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Outline

• DSGE-VAR.

• Data selection.

• Data rich DSGE (proxies, multiple data, conjunctural information, indi-
cators of future variables).

• Dealing with trends and non-balanced growth

• Prior elicitation.

• Non-linear DSGE.
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1 Combining DSGE and VARs

Recall:

• Log linearized solution of a DSGE model is

2 = A22()2−1 +A21()3 (1)

1 = A11()2−1 +A12()3 (2)

- 2 = states and the driving forces, 1 = controls, 3 shocks.

- A()   = 1 2 are time invariant (reduced form) matrices which de-

pend on , the structural parameters of preferences, technologies, policies,

etc.



- So far we have used the likelihood (|) and a prior () to construct
a posterior (|), where the likelihood is built using the DSGE model.

- Now we take an intermediate step. We specify (), we use the model

to derive (Σ|) and build the likelihood (|Σ).

Thus: if

- () is the prior distribution for DSGE parameters

- (Σ|) is the prior for the reduced form (VAR) parameters, induced

by the prior on the DSGE model parameters (the hyperparameters) and

the structure of the DSGE model.

- (|Σ) is likelihood of the data conditional on the reduced form

parameters (this the VAR represention of the data)



Del Negro and Schorfheide(2004): The joint posterior of VAR and struc-

tural parameters is

(Σ |) = (Σ | )(|) where

(Σ | ) is of normal-inverted Wishart form: easy to compute.

Posterior kernel ̆(|) = (|)() where (|) is given by

(|) =
Z
(|Σ)(Σ )

=
(|Σ)(Σ|)

(Σ|)

Given that (Σ | ) = (Σ |). Then



(|) =
|1

0
()() + 0|−05 |(1 +  )Σ̃()|−05(1+−)

|0()()|−05 |1Σ̃
()|−05(1−)

× (2)−052−05(1+−)Q
=1 Γ(05 ∗ (1 +  −  + 1− ))

2−05(1−)
Q

=1 Γ(05 ∗ (1 −  + 1− ))
(3)

1 = number of simulated observations, Γ is the Gamma function, 

includes all lags of  and the superscript  indicates simulated data.

- Since (|) is non-standard draw  using a MH algorithm.



• Dynare has now an option to jointly estimate a DSGE model and the

VAR which is consistent with the (log-) linear decision rules of the model.

• This is an application of Hierachical Bayes models (see Canova, ch.9).

• Advantage of the procedure do not need to choose between estimating
a VAR or a DSGE. Can do both.

• First, construct a draw for . Then, given , construct posterior of 

(draw  from a Normal-Wishart, conditional on ).



Estimation algorithm: Set 1 = ̄1.

1) Draw a candidate . Use MCMC to decide if accept or reject.

2) With the draw compute the model induced prior for the VAR parameters.

3) Compute the posterior for the VAR parameters ( analytically if you have

a conjugate structure or via the Gibbs sampler if you do not have one).

Draw from this posterior

4) Repeat steps 1)-3)  + ̄ times. Check convergence and compute

the Marginal likelihood.

5) Repeat 1)-4) for different 1. Choose the 1 that maximizes the mar-

ginal likelihood.



Example 1.1 In a basic sticky price-sticky wage economy, fix  = 066  =

1005  = 033 
 = 08  = 099  =  = 075 0 = 0 1 =

05 2 = −10 3 = 01. Run a VAR with output, interest rates, money

and inflation using actual quarterly data from 1973:1 to 1993:4 and data

simulated from the model conditional on these parameters. Overall, only

a modest amount of simulated data (roughly, 20 data points ) should be

used to set up a prior.

Marginal Likelihood, Sticky price sticky wage model.
 = 0  = 01  = 025  = 05  = 1  = 2
-1228.08 -828.51 -693.49 -709.13 -913.51 -1424.61



2 Choice of data and estimation

- DSGE models typically singular. Does it matter which variables are used

to estimate the parameters? Yes.

i) Omitting relevant variables may lead to distortions in parameter esti-

mates.

ii) Adding variables may improve the fit, but also increase standard errors

if added variables are irrelevant.

iii) Different variables may identify different parameters (e.g. with aggre-

gate consumption data and no data on who own financial assets may be

very difficult to get estimate the share of rule-of-thumb consumers).



Example 2.1

 = 1+1 + 2( −+1) + 1 (4)

 = 3+1 + 4 + 2 (5)

 = 5+1 + 3 (6)

Solution: ⎡⎢⎣ 



⎤⎥⎦ =
⎡⎢⎣ 1 0 2
4 1 24
0 0 1

⎤⎥⎦
⎡⎢⎣ 1
2
3

⎤⎥⎦
• 1 3 5 disappear from the solution.

•Different variables identify different parameters ( identifies no parameter
!!)



iv) Likelihood function may change shape depending on the variables used.

Multimodality may be present if important variables are omitted (e.g. if

 is excluded in above example).

- Using the same model and the same econometric approach Levin et al.

(2005, NBER macro annual) find habit in consumption is 0.30; Fernandez

Villaverde and Rubio Ramirez (2008, NBER macro annual ) find habit in

consumption is 0.88. Why? They use different data to estimate the same

model!

Can we say something systematic about the choice of variables?



Guerron Quintana (2010); use Smets and Wouters model and different

combinations of observable variables. Finds:

- Internal persistence of the model changes if nominal rate, inflation and

real wage are absent.

- Duration of price spells affected by the omission of consumption and real

wage data.

- Responses of inflation, investment, hours and real wage sensitive to the

choice of variables.



Parameter Wage stickiness Price Stickiness Slope Phillips
Data Median (s.d.) Median (s.d.) Median (s.d.)
Basic 0.62 (0.54,0.69)0.82 (0.80, 0.85)0.94 (0.64,1.44)

Without C 0.80 (0.73,0.85)0.97 (0.96, 0.98)2.70 (1.93,3.78)
Without Y 0.34 (0.28,0.53)0.85 (0.84, 0.87)6.22 (5.05,7.44)
Without C,W0.57 (0.46,0.68)0.71 (0.63, 0.78)2.91 (1.73,4.49)
Without R 0.73 (0.67,0.78)0.81 (0.77, 0.84)0.74 (0.53,1.03)

(in parenthesis 90% probability intervals)





Output recession after an investments specific shock and no C and W.



Canova, Ferroni and Matthes (2013)

• Use statistical criteria to select variables to be used in estimation

1) Choose vector that maximize the identificability of relevant parameters.

Compute the rank of the derivative of the spectral density of the model

solution with respect to the parameters, see Komunjer and Ng (2011)

Choose the combination of observables which gives you a rank as close as

possible to the ideal.

2) Compare the curvature of the convoluted likelihood in the singular and

the non-singular systems in the dimensions of interest to eliminate ties.



3) Choose vector that minimize the information loss going from the larger

scale to the smaller scale system. Information loss is measured by



( 

−1 ) =
L(| −1 )
L(| −1 )

(7)

where L(| 1) is the likelihood of  defined by

 =  +  (8)

 =  +  (9)

 is an iid convolution error,  the original set of variables and  the

j-th subset of the variables producing a non-singular system.

• Apply procedures to SW model driven with 4 shocks and 7 potential

observables.



Unrest SW RestrSW Restr and
Vector Rank(∆) Rank(∆) Sixth Restr

    186 188 
    185 188 
    185 188 
    185 188 
    185 188   
    185 188 
    185 188   
    185 187
...

    183 187
    183 187
    183 187
    183 187
    183 186
Ideal 189 189

Rank conditions for all combinations of variables in the unrestricted SW model (columns 2) and in the

restricted SW model (column 3), where  = 0025,  =  = 10,  = 15 and  = 018. The fourth

columns reports the extra parameter restriction needed to achieve identification; a blank space means that

there are no parameters able to guarantee identification.
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Basic T=1500 Σ = 001 ∗ 
Order Vector Relative Info Vector Relative info Vector Relative Info

1 (   ) 1 (   ) 1 (   ) 1
2 (   ) 0.89 (   ) 0.87 (   ) 0.86
3 (   ) 0.52 (   ) 0.51 (   ) 0.51
4 (   ) 0.5 (   ) 0.5 (   ) 0.5

Ranking based on the information statistic. The first two column present the results

for the basic setup, the next six columns the results obtained altering some nuisance

parameters. Relative information is the ratio of the () statistic relative to the best

combination.



• How different are good and bad combinations?

- Simulate 200 data points from the model with four shocks and estimate

structural parameters using

(1) Model A: 4 shocks and (   ) as observables (best rank analysis).

(2) Model B: 4 shocks and (   ) as observables (best information analysis).

(3) Model Z: 4 shocks and (   ) as observables(worst rank analysis).

(4) Model C: 4 structural shocks, three measurement errors and (      ) as

observables.

(5) Model D: 7 structural shocks (add price and wage markup and preference shocks)

and (      ) as observables.



True Model A Model B Model Z Model C Model D
 0.95 ( 0.920 , 0.975 ) ( 0.905 , 0.966 ) ( 0.946 , 0.958) ( 0.951 , 0.952 ) ( 0.939 , 0.943)*
 0.97 ( 0.930 , 0.969 ) ( 0.930 , 0.972 ) ( 0.601 , 0.856)* ( 0.970 , 0.971 ) ( 0.970 , 0.972 )
 0.71 ( 0.621 , 0.743 ) ( 0.616 , 0.788 ) ( 0.733 , 0.844)* ( 0.681 , 0.684)* ( 0.655 , 0.669)*
 0.51 ( 0.303 , 0.668 ) ( 0.323 , 0.684 ) ( 0.010 ,0.237 )* ( 0.453 , 0.780 ) ( 0.114 , 0.885)*
 1.92 ( 1.750 , 2.209 ) ( 1.040 , 2.738 ) ( 0.942 , 2.133) ( 1.913 , 1.934 ) ( 1.793 , 1.864)*
 1.39 ( 1.152 , 1.546 ) ( 1.071 , 1.581 ) ( 1.367 , 1.563) ( 1.468 , 1.496)* ( 1.417 , 1.444)*
 0.71 ( 0.593 , 0.720 ) ( 0.591 , 0.780 ) ( 0.716 , 0.743 ) (0.699 , 0.701)* ( 0.732 , 0.746)*
 0.73 ( 0.402 , 0.756 ) (0.242, 0.721)* ( 0.211 ,0.656 )* ( 0.806 , 0.839)*
 0.65 ( 0.313 , 0.617)* ( 0.251 , 0.713 ) ( 0.512 , 0.616 )* ( 0.317 , 0.322)* ( 0.509 , 0.514)*
 0.59 ( 0.694 , 0.745 ) ( 0.663 , 0.892)* ( 0.532 ,0.732 ) ( 0.728 , 0.729)* ( 0.683 , 0.690)*
 0.47 ( 0.571 , 0.680)* ( 0.564 , 0.847)* ( 0.613 , 0.768 )* ( 0.625 , 0.628)* ( 0.606 , 0.611)*
 1.61 ( 1.523 , 1.810 ) ( 1.495 , 1.850 ) ( 1.371 , 1.894 ) ( 1.624 , 1.631)* ( 1.654 , 1.661)*
 0.26 ( 0.145 , 0.301 ) ( 0.153 , 0.343 ) ( 0.255 , 0.373 ) ( 0.279 , 0.295)* ( 0.281 , 0.306)*
 5.48 ( 3.289 , 7.955 ) ( 3.253 , 7.623 ) ( 2.932 , 7.530 ) ( 11.376 , 13.897)* ( 4.332 , 5.371)*
 0.2 ( 0.189 , 0.331 ) ( 0.167 , 0.314 ) ( 0.136 , 0.266 ) ( 0.177 , 0.198)* ( 0.174 , 0.199)*
 2.03 ( 1.309 , 2.547 ) ( 1.277 , 2.642 ) ( 1.718 , 2.573 ) ( 1.868 , 1.980)* ( 2.119 , 2.188)*
 0.08 (0.001 , 0.143 ) ( 0.001 , 0.169 ) ( 0.012 , 0.173) ( 0.124 , 0.162)*
 0.87 ( 0.776 , 0.928 ) ( 0.813 , 0.963 ) ( 0.868 , 0.916 ) ( 0.881 , 0.886)*
∆ 0.22 ( 0.001 , 0.167)* (0.010, 0.192)* ( 0.130 ,0.215 )* (0.235 , 0.244)*
 0.46 ( 0.261 , 0.575 ) ( 0.382 , 0.460 ) ( 0.420 ,0.677 ) ( 0.357 , 0.422)* ( 0.386 , 0.455)*
 0.61 ( 0.551 , 0.655 ) ( 0.551 , 0.657 ) ( 0.071 ,0.113 ) ( 0.536 , 0.629 ) ( 0.585 , 0.688)*
 0.6 ( 0.569 , 0.771 ) ( 0.532 , 0.756 ) ( 0.503 ,0.663 ) ( 0.561 , 0.660 ) ( 0.693 , 0.819)*
 0.25 ( 0.100 , 0.259 ) ( 0.078 , 0.286 ) ( 0.225 ,0.267 ) ( 0.226 , 0.265 ) ( 0.222 , 0.261 )
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Alternatives:

• Solve out variables from the FOC before you compute the solution until

the number of observables is the same as the number of shocks. Which

variables do we solve out?

- Good strategy to follow if some component of  are non-observable.

- But format of the solution is no longer a restricted VAR(1) (it is a

VARMA).

• Add measurement errors until the combined number of structural shocks
and measurement errors equal the number of observables. Thus, if the

model has two shocks and implications for four variables, we could add at

least two and up to four measurement errors to the model. Can add up to

four. How many should we use?



Here the model represents the state equations (all are non-observables)
and the measurement equation is

2 = 1 +  (10)

- Need to restrict time series properties of . Otherwise difficult to distin-
guish dynamics induced by structural shocks and the measurement errors.

i) the measurement error is iid (since  is identified from the dynamics
induced by the reduced form shocks, if measurement error is iid,  identified
by the dynamics due to structural shocks).

ii) Ireland (2004): VAR(1) process for the measurement error; identification
problems! Can be used to verify the quality of the model’s approximation
to the data (see also Watson (1993)). Useful device when  is calibrated.
Less useful when  is estimated.

iii) Canova (2010): measurement error has a complex structure (see later).



3 Practical issues

Log-linear DSGE solution:

1 = A11()1−1 +A13()3 (11)

2 = A12()1−1 +A23()3 (12)

where 2 are the control, 1 the states (predetermined and exogenous), 3 the shocks,

 are the structural parameters and A the coefficients of the decision rules.

How to you estimate DSGE models on the data when:

a) the variables are mismeasured relative to the model quantities.

b) there are multiple observables that correspond to model quantities?

c) have additional information one would like to use, but it is not included

in the model.



For a-b): Recognize that existing measures of theoretical concepts are

contaminated.

- GDP is revised for up to three years; savings in the model do not corre-

spond to the savings computed in the national statistics. For the output

gap, should we use a statistical based measure or a theory based measure?

In the last case, what is the flexible price equilibrium?

- How do you measure hours? Use establishment survey series? Household

survey series? Employment?





- Do we use CPI inflation, GDP deflator or PCE inflation?

- Different measures contain (noisy) information about the true series. Not

perfectly correlated among each other.



Case 1: Measurement error is present.

Observables . Model based quantities 

 () = [1 2],  is a selec-

tion matrix.

 =  () + 

where  is iid measurement error.

• In all other cases use ideas underlying factor models



- For b) let 1 be a  × 1 vector of observable variables and  () be of
dimension  × 1 where dim dim (N) dim(k). Then:

1 = Λ3()
 + 1 (13)

where the first row of Λ3 is normalized to 1. Thus:

1 = Λ3[11 2A12()1−1 + 1A13()3]0 + 3 (14)

= Λ3[11 1B()1]0 + 3 (15)

where  is iid measurement error.

• 1 can be used to recover the vector of states 1 and to estimate 



- What is the advantage of this procedure? If only one component of 
is used to measure 1, estimate of  will probably be noisy.

- Using a vector of information and assuming that the elements of  are

idiosyncratic:

i) reduce the noise in the estimate of 1 (the estimated variance of 1
will be asymptotically of the order 1 time the variance obtained when

only one indicator is used (see Stock and Watson (2002)).

ii) estimates of  more precise, see Justiniano et al. (2012).



- How different is the specification from factor models?. The DSGE model

structure is imposed in the specification of the law of motion of the states

(states have economic content). In factor models the states are assumed

to follow is an assumed unrestricted time series specification, say an AR(1)

or a random walk, and are uninterpretable.

- How do we separately identify the dynamics induced by the structural

shocks and the measurement errors? Since the measurement error is iden-

tified from the cross sectional properties of the variables in 3, possible

to have structural disturbances and measurement errors to both be serially

correlated of an unknown form.



Many cases fit in c):

1) Sometimes we may have proxy measures for the unobservable states.

(commodity prices are often used as proxies for future inflation shocks,

stock market shocks are used as proxies for future technology shocks, see

Beaudry and Portier (2006).

2) Sometimes we have survey data to proxy for unbosreved states ( e.g

business cycles).

3) Sometimes we have conjunctoral information.

- Can use these measures to get information about the states. Let  a

 × 1 vector of variables. Assume

2 = Λ4 + 2 (16)



where Λ4 is unrestricted. Combining all sources of information we have

 = Λ1 +  (17)

where  = [1 2]
0,  = [1 2] and Λ = [Λ3Λ3B()Λ4]0.



- The fact that we are using the DSGE structure (B depends on ) imposes
restrictions on the way the data behaves.

- Thus, we interpret data information through the lenses of the DSGE

model.

- Can still jointly estimate the structural parameters and the unobservable

states of the economy.



3.1 An example

Consider a three equation New-keynesian model:

 = (+1)−
1


( −+1) + 1 (18)

 = +1 +  + 2 (19)

 = −1 + (1− )( + ) + 3 (20)

where  is the discount factor,  the relative risk aversion coefficient, 
the slope of Phillips curve, (  ) policy parameters. Here  is the
output gap,  the inflation rate and  the nominal interest rate. Assume

1 = 11−1 + 1 (21)

2 = 22−1 + 2 (22)

3 = 3 (23)

where 1 2  1,  ∼ (0 2)  = 1 2 3.



- There are ambiguities in linking the output gap, the inflation rate and

the nominal interest rate to empirical counterparts. Which the nominal

interest rate should we use? How do we measure the gap?

Write the solution of the model as

 = ()−1 + () (24)

where  is a 8 × 1 vector including   , the three shocks and the

expectations of  and  and  = (     1 2 1 2 3).

Let    = 1     be observable indicators for , let 

   = 1    

observable indicators for , and 

   = 1     observable indicators for

. Let = [
1
      


  1      


  1     


 ]

0 be a ++×1
vector.



Assume that (24) is the state equation of the system and that the mea-

surement equation is

 = Λ +  (25)

where Λ is  + + × 3 matrix with at most one element different
from zero in each row.

- Once we normalize the nonzero element of the first row of Λ to be one,

we can estimate (24)-(25) with standard methods. The routines give us

estimates of Λ   and of  which are consistent with the data.



Conjunctoral information

- Can use conjunctoral information in the same way as any other data that

can give us information about the states.

- Suppose we have available measures of future inflation (from surveys,

from forecasting models) or data which may have some information about

future inflation, for example, oil prices, housing prices, etc.

- Suppose want to predict inflation  periods ahead, = 1 2   . Let



   = 1     be the observable indicators for  and let = [  

1
      


 ]0

be a 2 + × 1 vector.

The measurement equation is:

 = Λ +  (26)



where the 2 + × 3 matrix Λ is =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 1
        
0 0 

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

- Estimates of  can be obtained with the Kalman filter. Using estimates

of () and () from the state equation, we can unconditionally pre-

dict  h-steps ahead or predict its path conditional on a path for +.

- Forecast will incorporate information from the model, information from

conjunctural and regular data and information about the path of the

shocks. Information is optimally mixed depending on their relative pre-

cision.



Using Mixed frequency data

- High frequency data very useful to understand the state of the economy

(e.g. tapering of US expansionary onetary policy).

- Macro data available at much lower frequencies. How do we combine

high and low freqnecy information?

- Suppose use have monthly data in addition to standard quartely macro

data. Let  the quartely version of the monthly data, obtained using

data from the j-month of the quarter. Set  = [1 23]
0. The model

is

 = Λ () +  (27)

See Foroni and Marcellino (2013).



4 Dealing with trends and non-balanced growth

paths

- Most of models available for policy are stationary and cyclical.

- Data is close to non-stationary; it has trends and displays breaks.

- How to we match models to the data?

a) Detrend actual data: the model is a representation for detrended data.

Problem: which detrended data is the model representing?
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b) Take ratios in the dta and in the model - will get rid of trends if

variables in the ratio are cointegrated. Problem: data does not seem to

satisfy balanced growth (the variables in the ratios are not cointegrated)
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c) Build-in a trend into the model. Detrend the data with model-based

trend. Problems

1) Specification of the trend is arbitary (deterministic? stochastic?).

2) Where you put the trend (TFP? preference?) matters for estimation

and inference.

• General problem: statistical definition of a cycle is different from the

economic definition. All statistical approaches are biased, even in large

samples.
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General case

- In developing countries most of cyclical fluctuations driven by trends
(permanent shocks), see Aguiar and Gopinath (2007).



Two approaches to deal with the problem:

1) Data-rich environment, see Canova and Ferroni (2011). Let  be the
actual data filtered with method  = 1 2   and  = [1  

2
    ].

Assume:

 = 0 + 01() +  (28)

where   = 0 1 are matrices of parameters, measuring the bias and
correlation between the filter data  and model based quantities (); 
are measurement errors and  the structural parameters.

- Factor model setup a-la Boivin and Giannoni (2005); model based quan-
tities are non-observable.

- Jointly estimate  and ’s. Can obtain a more precise estimates of the
unobserved () if measurement error is uncorrelated across methods.

- Same interpretation as GMM with many instruments.



2) Bridge cyclical model and the data with a flexible specification (Canova,
2014)).

 = +  +  () +  (29)

where  ≡ ̃ − (̃ ) the log demeaned vector of observables,  =
̄ − (̃ ), 


 is the non-cyclical component,  () ≡ [ ]

0,  is a
selection matrix, is the model based- cyclical component,  is a iid (0Σ)
(measurement) noise,   


 () and  are mutually orthogonal.

- Model (linearized) solution: cyclical component

 = ()−1 + () (30)

 =  ()−1 +() (31)

+1 = () + +1 (32)

 () () () () functions of the structural parameters  =
(1     ),  = ̃ − ̄;  = ̃ − ̄; and  are the disturbances, ̄ ̄
are the steady states of ̃ and ̃.



- Non cyclical component

 = 1

−1 + ̄−1 +   ∼  (0Σ2) (33)

̄ = 2̄−1 +   ∼  (0Σ2) (34)

Σ2  0 and Σ2 = 0, 

 is a vector of I(2) processes.

1 = 2 = Σ2 = 0, and Σ2  0,  is a vector of I(1) processes.

1 = 2 = Σ2 = Σ2 = 0, 

 is deterministic.

1 = 2 = Σ2  0 and Σ2  0 and 2
2
is large,  is ”smooth”( as in

HP).

1 6=  2 6=  or both, nonmodel based component has power at particular
freqnecies

- Jointly estimate structural  and non-structural parameters (1 2ΣΣ).



Advantages of suggested approach:

• No need to take a stand on the properties of the non-cyclical component
and on the choice of filter to tone down its importance - specification errors

and biases limited.

• Estimated cyclical component not localized at particular frequencies of
the spectrum.

- Cyclical, non-cyclical and measurement error fluctuations driven by dif-

ferent and orthogonal shocks. But model is observationally equivalent to

one where cyclical and non-cyclical are correlated.



Example 4.1 The log linearized equilibrium conditions of basic NK model are:

 =  −


1− 
( − −1) (35)

 =  + (1− ) (36)

 = − +  (37)

 = −1 + (1− )( + ) +  (38)

 = (+1 +  − +1) (39)

 = ( +  −  + ) + +1 (40)

 = −1 +  (41)

where  =
(1−)(1−)



1−
1−+,  is the Lagrangian on the consumer budget constraint,

 is a technology shock,  a preference shock,  is an iid monetary policy shock and 

an iid markup shock.

Estimate this model with a number of detrending transformations. Do we

get different estimates?







• Simulate data from a model where trend is unimportant and where trend

is important.

- What happens to parameter estimates obtained with standard methods?

- Does the new method recover the DGP better in both cases?

- What kind of parameters are distorted?



DGP1
True value LT HP FOD BP Ratio1Flexible

 0.50 0.04 0.08 0.00 0.11 0.05 0.04
 0.70 0.00 0.00 0.00 0.01 0.07 0.10
 0.30 0.00 0.04 0.00 0.06 0.04 0.06
 0.70 0.05 0.05 0.01 0.06 0.13 0.01
 1.50 0.00 0.00 0.00 0.01 0.02 0.00
 0.40 0.17 0.20 0.17 0.19 0.15 0.00
 0.75 0.03 0.04 0.03 0.03 0.02 0.03
 0.50 0.00 0.04 0.00 0.00 0.00 0.07
 0.80 0.03 0.05 0.00 0.05 0.00 0.05
 1.12 1.60 0.45 3.89 0.64 8.79 1.00
 0.50 1.47 0.01 3.18 0.03 0.02 0.16
 0.10 1.37 0.03 3.75 0.03 0.00 0.00
 1.60 13.1418.8117.6838.52 38.36 1.94

Total1 0.30 0.40 0.21 0.48 0.49 0.24
Total2 17.9119.7928.7139.75 47.66 3.45

MSE. In DPG1 there is a unit root component to the preference shock and






= [11 19].



DGP2
True value LT HP FOD BP Ratio1Flexible

 0.50 0.04 0.11 0.17 0.12 0.12 0.06
 0.70 0.01 0.00 0.00 0.03 0.08 0.17
 0.30 0.00 0.05 0.00 0.06 0.02 0.07
 0.70 0.05 0.05 0.04 0.05 0.13 0.02
 1.50 0.00 0.00 0.00 0.00 0.01 0.00
 0.40 0.16 0.21 0.08 0.19 0.15 0.00
 0.75 0.03 0.04 0.02 0.05 0.04 0.03
 0.50 0.00 0.04 0.00 0.00 0.01 0.08
 0.80 0.04 0.05 0.03 0.03 0.00 0.06
 1.12 10.41 0.87 2.80 0.69 9.43 0.97
 0.50 9.15 0.06 1.91 0.06 0.01 0.17
 0.10 9.35 0.00 1.05 0.03 0.00 0.00
 1.60 10.4120.7220.3357.03 40.17 1.90

Total1 0.29 0.46 0.32 0.51 0.55 0.35
Total2 39.6522.2026.4458.34 50.17 3.54

MSE. In DGP2 all shocks are stationary but there is measurement error and 




=

[009 011] The MSE is computed using 50 replications.
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Why are estimates distorted with standard filtering?

- Posterior proportional to likelihood times prior.

- Log-likelihood of the parameters (see Hansen and Sargent (1993))

(|) = 1() +2() +3()

1() =
1



X


log det()

2() =
1



X


trace [()]
−1 ()

3() = (()− ())(0)
−1(()− ())



where  =

   = 0 1      − 1, () is the model based spectral

density matrix of , () the model based mean of ,  () is the data
based spectral density of  and () the unconditional mean of the data.

- first term: sum of the one-step ahead forecast error matrix across fre-
quencies;

- the second term: a penalty function, emphasizing deviations of the model-
based from the data-based spectral density at various frequencies.

- the third term: a penalty function, weighting deviations of model-based
from data-based means, with the spectral density matrix of the model at
frequency zero.



- Suppose that the actual data is filtered so that frequency zero is elimi-
nated and low frequencies deemphasized. Then

(|) = 1() +2()
∗

2()
∗ =

1



X


trace [()]
−1 ()

∗

where  ()
∗ =  () and  is an indicator function.

Suppose that  = [12], an indicator function for the business cycle

frequencies, as in an ideal BP filter.

The penalty 2()
∗ matters only at these frequencies.



Since 2()
∗ and 1() enter additively in the log-likelihood function,

there are two types of biases in ̂.

- estimates ()
∗ only approximately capture the features of  ()∗

at the required frequencies - the sample version of 2()
∗ has a smaller

values at business cycle frequencies and a nonzero value at non-business
cycle ones.

- To reduce the contribution of the penalty function to the log-likelihood,
parameters are adjusted to make [()] close to  ()

∗ at those fre-
quencies where  ()

∗ is not zero. This is done by allowing fitting errors in
1() large at frequencies  ()

∗ is zero - in particular the low frequencies.



Conclusions:

1) The volatility of the structural shocks will be overestimated - this makes
[()] close to  ()

∗ at the relevant frequencies.

2) Their persistence underestimated - this makes () small and the
fitting error large at low frequencies.

Estimated economy very different from the true one: agents’ decision rules
are altered.



- Higher perceived volatility implies distortions in the aversion to risk and
a reduction in the internal amplification features of the model.

- Lower persistence implies that perceived substitution and income effects
are distorted with the latter typically underestimated relative to the former.

- Distortions disappear if:

i) the non-cyclical component has low power at the business cycle frequen-
cies. Need for this that the volatility of the non-cyclical component is
considerably smaller than the volatility of the cyclical one.

ii) The prior eliminates the distortions induced by the penalty functions.



Question: What if we fit the filtered version of the model to the filtered
data? as suggested by Chari, Kehoe and McGrattan (2008)

- Log-likelihood=1()
∗ = 1



P
 log det()+2(). Suppose that

 = [12].

- 1()
∗ matters only at business cycle frequencies while the penalty func-

tion is present at all frequencies.

- If the penalty is more important in the low frequencies (typical case)
parameters adjusted to make [()] close to  () at these frequencies.

-Procedure implies that the model is fitted to the low frequencies com-
ponents of the data!!!



i) Volatility of the shocks will be generally underestimated.

ii) Persistence overestimated.

iii) Since less noise is perceived, decision rules will imply a higher degree
of predictability of simulated time series.

iv) Perceived substitution and income effects are distorted with the latter
overestimated.

How can we avoid distortions?

- Build models with non-cyclical components (difficult).

- Use filters which flexibly adapt, see Gorodnichenko and Ng (2010) and
Eklund, et al. (2008).



- The true and estimated log spectrum and ACF close.

- Both true and estimate cyclical components have power at all frequencies.
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Actual data: do we get a different story?
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Figure 5: Posterior distributions of the policy activism parameter, samples
1964:1-1979:4 and 1984:1-2007:4. LT refers to linearly detrended data, HP to Hodrick

and Prescott filtered data and Flexible to the approach the paper suggests



LT FOD Flexible
Output InflationOutput InflationOutput Inflation

TFP shocks 0.01 0.04 0.00 0.01 0.01 0.19
Gov. expenditure shocks 0.00 0.00 0.00 0.00 0.00 0.02
Investment shocks 0.08 0.00 0.00 0.00 0.00 0.05

Monetary policy shocks 0.01 0.00 0.00 0.00 0.00 0.01
Price markup shocks 0.75(*) 0.88(*) 0.91(*) 0.90(*) 0.00 0.21
Wage markup shocks 0.00 0.01 0.08 0.08 0.03 0.49(*)
Preference shocks 0.11 0.04 0.00 0.00 0.94(*) 0.00

Variance decomposition at the 5 years horizon, SW model. Estimates are obtained using
the median of the posterior of the parameters. A (*) indicates that the 68 percent highest
credible set is entirely above 0.10. The model and the data set are the same as in Smets
Wouters (2007). LT refers to linearly detrended data, FOD to growth rates and Flexible
to the approach this paper suggests.



5 Eliciting Priors from existing information

- Prior distributions for DSGE parameters often arbitrary.

- Prior distribution for individual parameters assumed to be independent: the joint dis-
tribution may assign non-zero probability to ” unreasonable” regions of the parameter
space.

- Prior sometimes set having some statistics in mind (the prior mean is similar to the one
obtained in calibration exercises).

- Same prior is used for the parameters of different models. Problem: same prior may
generate very different dynamics in different models. Hard to compare the outputs.



Example 5.1 Let  = 1−1 + 2 +   ∼ (0 1). Suppose 1 and 2 are
independent and (1) ∼ (0 1− )   0; (2|1) ∼ (̄ ).

Since the mean of  is  =
2
1−1 , the prior for 1 and 2 imply that |1 ∼ (̄ 

(1−1)2 ).

Hence, the prior mean of  has a variance which is increasing in the persistence parameter
1! Why? Reasonable ?

Alternative: state a prior for , derive the prior for 1 and 2 (change of variables). For
example, if  ∼ (̄ 2) then (1) = (0 1−) (2|1) = (̄(1−1) 

2(1−1)2).
Note here that the priors for 1 and 2 are correlated.

Suppose you want to compare the model with  =  +   ∼ (0 1). If () =
(̄ 2) the two models are immediately comparable. If, instead, we had assumed
independent priors for (1) and (2), the two models would not be comparable (standard
prior has weird predictions for the prior of the mean of ).



- Del Negro and Schorfheide (2008): elicit priors consistent with some
distribution of statistics of actual data (see also Kadane et al. (1980)).
Basic idea:

i) Let  be a set of DSGE parameters. Let  be a set of statistics obtained
in the data with  observations and  be the standard deviation of these
statistics (which can be computed using asymptotic distributions or small
sample devices, such as bootstrap or MC methods).

ii) Let () be the same set of statistics which are measurable from the
model once  is selected using  observations. Then

 = () +   ∼ (0Σ) (42)

where  is a set of measurement errors.



Note

i) in calibration exercises Σ = 0 and  are averages of the data.

ii) in SMM: Σ = 0 and  are generic moments of the data.

Then (()| ) = ( |()), where the latter is the conditional
density in (42).

Given any other prior information () (which is not based on  ) the
prior for  is

(| ) ∝ (()| )() (43)



- ( ) ≥ (): overidentification is possible.

- Even if Σ is diagonal, () will induce correlation across .

-Information used to construct  should be different than information
used to estimate the model. Could be data in a training sample or could
be data from a different country or a different regime (see e.g. Canova
and Pappa, 2007).

- Assume that  are normal why? Make life easy, Could also use other
distributions, e.g. uniform, t.

- What are the ? Could be steady states, autocorrelation functions, etc.
What  is depends on where the parameters enters.



Example 5.2

max
(+1)

0
X



( (1−)

1−)1−

1− 
(44)

 +  ++1 =  + (1− ) (45)

ln  = ̄ +  ln −1 + 1 1 ∼ (0 2) (46)

ln = ̄+  ln−1 + 4 4 ∼ (0 2) (47)

 = 
1−
 


 (48)

0 are given,  is consumption,  is hours,  is the capital stock. Let
 be financed with lump sum taxes and  the Lagrangian on (45).



The FOC are ((52) and (53) equate factor prices and marginal products)

 = 
(1−)−1
 (1−)

(1−)(1−) (49)


1−
 

−1
 = −(1− )

(1−)
 (1−)

(1−)(1−)−1 (50)

 = +1[(1− )+1
−
+1


+1 + (1− )] (51)

 = 



(52)

 = (1− )



(53)

Using (49)-(50) we have:

−1− 





1−
= 




(54)



Log linearizing the equilibrium conditions

̂ − ((1− )− 1)̂ + (1− )(1− )


1−
̂ = 0 (55)

̂+1 +
(1− )()

(1− )() + (1− ))
(\+1 − ̂+1) = ̂ (56)

1

1−
̂ + ̂ −d = 0 (57)

̂ −\ + ̂ = 0 (58)

̂ −\ + ̂ = 0 (59)

\ − ̂ − (1− )̂ − ̂ = 0 (60)

(



)̂ + (




)̂ + (




)(̂+1 − (1− )̂)−\ = 0 (61)

(60) and (61) are the production function and resource constraint.



Four types of parameters appear in the log-linearized conditions:

i.) Technological parameters ( ).

ii) Preference parameters (  ).

iii) Steady state parameters ( ( 
 )

 ( 
 )

 ( 
 )

).

iv) Parameters of the driving process (  
2
 

2
).

Question: How do we set a prior for these 13 parameters?



The steady state of the model (using (51)-(54)-(45)) is:

1− 


(




) = 

1−


(62)

[(1− )(



) + (1− )] = 1 (63)

(



) + (




) + (




) = 1 (64)




=  (65)




=  (66)

Five equations in 8 parameters!! Need to choose.

For example: (62)-(66) determine ( ( 
 )

 ( 
 )

  ) given

(( 
 )

 , ).



Set 2 = [(


 )
 , ] and 1 = [

 ( 
 )

 ( 
 )

  ]

Then if 1 are steady state relationships, we an use (62)-(66) to construct
a prior distribution for 1|2.

How do we measure uncertainty in 1?

- Take a rolling window to estimate 1 and use uncertainty of the estimate
to calibrate var().

- Bootstrap 1 , etc.



How do we set a prior for 2? Use additional information (statistics)!

- ( 
 )

 could be centered at the average G/Y in the data with standard
error covering the existing range of variations

-  = (1 + )−1 and typically  = [00075 00150] per quarter. Choose
a prior centered at around those values and e.g. uniformly distributed.

-  is related to Frish elasticity of labor supply: use estimates of labor
supply elasticity to obtain histograms and to select a prior shape.

Note: uncertainty in this case could be data based or across studies (meta
uncertainty).



Parameters of the driving process (  
2
 

2
) do not enter the steady

state. Call them 3. How do we choose a prior for them?

-  
2
 can be backed out from moments of Solow residual i.e. estimate

the variance and the AR(1) of ̂ = ln− (1− )− , once  is
chosen. Prior for  induce a distribution for ̂

-  
2
 backed out from moments government expenditure data.

Prior standard errors should reflect variations in the data of these parame-
ters.



- For  (coefficient of relative risk aversion (RRA) is 1 − (1 − )) one
has two options:

(a) appeal to existing estimates of RRA. Construct a prior which is con-
sistent with the cross section of estimates (e.g. a 2(2) would be ok).

(b) select an interesting moment, say () and use

() = (()|1 2 3) +  (67)

to back out a prior for .



For some parameters (call them 5) we have no moments to match but
some micro evidence. Then (5) = (5) could be estimated from the
histogram of the estimates which are available.

In sum, the prior for the parameters is

() = (1|1 )(2|2 )(3|3 )(4|4 )
(1)(2)(3)(4)Π(5) (68)



- If we had used a different utility function, the prior e.g. for 1 4 would
be different. Prior for different models/parameterizations should be dif-
ferent.

- To use these priors, need a normalizing constant ( (43 is not necessarily a
density). Need a RW metropolis to draw from the priors we have produced.

- Careful about multidimensional ridges: e.g. steady states are 5 equations,
and there are 8 parameters - solution not unique, impossible to invert the
relationship.

- Careful about choosing 3 and 4 when there are weak and partial iden-
tification problems.



Extension: Lombardi and Nicoletti (2011)

• Employ user-supplied impulse response to get a joint prior for the para-
meters

- ∗ user supplied vector of IRF; () model based IRF.

- Distance function (|∗) = (()−∗) (()−∗)0,  weighting
matrix.

- Prior kernel: (|∗) = (−(|∗))
(1+(−(|∗))

- Prior: (|∗) = (|∗)R
(|∗).



 = [1 2]. Two special cases:

1) Prior kernel (1|∗ ̄2) (some parameters do not enter impulse
responses and are calibrated).

2) Prior kernel (1|∗ 2)(2|̄2Σ2) (prior for some parameters
obtained from sources other than IRF).



6 Non linear DSGE models

2+1 = 1(2 1 ) (69)

1 = 2(2 2 ) (70)

2 = measurement errors, 1 = structural shocks,  = vector of structural
parameters, 2 = vector of states, 1 = vector of controls. Let  =
(1 2),  = (1 2), 

−1 = (0     −1) and  = (1     ).

• Likelihood is L(  20) =
Q
=1 (|−1 )(20 ). Integrating the

initial conditions 20 and the shocks out, we have:

L(  ) =
Z
[
Y
=1

Z
(| −1 20 )(|−1 20 )](20 )20

(71)
(71) is intractable.



• If we have  draws for 20 from (20 ) and  draws for |−1,
 = 1       = 1      , from (|−1 20 ) approximate (71) with

L(  ) = 1


[
Y
=1

1



X


(||−1 −1 20 )] (72)

Drawing from (20 ) is simple; drawing from (|−1 20 ) compli-
cated. Fernandez Villaverde and Rubio Ramirez (2004):
use (−1|−1 20 ) as importance sampling for (|−1 20 ):



- Draw 20 from (20 ). Draw |−1  times from (|−1 20 ) =
(−1|−1 20 )(|).

- Construct 
 =

(||−1−120)P
=1 (||−1−120)

and assign it to each draw

|−1.

- Resample from {|−1}=1with probabilities equal to 
.

- Repeat above steps for every  = 1 2      .

Step 3) is crucial, if omitted, only one particle will asymptotically remain
and the integral in (71) diverges as  →∞.

• Algorithm is computationally demanding. You need a MC within a MC.
Fernandez Villaverde and Rubio Ramirez (2004): some improvements over
linear specifications.


