representation is a VAR(2).

- If    +   6= −1 system driven by a small number of shocks
relative to the observables.

• If  admits a generalized inverse, the representation is still a VAR(2)!
This means that we can delete rows and using any combinations of element
̂ of  we can make a non-singular VAR(2).

- There will be problems using maximum likelihood to estimate the para-
meters since covariance matrix is singular. If we want to use it need to
drop endogenous variables until  = + . Which ones to drop? How do
you do this? (see Canova, Ferroni and Matthes, 2012).



Case 2). Suppose that only  are observables and assume  = .

Results:

1) ̂ is a VARMA(n+pm,n+p(m-1)), where  is the number of lags in the

representation of .

2) A finite order VAR representation for ̂ exists iff either det[ | −|+
( −)−1] is of degree zero in  or det[ | − (−1 )] is of
degree zero in .

3) 2) holds also if  = [ ] where  is 1  ×1 and  is −1×1.



Implications

1) Eliminating endogenous states from the VAR leads to a much more

complicated VARMA representation. The length of the AR and MA depend

on the size of the  and  vectors, the assumed process for the exogenous

states. In general, a VAR must have very long lags to approximate the

solution.

2) Need a particular configuration of parameters to generate a finite order

VAR representation. Need restrictions on   matrices.

3) A necessary and sufficient condition for the existence of a finite order

VAR is that the determinant of ( − (−1 )] is of degree zero in L
(compare with the eigenvalue restrictions we had before).



4) We need a particular setup where the number of observable (controls)

 matches exactly the number of exogenous shocks.

• Conditions appear to be restrictive in general.



4 VAR misspecification and sign restrictions

- Consider the first setup.

- If use robust sign restriction are used to identify shocks, misrepresentation

(with a finite order VAR) of the decision rules less important.

DSGE models:

2 = A22()2−1 +A21()3 (16)

1 = A11()2−1 +A12()3 (17)

This model fits into the general VAR setup"
 − 11 12
21  − 22

# "
1
2

#
=

"
1
2

#




Representation for 1 (integrating out 2):

( − 11− 1221(1− 22)
−12)1 = [1 − (12(1− 22)

−12]
(18)

- This is, in general, a ARMA(∞∞).

- Impact effects of  on 1 has the correct sign and the right magnitude.

Still there could be problems:

- Shocks in the reduced system will be time aggregated.

- Representation is not one-sided (future values of the shocks enter the

representation).



5 Practical implications for SVAR analyses.

Let  =
P∞
=0 − be the reduced form MA representation of the

observable data where 0 = ,  ∼ (0Σ) are the innovations in the
process, that is,  =  −  (|−1) where −1 is the information set
available at time − 1.

Take the first representation of the (log-) linearized solution of a DSGE as
your structural model. Solving the state equation we get

2 = A21()
∞X
=0

A22()3− (19)

Plugging this equation in the equation for 1 we have

1 = A11()A21()
∞X
=1

A22()3− +A12()3 (20)



Let  = [2 1]
0 where  is a selection matrix. Then

 = [2 1]
0 −−1[2 1]

0 (21)

= [A21()
∞X
=0

A22()3−

A11()A21()
∞X
=1

A22()3− +A12()3]0 (22)

− −1[A21()
∞X
=0

A22()3−

A11()A21()
∞X
=1

A22()3− +A12()3]0 (23)

- If  is a vector with the same dimensions as 3 and −1 includes 2−1



then

 = 123 (24)

and we are in the standard setup. If some or all 2 are omitted 2 −
−12 will produce a forecast error. Then

 = 123 + [2 −−12 A11()(2 −−12)]
0 (25)

so that the structural errors will be contaminated by the forecast errors.
Thus

1)  will not be a white noise. There could be autocorrelation and het-
eroschedasticity if the forecast errors are autocorrelated and heteroschedas-
tic.

2) The size of the distortion due to omitted variables depends on the entries
of A11() and how distant is the info set −1 from 2; that is, whether
or not the variables in −1 help to forecast 2 or not.



3) Structural innovations will be determined with error.

- The dynamic responses will not be necessarily wrong.

- Variance decomposition generally wrong.

- Counterfactuals generally wrong.



6 Potential problems: Permanent income

Here is a simple example of how inference could be wrong when some

variables are non-obserables.

Assume the income process is  = −1 + .

If utility depends on consumption and it is quadratic, the consumption

Euler equation is

+1 =  + (1−−1)+1 (26)

where  is the discount factor and   1 the constant interest rate.

Suppose that  is non-observable and instead we observe  =  − .

The optimality condition for saving is:

+1 = − + 
−1 (27)



The vector ( ) forms a state space model. The process for  is

non-fundamental (non-invertible) since +− 1  1 and this violate the

eigenvalue condition. The fundamental representation for savings is

+1 = −̂ + (
 − 1 +


)+1 (28)

where ̂+1 = ̂+ (
−2+1

 − )+1 and  is the fundamental inno-

vation (i.e. the forecast error made in forecasting +1 using current and

past information).

To see what the two representations imply compute the ARMA(1,1) repre-

sentations for saving in the model and in the fundamental representation:

+1 =  + 
−1+1 − (1−−1 + −1)

+1 =  + (
 − 1 +


)+1 − 

−1



Conclusions:

1) In the model the immediate effect is −1; in the fundamental rep-
resentation it is (

−1+
 ) Since  − 1 +   1, the impact effect is

overestimated.

2) By the same toke, the lagged effect is underestimated.

3) In the model the lagged effect is larger 1−−1+−1  −1. In the
fundamental model the opposite is true.

4)  6= . In particular  are linear combinations of current and future

0’s. Thus, using current and past values of  allows us to recover current
values of  but not current values of .



7 Dealing with non-invertibility problems

Not clear how to solve non-fundamental problems in practice. many alter-

natives have been suggested:

- Expand the observable vector (hoping to capture the effect of future

shocks) (See e.g. Ramey (2011)). How do we know that this is enough?

- Use a factor model setup (see Forni and Gambetti (2010)). It can deal

with non-fundamentalness due to omitted variables but it has not much to

say about model based non-fundamentalness.

- Estimate directly the structural model (Fernandez et al. (2007)). Full

information likelihood methods will have problems: likelihood has multiple

peaks with non-invertibility. Dispense completely with VAR setup.



- Ravn and Mertens (2010). Use theory (calibrated DSGE) to tell us

about the root that create non-fundamentalness. Fix it based on theory

and proceed in VAR analysis from there.

- Dupor and Han (2011). Four step approach:

i) Estimate an ARMA(1,1) model from the data.

ii) Compute all possible covariance equivalent representation of the esti-

mated model.

iii) Identify shocks and compute impulse responses for all possible repre-

sentations.

iv) Eliminate representations which fail to satisfy additional restrictions

(e.g. variance decomposition restrictions (size of variance explained), sign

or shape restrictions, etc.).



Problem is step iv). Restrictions have to be determined by investigator.

Potentially debatable.

True question is whether fundamental representation and one or more non-

fundamental representations differ and in what way; if differences are small

issue minor.

Procedure somewhat cumbersome for medium-large scale VAR.

Requires somewhat stringent assumptions about

- the number of observables and the number of shocks (they must be the

same). Need to add measurement errors most of the time.

- the number of states and the number of controls must be the same. Need

to have non-minimal state space representation.



Idea: Start from

+1 =  + +1

+1 =  + +1 (29)

where  is  × 1. Assume that only  is observable.

Assume:

1) dim()= dim() (alternatively, assume that  has a left-inverse).

2) All eigenvalues of  and  are inside the unit circle.

3) dim()= dim() (alternatively, assume that  is invertible).

Let the covariance structure of the observable  be  = (−), for



all .  can be computed from the state space system (29) as

0 = 0( ) +  +

− 0( ) (30)

1 = 0 + − (31)

 = ( )−11 ∀  1 (32)

The MA representation for  from the model is

+1 = +1 +
∞X
=0

−1 (33)

- Given the assumptions made, there are 2 infinite order covariance equiva-

lent MA representations for  with innovations 

 satisfying (


(


)
 ) =

.



- The representation  is given by

+1 = ( −)−1( +)

+1

where  are given by

 = 2
−1
1 (34)

 = ̄1(

 )
−1 (35)

̄1 = 1 −0 (36)

̄0 = 0 −0
 −̄1 − ̄1

 (37)

0 = (

 )(̄


1 )
−1(


 )− ̄0(̄


1 )
−1(

 ) + ̄1 (38)

where  are the autocovariances of .



Note 1)  + 
 where 


 is the Choleski decomposition of 




and  an orthonormal matrix. With Choleski restrictions  = , with

long run and sign restrictions  6= 0  6= 0.

Note 2) in the above set of equivalent MA, one is fundamental, the rest

are not.

How do we choose among the 2 representations we produce?

i) Drop all the representations with complex roots (not clear why).

ii) Drop all representations that do not satisfy certain additional restric-

tions.



Example 3 Permanent in come of section 6. Here there is only one obsrevables so
there are only two MA representations, the fundamental one and the non-fundamental
one. The impulse responses of the two representations are below. How do we choose
between the two repesentations?

Why do we save? For future consumption! Thus, at some point in the future savings
should reverse sign (addition theoretical restriction). Of the two repesentations only the



non-fundamental one implies that savings will drop at some horisons in the future, i.e.
eliminate the fundamental one because it is inconsistent with theory.

- Look like an ex-post criteria !! Maybe people have utility from wealth. Wrong to choose

the non-fundamental representation.

Example 4 Anticipated tax shocks (Leeper, et al. 2009). This model
does not have unobservable controls but has a tax shock which is antic-
ipated  =  + −2 where  is a technology shock. The solution
to the model has the state space representation like (29) where  =⎡⎢⎢⎣  −(1−)

1− 0

0 0 0
0 1 0

⎤⎥⎥⎦,  =

⎡⎢⎢⎣ 1 −(1−)
1− 0

0 1 0
0 0 0

⎤⎥⎥⎦,  =

⎡⎢⎢⎣
0 0 1

 −(1−)
1− 0

 
1− 0

⎤⎥⎥⎦,

 =

⎡⎢⎢⎢⎣
 0 0

1 −(1−)
1− 0

0 2

1− 0

⎤⎥⎥⎥⎦, and  = [  −1]0  = (  )
0  =



(  ) where  is a an iid measurement error, (    ) are para-

meters.

The VARMA(1,1) representation for  is

+1 = + +1 + ( −) (39)

With 3 observable variables there are 23 = 8 covariance equivalent MA

representations. The pairs  associated with these euivalent MA

representations satisfy:



 +


 =⎡⎢⎣ 22 + 2 + ( )

2 2 + (1− ) 2 − 2

22 + (1− ) 2 + 2(1 + 2)(1− )2 2 − 2(1− )(1 + 2)
2 − 2 2 − 2(1− )(1 + 2) 2 + 22(1 + 2) + 2

⎤⎥⎦





 =

⎡⎢⎢⎣ 0 2(1− ) −3 − 2


0 2(1− )2 −22(1− )
0 −22(1− ) 23

⎤⎥⎥⎦ ,where  = 
1− .

With a standard parameterization, there are only 4 real values structural

responses since 

 has a pair of complex eigenvalues.

Identify tax shocks and techology shocks using lower triangular Choleski

(as detailed by the entries of the matrix Z).



How do you choose between the four remaining repesentations?

Note that responses to tax shocks are all similar in sign (except for con-

sumption), differences is only in magnitude. Fundamental representation



not that different from the three non-fundamental representations. Differ-

ences occur in response to technology shocks.

What kind of restrictions can we impose to eliminate representations?

1) Contribution of the identified measurement error shocks to variance

decomposition of any variables should not exceed 30 percent ( why 30

percent?)

2) Technology shocks should not be the main source of volatility of tax

rates at long horizons. Exclude all representations generating decomposi-

tions where they account for more than 50 percent (Why shouldn’t tech-

nology shocks explain more than 50 percent of the variance of tax rates?).



From table decompositions 2 and 4 are eliminated. Note model 4 corre-

sponds to the fundamental representation.

If we add:



3)The effect of techology shocks should be fast enough - so that technology

shocks explain most of the variability of consumption and capital in short

run (say larger than 30 percent). We are left with just one model.

• Interesting way to proceed, but difficult to justify restrictions in step 4
(choose representations that satisfy a-priori ideas about how the economy

works).

• Important assumptions needed to derive all the equivalent MA represen-
tations.

• Cumbersome to apply in medium scale systems.



Aside: How do you estimate VARMA models?

0 = ()−1 +0 +()−1 (40)

() is of order 1, () is of order 2. The standard way is to use ML

(see e.g. Hamilton (1994)).

Problems:

- difficult to identify correctly the model.

- near cancellation of roots possible.

- likelihood has multiple peaks in correspondence of the multiplicity of

covariance equivalent MA representations.



Alternatives: all based on Durbin (1960 and Hannan and Rissanen (1982)).

• Two step approach: step 1 running a AR and estimate the residuals; plug
the estimated residuals in and estimate the resulting VARMA by OLS.

Model (stage 1):

 =
X


Π− + 

- q should be long enough to make  white noise.

- Typically set  = 05 ∗  05 ( to avoid non-invertible representations)

Model (stage 2):



 = ( −0)( − ̂) +()−1 +()̂−1 + 

where 0 = 0, and ̂ are obtained at the first stage.

- All the regressors are observables, can use OLS.

Dufour and Jouini (2005) if  grows at the rate  05 as  →∞ parameter

estimation is consistent and convergence to asymptotic normality at a rate

 025 (slow convergence).

Other approach add a third step to improve the efficiency of the estima-

tion (see Hannan and Kavalieris (1984) or iterate on the two steps (see

Kapetanios (2003)) to improve the convergence rate.


