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1 Preliminaries

Classical and Bayesian analysis di�er on a number of issues

Classical analysis:

� Probabilities = limit of the relative frequency of the event.

� Parameters are �xed, unknown quantities.

� Unbiased estimators useful because average value of sample estimator
converge to true value via some LLN. E�cient estimators preferable be-
cause they yield values closer to true parameter.

� Estimators and tests are evaluated in repeated samples (to give correct
result with high probability).



Bayesian analysis:

� Probabilities = degree of (typically subjective) beliefs of a researcher in

an event.

� Parameters are random variables with a probability distributions.

� Properties of estimators and tests in repeated samples uninteresting:
beliefs not necessarily related to relative frequency of an event in large

number of hypothetical experiments.

� Estimators are chosen to minimize expected loss functions (expectations
taken with respect to the posterior distribution), conditional on the data.

Use of probability to quantify uncertainty.



In large samples (under appropriate regularity conditions):

� Posterior mode �� P! �0 (Consistency)

� Posterior distribution converges to a normal with mean �0 and variance
(T � I(�0))

�1, where I(�) is Fisher's information matrix (Asymptotic
normality).

Classical and Bayesian analyses di�er in small samples and for dealing

with unit root processes.



Bayesian analysis requires:

� Initial information ! Prior distribution.

� Data ! Likelihood.

� Prior and Likelihood ! Bayes theorem ! Posterior distribution.

� Can proceed recursively (mimic economic learning).



2 Bayes Theorem

Parameters of interest � 2 A, A compact. Prior information g(�). Sample
information f(yj�) � L(�jy).

� Bayes Theorem.

g(�jy) = f(yj�)g(�)
f(y)

/ f(yj�)g(�) = L(�jy)g(�) � �g(�jy)

f(y) =
R
f(yj�)g(�)d� is the unconditional sample density (Marginal like-

lihood), and it is constant from the point of view of g(�jy); g(�jy) is the
posterior density, �g(�jy) is the posterior kernel, g(�jy) = �g(�jy)R

�g(�jy)d�.

� f(y) it is a measure of �t. It tells us how good the model is in reproducing
the data, on average over the parameter space.



� � are regression coe�cients, structural parameters, etc.; g(�jy) is the
conditional probability of �, given what we observe, y.

� Theorem uses rule: P (A;B) = P (AjB)P (B) = P (BjA)P (A). It tells
us how to modify some prior beliefs about �, once we observe y. It does

not tells us what the initial beliefs are.

To use Bayes theorem we need:

a) Formulate prior beliefs, i.e. choose g(�).

b) Formulate a model for the data (the conditional probability of f(yj�)).

After observing the data, we treat the model as the likelihood of � condi-

tional on y, and update beliefs about �.



� Bayes theorem with nuisance parameters (e.g. �1 long run coe�cients,

�2 short run coe�cients; �1 regression coe�cient; �2 serial correlation

coe�cient in the errors).

Let � = [�1; �2] and suppose interest is in �1. Then g(�1; �2jy) /
f(yj�1; �2)g(�1; �2)

g(�1jy) =
Z
g(�1; �2jy)d�2

=
Z
g(�1j�2; y)g(�2jy)d�2 (1)

Posterior of �1 averages the conditional of �1 with weights given by the

posterior of �2.



� Bayes Theorem with two (N) samples.

Suppose yt = [y1t; y2t] and that y1t is independent of y2t. Then

�g � f(y1; y2j�)g(�) = f2(y2j�)f1(y1j�)g(�) / f2(y2j�)g(�jy1) (2)

Posterior for � is obtained �nding �rst the posterior of using y1t and then,

treating it as a prior, �nding the posterior using y2t.

- Sequential learning.

- Can use data from di�erent regimes.

- Can use data from di�erent countries.



2.1 Likelihood Selection

� It should re
ect an economic model.

� It must represent well the data. Misspeci�cation problematic since it
spills across equations and makes estimates uninterpretable.

� For our purposes the likelihood is simply the theoretical (DSGE) model
you write down.



2.2 Prior Selection

� Three methods to choose priors in theory. Two not useful for DSGE
models since are designed for models which are linear in the parameters.

1) Non-Informative subjective. Choose reference priors because they are
invariant to the parametrization.

- Location invariant prior: g(�) =constant (=1 for convenience).

- Scale invariant prior g(�) = ��1.

- Location-scale invariant prior : g(�; �) = ��1.

� Non-informative priors useful because many classical estimators (OLS,
ML) are Bayesian estimators with non-informative priors



2) Conjugate Priors

A prior is conjugate if the posterior has the same form as the prior. Hence,

the form posterior will be analytically available, only need to �gure out its

posterior moments.

� Important result in linear models with conjugate priors: Posterior mo-
ments = weighted average of sample and prior information. Weights =

relative precision of sample and prior informations.
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3) Objective priors and ML-II approach. Based on:

f(y) =
Z
L(�jy)g(�)d� � L(yjg) (3)

Given L(�jy), L(yjg) re
ects the plausibility of g in the data.
If g1 and g2 are two priors and L(yjg1) > L(yjg2), better support for g1.
Hence, can estimate the "best" g using L(yjg).

In practice, set g(�) = g(�j�), where �= hyperparameters (e.g. the mean

and the variance of the prior). Then L(yjg) � L(yj�).

The � that maximizes L(yj�) is called ML-II estimator and g(�j�ML) is

ML-II based prior.



Important:

- y1; : : : yT should not be the same sample used for inference.

- y1; : : : yT could represent past time series information, cross sectional/

cross country information.

- Typically y1; : : : yT is called "Training sample".



4) Priors for DSGE - similar to MLII priors.

- Assume that g(�) = g1(�1)g2(�2)::::gq(�q):

- Use a conventional format for the distributions: a Normal, Beta and

Gamma for individual parameters. Choose moments in a data based fash-

ion: mean = calibrated parameters, variance: subjective.

Problems:

� Independent priors typically inconsistent with any subjective prior beliefs
over joint outcomes. In particular, multivariate priors are often too tight!!

� Calibrated value may be di�erent for di�erent purposes. For example,
risk aversion mean is 6-10 to �t the equity premium; close to 1-2 if we



want to �t the reaction of consumption to changes in monetary policy;

negative values to �t aggregate lottery revenues. Which one do we use?

Same for habit parameters (see Faust and Gupta, 2012)

� Circularity: priors based on the same data used to estimate!! Use cali-
brated values in a " training sample".

Negro and Schorfheide (2008): formally choose data based priors in train-

ing samples which are not independent.



Summary

Inputs of the analysis: g(�); f(yj�).

Outputs of the analysis:

g(�jy) / f(yj�)g(�) (posterior),

f(y) =
R
f(yj�)g(�) (marginal likelihood), and

f(yT+� jyT ) (predictive density of future observations).

Likelihood should re
ect data/ economic theory.

Prior could be non-informative, conjugate, data based (objective).



- In simple examples, f(y) and g(�jy) can be computed analytically.

- In general, they can only be computed numerically by Monte Carlo meth-

ods.

- If the likelihood is a (log-linearized) DSGE model: always need numerical

computations.



3 Posterior simulators

Objects of interest for Bayesian analysis: E(h(�)) =
R
h(�)g(�jy)d�. Oc-

casionally, can evaluate the integral analytically. In general, it is impossible.

If g(�jy) were available: we could compute E(h(�)) with MC methods:

- Draw �l from g(�jy). Compute h(�l)

- Repeat draw L times. Average h(�l) over draws.

Example 3.1 Suppose we are interested in computing Pr(� > 0). Draw

�l from g(�jy). If �l > 0, set h(�l) = 1, else set h(�l) = 0. Draw L times
and average h(�l) over draws. The result is an estimate of Pr(� > 0).



� Approach works because with iid draws the law of large numbers (LLN)
insures that sample averages converge to population averages (ergodicity).

� By a central limit theorem (CLT) the di�erence between sample and

population averages has a normal distribution with zero mean and some

variance as L grows (numerical standard errors can be used a a measure

of accuracy).

- Since g(�jy) is not analytically available, need to use a gAP (�jy), which
is similar to g(�jy), and easy to draw from.

� Normal Approximation

� Basic Posterior simulators (Acceptance and Importance sampling).

� Markov Chain Monte Carlo (MCMC) methods



3.1 Normal posterior analysis

If T is large g(�jy) � f(�jy). If f(�jy) is unimodal, roughly symmetric,
and �� (the mode) is in the interior of A:

log g(�jy) � log g(��jy) + 0:5(����)0[@
2 log g(�jy)
@�@�0

j�=��](����) (4)

Since g(��jy) is constant, letting ��� = �[
@2 log g(�jy)
@�@�0

�1j�=��]

g(�jy) � N(��;���) (5)

- An approximate 100(1-�)% highest credible set is ����(�=2)I(��)�0:5
where �(:) the CDF of a standard normal.



� Approximation is valid under regularity conditions when T !1 or when

the posterior kernel is roughly normal. It is highly inappropriate when:

- Likelihood function 
at in some dimension (I(��) badly estimated).

- Likelihood function is unbounded (no posterior mode exists).

- Likelihood function has multiple peaks.

- �� is on the boundary of A (quadratic approximation wrong).

- g(�) = 0 in a neighborhood of �� (quadratic approximation wrong).



How do we construct a normal approximation?

A) Find the mode of the posterior.

max log g(�jy) = max(logL(�jy) + log g(�))

- Problem is identical to the one of �nding the maximum of a likelihood.

The objective function di�ers.

Two mode �nding algorithms:



i) Newton type of algorithm

- Let L = log g(�jy) (or L = log �g(�jy)). Choose �0.

- Calculate L0 = @L
@�(�0) L

00
= @2L
@�@�0(�0). Approximate L quadratically.

- Set �l = �l�1 � 
(L00(�l�1jy))�1(L0(�l�1jy)) 
 2 (0; 1).

- Iterate until convergence i.e. until jj�l � �l�1jj < �, � small.

Fast and good if �0 is good and L close to quadratic. Bad if L
00
not

positive de�nite.



ii) Conditional maximization algorithm.

Let � = (�1; �2). Start from some (�10; �20). Then

- Maximize L(�1; �2) with respect to �1 keeping �20 �xed. Let �
�
1 the

maximizer.

- Maximize L(�1; �2) with respect to �2 keeping �1 = ��1 �xed. Let �
�
2

the maximizer.

- Iterate on two previous steps until convergence.

- Start from di�erent (�10; �20), check if maximum is global.



B) Compute the variance covariance matrix at the mode

- Use the Hessian ��� = �[
@2 log g(�jy)
@�@�0

�1j�=��]

C) Approximate the posterior density: gAP (�jy) = N(��;���).

- If multiple modes are present, �nd an approximation to each mode, and

set gAP (�jy) = P
i %iN(��i ;���i ) where 0 � %i � 1. If modes are clearly

separated select %i = g(�
�
i jy)j���i j

�0:5.

- If the sample is small, use a t-approximation i.e. gAP (�jy) =P
i %ig(~�jy)[� + (�� ��i )0��i(�� ��i )]�0:5(k+v) with small �.

(If � = 1 t-distribution=Cauchy distribution, large overdispersion. Typi-

cally � = 4; 5 appropriate).



D) To conduct inference, draw �l from gAP (�jy).

If draws are iid, E(h(�)) = 1
L

P
l h(�

l). Use LLN to approximate any pos-

terior probability contours of h(�), e.g. a 16-84 range is [h(�16); h(�84)].

E) Check accuracy of approximation.

Compute Importance Ratio IRl =
�g(�ljy)
gAP (�ljy), where �g(�

ljy) is the kernel

of the posterior (which you can always compute). Accuracy is good if IRl

is constant across l. If not, need to use other techniques.

Note: Importance ratios are not automatically computed in Dynare. Need

to do it yourself.



Example 3.2 True: g(�jy) is t(0,1,2). Approximation: N(0,c), where c = 3; 5; 10; 100.
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Horizontal axis=importance ratio weights, vertical axis= frequency of the weights.

- Posterior has fat tails relative to a normal. Thus, the approximation is poor.



3.2 Basic Posterior Simulators

� Draw from a general gAP (�jy) (not necessarily normal).

� Non-iterative methods - gAP (�jy) is �xed across draws.

� Work well when IRl is roughly constant across draws.

A) Acceptance sampling

B) Importance sampling



3.3 Markov Chain Monte Carlo Methods

� Problem with basic simulators: approximating density is selected once

and for all. If mistakes are made, they stay. With MCMC location of

approximating density changes as iterations progress.

� Idea: Suppose n states (x1; : : : xn). Let P (i; j) = Pr(xt+1 = xjjxt =
xi) and let �(t) = (�1t; : : : �nt) be the unconditional probability at t of

each state n. Then �(t + 1) = P�(t) = P t�(0) and � is an equilibrium

(ergodic, steady state, invariant) distribution if � = �P .

Set � = g(�jy), choose some initial density �(0) and some transition
P across states. If conditions are right, iterate from �(0) and limiting

distribution is g(�jy), the unknown posterior.



                                      g(α|y)

                                                             gMC(1)

 gMC(0)

α

� Under general conditions, the ergodicity of P insures consistency and

asymptotic normality of estimates of any h(�).



Need a transition P (�;A), where A is some set, such that jjP (�;A) �
�(�)jj ! 0 in the limit. For this need that the chain associated with P :

� is irreducible, i.e. it has no absorbing state.

� is aperiodic, i.e. it does not cycle across a �nite number of states.

� it is Harris recurrent, i.e. each cell is visited an in�nite number of times
with probability one.



Bad draws Good draws

    A        B      A
B
B

Result 1: A reversible Markov chain, has an ergodic distribution (exis-

tence). (if �iPi;j = �jPj;i then (�P )j =
P
j �iPi;j =

P
i �jPj;i =

�j
P
iPj;i = �j.)

Result 2: (Tierney (1994)) (uniqueness) If a Markov chain is Harris recur-

rent and has a proper invariant distribution. �(�), �(�) is unique.



Result 3: (Tierney(1994)) (convergence) If a Markov chain with invariant

�(�) is Harris recurrent and aperiodic, for all �0 2 A and all A, as L!1.
- jjPL(�0; A)� �(�)jj ! 0, jj:jj is the total variation distance.

- For all h(�) absolutely integrable with respect to �(�).

- limL!1
1
L

PL
l=1 h(�

l)
a:s:!
R
h(�)�(�)d�.

If chain has a �nite number of states, it is su�cient for the chain to

be irreducible, Harris recurrent and aperiodic that P (�l 2 A1j�l�1 =
�0; y) > 0, all �0; A1 2 A.

� Can dispense with the �nite number of state assumption.

� Can dispense with the �rst order Markov assumption.



General simulation strategy:

� Choose starting values �0, choose a P with the right properties.

� Run MCMC simulations.

� Check convergence.

� Summarize results i.e compute h(�).



1) MCMCmethods generate draws which are correlated (with normal/basic

simulators, posterior draws are iid).

2) MCMC methods generate draws from posterior only after a burn-in

period (with normal/basic simulators, the �rst draw is from the posterior).

3) MCMC methods only need the kernel �g(�jy) to be operative (no knowl-
edge of the normalizing constants is needed).

4) MCMC can be used in non-Bayesian contexts to explore intractable

likelihoods using "data augmentation" technique.



3.3.1 Metropolis-Hastings algorithm

MH is a general purpose MCMC algorithm that can be used when faster

methods (such as the Gibbs sampler) are either not usable or di�cult to

implement.

Starts from an arbitrary transition function q(�y; �l�1), where �l�1; �y 2
A and an arbitrary �0 2 A. For each l = 1; 2; : : : L.

- Draw �y from q(�y; �l�1) and draw $ � U(0; 1).

- If $ < E(�l�1; �y) = [ �g(�
yjY )q(�y;�l�1)

�g(�l�1jY )q(�l�1;�y)], set �
` = �y.

- Else set �` = �`�1:



These iterations de�ne a mixture of continuous and discrete transitions:

P (�l�1; �l) = q(�l�1; �l)E(�l�1; �l) if �l 6= �l�1

= 1�
Z
A
q(�l�1; �)E(�l�1; �)d� if �l = �l�1 (6)

P (�l�1; �l) satis�es the conditions needed for existence, uniqueness and
convergence.

� Idea: Want to sample from highest probability region but want to visit

as much as possible the parameter space. How to do it? Choose an initial

vector and a candidate, compute kernel of posterior at the two vectors. If

you go uphill, keep the draw, otherwise keep the draw with some probability.



If q(�l�1; �y) = q(�y; �l�1), (Metropolis version of the algorithm) E(�l�1; �y) =
�g(�l�1jY )
�g(�yjY ) . If E(�

l�1; �y) > 1; the chain moves to �y. Hence, keep the

draw if you move uphill. If the draw moves you downhill stay at �l�1 with
probability 1 � E(�l�1; �y); and explore new areas with probability equal
to E(�l�1; �y).

Important: q(�l�1; �y) is not necessarily equal (proportional) to poste-
rior - histograms of draws not equal to the posterior. This is why we use

a scheme which accepts more in the regions of high probability.



How do you choose q(�l�1; �y) (the transition probability)?

- Typical choice: random walk chain. q(�y; �l�1) = q(�y � �l�1), and
�y = �l�1+ v where v � N(0; �2v). To get "reasonable" acceptance rates
adjust �2v. Often �

2
v = c � 
�;
� = [�g

00
(��jy)]�1. Choose c.

Alternatives:

- Re
ecting random walk: �y = �+ (�l�1 � �) + v

- Independent chain q(�y; �l�1) = �q(�y),E(�l�1; �y) = min[
w(�y)
w(�l�1)

; 1],

where w(�) =
g(�jY )
�q(�)

. Monitor both the location and the shape of �q to

insure reasonable acceptance rates. Standard choices for �q are normal and

t.



� General rule for selecting q. A good q must:

a) be easy to sample from

b) be such that it is easy to compute E.

c) each move goes a reasonable distance in parameter space but does not

reject too frequently (ideal acceptance rate 25-40%).



Implementation issues

A) How to draw posterior samples?

- Produce one sample (of dimension n � L + �L). Throw away initial �L

observations. Keep only elements (L; 2L; : : : ; n � L) (to eliminate the
serial correlation of the draws).

- Produces n samples of �L+ L elements. Use last L observations in each

sample for inference.

- Dynare setup to produce n samples. By default it keeps the last 25

percent of the draws of each chain. Careful: Need to make sure that

with 75 percent of the draws each chain has converged.



B) How long should be �L? How do you check convergence?

- Start from di�erent �0. Check if sample you keep, for a given �L, has

same properties (Dynare approach).

- Choose two points, �L1 < �L2; compute distributions/moments of � after

these points. If visually similar, algorithm has converged at �L1. Could

this recursively ! CUMSUM statistic for mean, variance, etc.(checks if it

settles down, no testing required).

For simple problems �L � 50 and L � 200.

For DSGEs �L � 100; 000� 200; 000 and L � 500; 000. If Multiple modes
are present L could be even larger.



C) How do you compute interesting statistics: easy.

- Weak Law of Large Numbers E(h(�)) � 1
j

Pn
j=1 h(�

jL); where �jL is

the j � L-th observation drawn after �L iterations are performed.

- E(h(�)h(�)0) =
PJ(L)
�J(L)w(�)ACFh(�); ACFh(�) = autocovariance of

h(�) for draws separated by � periods; J(L) function of L, w(�) a set of

weights.

- Marginal density (�1k; : : : �
L
k ): g(�kjy) =

1
L

PL
j=1 g(�kjy; �

j
k0; k

0 6= k).

- Predictive inference f(yt+� jyt) =
R
f(yt+� jyt; �)g(�jyt)d�.

- Model comparisons: compute marginal likelihood numerically.



3.4 Model Comparison

� f(y) the marginal likelihood (ML) is a measure of �t.

� Can compare the ML of two models. The one with the largest ML is the
best.

� Bayes Factor (BF): f(yjM1)
f(yjM2)

� Posterior odds (PO): f(yjM1)g(M1)
f(yjM2)g(M2)

, where g(M1); g(M2) are the priors

on the two models.

� Rule of thumb: BF (PO) < 3 inconclusive; 3 < BF < 10 favour M1,

BF > 10 strongly favouring M1



Notes:

- M1 and M2 could be two structural models, two time series models or

one structural and one time series model

- BIC model selection criteria is an asymptotic expansion of BF.

- Can compare models with di�erent number of parameters (since they are

integrated out)

- Can compare models which are non-nested (di�cult to do with classical

methods).



4 Robustness

� Typically prior chosen to make calculation convenient. How sensitive are
results to prior choice?

� Typical approach: repeat estimation for di�erent priors (ine�cient).

� Alternative.

i) Select a prior g1(�) with support included in g(�).

ii) Let w(�) =
g(�)
g1(�)

. Then any h1(�) =
R
(h(�)w(�)dg1(�) can be

computed using h1(�) �
1
L

P
lw(�

l)h(�l)P
lw(�

l)
, where h(�l) are the statistics

computed with g(�).

�Just need the original output obtained and a set of weights!



Example 4.1 yt = xt�+ut ut � (0; �2). Suppose g(�) is N(0; 10). Then
g(�jY ) is normal with mean ~� = ~��1(0:1 + ��2x0x�ols) and variance
~� = 0:1 + ��2x0x; . If one wishes to examine how forecasts of the model
change when the prior variances changes (for example to 5) two alternatives

are possible:

(a) draw from normal g(�jY ) which has mean ~�1 = ~��11 (0:2+��2x0x�ols)
and variance ~� = 0:2 + ��2x0x; and compare forecasts.

(b) Weight draws from the initial posterior distribution with
g(�)
g1(�)

where

g1(�) is N(0; 5).



5 Bayesian estimation of DSGE models

Why using Bayesian methods to estimate DSGE models?

1) Hard to include non-sample information in classical ML (a part from

range of possible values).

2) Classical ML is justi�ed only if the model is the GDP of the actual data.

Can use Bayesian methods for misspeci�ed models (economic inference

may be problematic, no problem for statistical inference).

3) Can incorporate prior uncertainty about parameters and models.



General Principles:

� (log-)linearized DSGE models are state space models whose reduced

form parameters � are nonlinear functions of structural �. Compute the

likelihood of � via the Kalman �lter.

� Compute posterior of � with MH algorithm.

� Use posterior output to compute the marginal likelihood, Bayes factors
and any posterior function of the parameters (impulse responses, ACF,

turning point predictions, forecasts, etc.).

� Check robustness to the choice of prior.



General algorithm: Given some initial �0

[1.] Construct a log-linear solution of the DSGE economy.

[2.] Specify prior distributions g(�).

[3.] Transform the data to make sure that is conformable with the model.

[4.] Compute likelihood via Kalman �lter.

[5.] Draw sequences for � using MH algorithm. Check convergence.



[6.] Compute marginal likelihood and compare it to the one of alternative

models using Bayes factors.

[7.] Construct statistics of interest. Use loss-based evaluation of discrep-

ancy model/data.

[8.] Perform robustness exercises.



Step [1.]: can have nonlinear state space models (see later and e.g. Amisano

and Tristani (2006), Rubio and Villaverde (2009)) or value function prob-

lems (see Bi and Traum (2012)) but computations much more complex.

Recall DSGE models are typically singular! Need to:

i) add measurement errors to use all observables (where to put measure-

ment error? All variables or just enough to complete the probability space?)

ii) �nd a way to reduce the dimensionality of the system (substituting

equations before the solution is computed).

iii) choose the observables optimally (see Canova et al. (2013)).

iv) invent new structural shocks.



In Step [3.] transformations are needed because the model is typically

solved in deviation from the steady states. Need to eliminate from the

data any long run component. How do you do it? Many ways of doing

this (see Canova, 2010) all unsatisfactory.

[4.] is the most computationally intensive step. Considerable gains if this

is e�ciently done.

In step [5.]: Given a �l

i) Draw a candidate �y from the P(�y�l). Solve the model.

ii) Compute the likelihood with the kalman �lter.

iii) Evaluate the posterior kernel at the draw �g(�yjy) = f(yj�y)g(�y).



iv) Given the posterior kernel at �l i.e �g(�0jy) = f(yj�l)g(�l), compute
IR =

�g(�y)
�g(�l)

P(�l;�y)
P(�y;�l)

.

vi) If IR > 1 set �l+1 = �y. Else draw $ � U(0; 1). If $ < IR set

�l+1 = �y otherwise set �l+1 = �l.

vii) Repeat i)-vi) �L+ nL times. Throw away �L draws. Keep one every n

for inference.

In Step [6.] it is typical to use a modi�ed harmonic mean estimator i.e.

approximate L(ytjMi) using [
1
L

P
l

f(�il)

L(ytj�il;Mi)g(�
i
ljMi)

]�1 where �li is the

draw l of the parameters � of model i and f is a density with tails thicker

than a normal. If f(�il) = 1 we have a simple harmonic mean estimator.



Competitors could be a more densely parametrized structural model (nest-

ing the interested one) or more densely parametrized reduced form model

(e.g. VAR or a BVAR).

Bayes factors can be computed numerically or via Laplace approximations

(to decrease computational burden in large scale systems).

In step [7.] Estimate marginal/ joint posteriors using kernel methods.

Compute point estimate and credible sets. Compute continuous functions

h(�) of interest. Set up a loss function. Compare models using the risk

function.

In step [8.] Reweight the draws appropriately.



Example 5.1 (One sector growth model)

- Analytic solution if U(c; l) = ln c and � = 1. Equations are:

Kt+1 = (1� �)�AK1��t �t + u1t (7)

GDPt = AK
1��
t �t + u2t (8)

ct = ��GDPt + u3t (9)

rt = (1� �)GDPt
Kt

+ u4t (10)

- �t technology shock, ujt measurement errors added to avoid singularity.

Parameters: �: is the discount factor, 1 � �: the share of capital in pro-
duction, �2: variance of technology shock, A: constant in the production

function.



Simulate 1000 points from using k0 = 100:0 using A = 2:86; 1 � � =

0:36;� = 0:99; �2 = (0:07)2.

Assume u1t � N(0; 0:12); um2t � N(0; 0:062);um3t � N(0; 0:022);
um4t � N(0; 0:082); (Note: lots of measurement error!)

- Keep last 160 as data (to mimic about 40 years of quarterly data).

Interested in (1� �); � i.e (treat �2; A as �xed).

Use (9)-(10) to identify the parameters from the data.



Priors: (1 � �) � Beta(3,5); � � Beta(98,2) (NOTATION DIFFERENT

FROM DYNARE)

Mean of a Beta(a,b) is (a=a+b) and the variance of a Beta(a,b)is ab=[(a+

b)2 � (a+ b+ 1)]. Thus prior mean of 1� � = 0:37, prior variance 0:025;
prior mean of � = 0:98, prior variance 0:0001.

Let � = (1 � �; �) Use random walk to draw �y, i.e. �y = +�l�1 + ey,
� is the mean and ei is U(�0:08; 0:08) for � and U(�0:06; 0:06) for �
(roughly about 28% acceptance rate).

Draw 10000 replications from the posterior kernel. Convergence is fast.

Keep last 5000; use one every 5 for inference.
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Figure 4: Priors and Posteriors, RBC model

- Prior for � su�ciently loose, posterior similar, data is not very formative.

-Posteriors centered around the true parameters,large dispersion.



Variances/covariances
true posterior 68% range

var(c) 0.24 [ 0.11, 0.27]
var(y) 0.05 [ 0.03, 0.11]
cov(c,y) 0.0002 [ 0.0003, 0.0006]

Wrong model

- Simulate data from model with habit 
 = 0:8

- Estimate model conditioning on 
 = 0.
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Figure 5: Priors and Posteriors, wrong model



Example 5.2 (New Keynesian model)

gapt = Etgapt+1 �
1

'
(rt � Et�t+1) + gt (11)

�t = �Et�t+1 + �gapt + vt (12)

rt = �rrt�1 + (1� �r)(���t�1 + �gapgapt�1) + et (13)

� =
(1��p)(1���p)('+#N)

�p
; �p = degree of (Calvo) stickiness, � = discount

factor, ' = risk aversion, #N = elasticity of labor supply. gt and vt are

AR(1) with persistence �g; �v and variances �
2
g; �

2
v; et � iid(0; �2r).

� = (�; '; #N ; �p; ��; �gap; �r; �g; �v; �
2
v; �

2
g; �

2
r).



Assume g(�) =
Q
g(�i)

Assume � � Beta(98; 3); ' � N(1; 0:3752); #N � N(2; 0:752); �p �
Beta(9; 3); �r � Beta(6; 2); �� � Normal(1:5; 0:12);
�gap � N(0:5; 0:052); �g � Beta(17; 3); �v � Beta(17; 3) �2i � IG(2; 0:01); i =
g; v; r.

Use US linearly detrended data from 1948:1 to 2002:1 to estimate the

model.

Use random walk MH algorithm to draw candidates.
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Figure 7: CUMSUM statistics



Prior and Posterior statistics
Prior Posterior
mean std median mean std max min

� 0.98 0.01 0.992 0.991 0.003 0.999 0.998
' 1.00 0.37 0.826 0.843 0.123 1.262 0.425
#N 2.00 0.75 1.825 1.884 0.768 3.992 0.145
�p 0.75 0.12 0.743 0.696 0.195 0.997 0.141
�r 0.75 0.14 0.596 0.587 0.154 0.959 0.102
�� 1.50 0.10 1.367 1.511 0.323 2.33 1.042
�gap 0.5 0.05 0.514 0.505 0.032 0.588 0.411
�g 0.85 0.07 0.856 0.854 0.036 0.946 0.748
�u 0.85 0.07 0.851 0.851 0.038 0.943 0.754
�g 0.025 0.07 0.025 0.025 0.001 0.028 0.021
�v 0.025 0.07 0.07 0.07 0.006 0.083 0.051
�r 0.025 0.07 0.021 0.021 0.005 0.035 0.025



- Little information in the data for some parameters (prior and posterior

overlap).

- For parameters of the policy rule: posteriors move and not more concen-

trated.

-Posterior distributions roughly symmetric except for �� and �p (mean and

median coincide).

-Posterior distribution of economic parameters reasonable (except ').

- Posterior for the AR parameters has a high mean, but no pile up at one.
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Figure 8: Priors and Posteriors, NK model



Model comparisons

Compare ML against 
at prior VAR(3) or a BVAR(3) with Minnesota prior

and standard parameters (tightness=0.1, linear lag decay and weight on

other variables equal 0.5), both with a constant.

Bayes factor are very small � 0.02 in both cases.

� The restrictions the model imposes are false. Need to add features to
the model that make dynamics of the model more similar to those of a

VAR(3).



Posterior analysis

How do responses to monetary shocks look like? No persistence!
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How much of the output gap and in
ation variance explained by monetary

shocks? Almost all!!



Detecting a multimodal posterior



Normal vs. MCMC approximations



5.1 Interpreting results

- Most of the shocks of DSGE models are non-structural (alike to measure-

ment errors). Careful with interpretation and policy analyses with these

models (see Chari et al. (2009)).

- A model where "measurement errors" explain a large portion of main

macro variables is suspicious (e.g. in Smets and Wouters (2003) markup

shocks dominate).

- If the standard error of one the shocks is large relative to the others:

evidence of misspeci�cation.

- Compare estimates with standard calibrated values. Are they sensible?

Often yes, but because of tight priors are centered at calibrated values.



5.2 Bayesian methods and identi�cation

- Likelihood of a DSGE typically 
at. Could be due to marginalization (use

only a subset of economic relationships), or to lack of information.

- Di�cult to say a-priori which parameters is identi�ed and which is not:

we do not have an analytic relationship between the reduced form and the

structural parameters.

- Could go a long way to understand if problems exists by numerically

constructing the likelihood as a function of the structural parameters, see

Canova and Sala (2009).

- Standard remedy when some parameters are hard to identify: calibrate

them. Problem if parameter not �xed at a consistent estimator ! biases

could be extensive! (see Canova and Sala, 2009).



- Alternative: add a prior. A prior may increases the curvature of the

likelihood ! underidenti�cation may be hidden!. Posterior may look nice

because the prior does the job!!.

- Important

i)In general if L(�1; �2jY T ) = �L(�1jY T ) then g(�1; �2jY T ) = g1(�1jY T )
g(�2j�1), i.e no updating of conditional prior of �2.

ii) However, updating possible even if no sample information is present if

�1; �2 are linked by economic or stability conditions!!
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Likelihood and Posterior, � and � in a RBC model

- Posterior nicer than the likelihood because the prior rules out certain part

of the parameter space. Many examples of this. see Williams (2009) study

of the Smets and Wouter model or Herbst and Schorfheide (2013) study

of Schmitt-Grohe and Uribe (2012) model.



- If prior � posterior two possibilities: weak data information or prior which
is too much data based.

- How do you detect which is the problem?

i) Move the location of the prior. If the posterior follows the prior, then

there is weak information in the data.

ii) Change the sample size and see how the posterior changes.

- Formal methods to detect underidenti�cation: Iskrev (2010); Komunjer

and Ng (2012); Mueller (2012); Qu and Thachenko (2012).

- Formal methods have hard time to detect weak and partial identi�cation

problems. Graphical methods of Canova and Sala (2009) useful.


