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Outline

� Two stationary DSGE models.

� Solutions approaches: Bellman equation and Stochastic Lagrangian.

� Perturbation methods: First and second order approximations of opti-
mality conditions.

� Measuring accuracy.

� Other approximation methods.

� A few tips.

� Perturbation methods for non-stationary models.
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1 Two benchmark stationary models

1) A Real Business cycle model

� Social planner:

max
fct;Nt;Ktg1t=0

E0

1X
t=0

�tU(ct; 1�Nt) (1)

where ct is consumption, Nt hours, Kt capital, 0 < � < 1. The

resource constraint is:

ct +Kt + gt � f(Kt�1; Nt; �t) + (1� �)Kt�1

� Timing convention: Kt�1 capital available at the beginning of time t.



� Endowments: one unit of time (0 � Nt � 1) and K�1 units of capital,
depreciating at the rate 0 < � < 1.

� Constraints: Kt; ct � 0 all t.

� Shocks:

ln �t = �� ln �t�1 + �1t (2)

ln gt = �g ln gt�1 + �2t (3)

� How is gt �nanced? Either lump sum taxes or bonds. Why it does not

matter which one? Ricardian equivalence!



� Technical requirements:

- E0
P
t �

tU(ct; 1 � Nt) is bounded (otherwise maximum does not

exist).

- U(ct; 1�Nt) is twice continuously di�erentiable, strictly increasing

and strictly concave in all arguments;

- f(Kt�1; Nt; �t) is twice continuously di�erentiable, strictly increasing
and strictly concave in Kt�1 and Nt.

- EtUc, EtU(1�N), EtfK, EtfN exist and are bounded.



� Optimal (ct; Nt;Kt)1t=0 from the social planner problem is the same as

the following competitive problem (because of the second welfare theorem).

Households:

max
fct;Nt;Ktg1t=0

E0

1X
t=0

�tU(ct; 1�Nt) (4)

ct +Kt � wtNt + rtKt�1 + (1� �)Kt�1 + Tt (5)

Firms:

max
fNt;Kt�1g1t=0

f(Kt�1; Nt; �t)� wtNt � rtKt�1 (6)

Government: Gt = Tt.

Resource constraint ct +Kt � (1� �)Kt�1 + gt � f(Kt�1; Nt; �t)



2) A New Keynesian sticky price model

Four agents; one monopolistic competitive.

� Consumers:

max
fct;Nt;Kt;Mtg

E0
X
t

�t[U(ct; 1�Nt) + V (
Mt

pt
)] (7)

Budget constraint:

ct +Kt +
Mt

pt
� Mt�1

pt
+ wtNt + (rt + (1� �))Kt�1 +

prft

pt

prft = nominal pro�ts from intermediate �rms.

Endowments: One unit of time. M�1 units of money, K�1 units of
capital.



� Final goods producing �rms: competitive.

Production: gdpt = (
R 1
0 inty

1
1+&p
it di)1+&p.

Output price pt = (
R 1
0 p

� 1
&p

it di)�&p, &p > 0

pit = price of intermediate good i, intyit = quantity of intermediate

good i.

Pro�t = (gdptpt �
R 1
0 intyitpitdi).

Firms maximize pro�ts is with respect to intyit for each i; t. Output

price pt and input prices p1t are taken as given.



� Intermediate good producing �rms: monopolistic competitive.

Problem is split in two parts. Cost minimization:

min
fKit�1;Nitg

(rtKit�1 +
Wt

pt
Nit) (8)

subject to intyit = �tK
1��
it�1N

�
it. Discounted pro�t maximization

max
fpit�g

X
j

Et(�
jUc;t+j

pt+j

jp)prfit+j (9)

subject to the demand function of the �nal good �rms.

At each t, only (1 � 
p) �rms can change prices.
Uc;t+1
pt+1

= real value

of a unit of pro�t to shareholders next period; prfit+j = (pit� �
mcit+j)intyit+j; mcit = marginal costs.



� Monetary authority:

it = �i
$0
t�1�

$1
t y

$2
t �2t (10)

where � is a constant, $0; $1; $2 parameters, �2t a iid policy shock.

� Government budget

gt � Tt =
Mt �Mt�1

pt
(11)

� Resource constraint:

kt � (1� �)kt�1 + ct + gt = gdpt (12)

- Alternative formulation: no �nal good �rms, demand functions for in-
termediate goods directly determined by consumers via expenditure opti-
mization (now ct is a basket of goods).



2 Solution methods

General idea:

1) Optimality conditions of the form Etf(yt; �t; �) = 0, where �t are exoge-

nous variables, yt the endogenous variables and � a vector of parameters.

2) Solution yt = h(�t; �) must be such that Etf(h(�t; �); �t; �) = 0.

How do we �nd h?

� Stochastic Lagrangian Multiplier (LM) approach.

� Dynamic Programming (DP) approach.



DP more restrictive than LM. It needs:

- Competitive equilibrium to be Pareto optimal (see Hansen and Prescott

(1995) for an adaptation to suboptimal convex problems).

- Utility function to be time separable in the contemporaneous control and

state variables (controls=variables you maximize w.r.t; states=predetermined

and exogenous variables).

- Objective function and the constraints to be such that current decisions

a�ect current and future utility but not past one. (IMPORTANT!!)



2.1 Stochastic Lagrangian approach

Set up the (stochastic) Lagrangian and maximize it.

Example 1 (Two period consumption-saving decisions under certainty)

max
fc1;c2;k1g

U(c1) + �U(c2) (13)

subject to

c1 + k1 = �1f(k0)

c2 = �2f(k1)

k0 given, �1; �2 known productivity disturbances.



Lagrangean:

max
fc1;c2;k1g

U(c1) + �U(c2) �

�1(c1 + k1 � �1f(k0))� ��2(c2 � �2f(k1)) (14)

Taking the FOC of (14) with respect to (c1; c2; k1):

U1 = �1 (15)

�U2 = ��2 (16)

�1 = ��2�2f1 (17)

Combining (15)-(17) leads to

U1 = �U2�2f1 = �U2r1 (18)

where r1 = �2f1 is the real rate, Ut =
@U
@ct
; t = 1; 2, f1 =

@f
@k1



Interpretation: Marginal utility of giving up one unit of consumption today

= marginal bene�t of investing and using one unit of k tomorrow. Along

equilibrium path, agents must be indi�erent.

If U(ct) =
c
(1��)
t
1�� (CRRA utility), (18) becomes:

1 = �(
c2
c1
)���2f1 (19)

1) Consumption growth must be related to the real rate (composed of the

rate of time preferences and the return to capital).

2) If ��2f1 = 1 then c1 = c2, i.e. consumption must be constant along

the optimal path.



Extensions

� Uncertainty about future production possibilities (�t is a random variable)

U1 = Et�U2�2f1 = Et�U2r1 (20)

Same Euler equation, but now it holds in expectations.

� Add in�nitively lived agents.

(20) must hold for every possible t. No natural terminal condition for

kt. But, as t ! 1, �t�tkt ! 0, where �t�t is the Arrow-Debreu price

(transversality condition).



Example 2 (Two periods price decisions in NK model with log utility, half
of the �rms changing price at each t; gt = 0). Choose prices to maximize
expected pro�s subject to demand functions. Lagrangen

max
fpit�g

1

ctpt
prft + Et[�

1

ct+1pt+1
prfit+1] �

�1t(
intyit
gdpt

� (pit
�

pt
)
�1+&p&p ) �

Et[�2t(
intyit+1
gdpt+1

� (
pit+1�

pt+1
)
�1+&p&p )] (21)

Optimality implies (all �rms are identical so drop i subscript)

p�t
pt
= Et(1 + &p)(

Uc;tctwt + �Uc;t+1ct+1wt+1�

1+&p
&p
t+1

Uc;tct + �Uc;t+1ct+1�

1
&p
t+1

) (22)



p�t is the optimal price, wt the wage rate and �t =
pt+1
pt

the in
ation rate.

- Ideally �rms would like to charge a price which is a constant markup

(1 + &p) over marginal (labor) costs. However, because individual prices

are set for two periods, �rms can't do this and when prices are allowed to

be changed, they are set as a constant markup over current and expected

future marginal costs.

- If there are no shocks, �t+1 = 1; wt+1 = wt; ct+1 = ct and
~pt
pt
=

(1 + &p)wt.



Back to the RBC Model, Lagrangean:

max
fct;Nt;Ktg

E0
X
t

�t [U(ct; 1�Nt) �

�t(ct +Kt + gt � f(Kt�1; �t; Nt)� (1� �)Kt�1)] (23)

Let fKt
= @f

@Kt
; fNt

= @f
@Nt
;Uc;t =

@U(ct;1�Nt)
@ct

;UN;t =
@U(ct;1�Nt)

@Nt
. The FOC are

Et(�
Uc;t+1

Uc;t
[f 0Kt

+ (1� �)]� 1) = 0 (24)

Uc;t

UN;t
� 1

f 0Nt

= 0 (25)

ct +Kt + gt � f(Kt�1; Nt; �t)� (1� �)Kt�1 � 0 (26)

Solution for (ct; Nt;Kt)1t=0, given k�1 and (gt; �t)
1
t=0 is found using (24), (25), (26) and

transversality condition limt!1E0(�
t�tKt) = 0, where �t is the Lagrangian multiplier.

Problem complicated! Need to solve a vector of nonlinear di�erence equations involving

expectations subject to initial and terminal conditions.



In the sticky price model, when gt = 0, optimality conditions are

1 = Et[�
Uc;t+1

Uc;t
(rt+1 + (1� �))] = Et[�

Uc;t+1

Uc;t

it

�t+1
] (27)

0 =
Uc;t

UN;t
� 1

f 0Nt
(28)

0 = VMt
pt

� Uc;t + �Et
Uc;t+1

�t+1
(29)

0 = Et
X
j

(�j
jp
Uc;t+j

pt+j
)[

pt

1 + &p
�mct+j]intyt+j (30)

We need to solve these four equations, the monetary policy rule and the

production function for the six unknowns (ct; Nt, Kt;mt; �t; it) under the

transversality condition, given K�1;M�1. Same complication!



2.2 Dynamic Programming approach

Consider the RBC model. Approach works in two steps:

� Transform the constrained problem into an unconstrained one (substitute
constraints into utility).

� Split the in�nite dimensional problem in a sequence of one period prob-

lems (recursive formulation).



1) Use the resource constraint into utility. Let  t = (�t; gt). Then

max
fct;Kt;Ntg

E0
X
t

�tU(ct; 1�Nt) =

max
fKt;Ntg

E0
X
t

�tU([f(Kt�1; �t; Nt) + (1� �)Kt�1 �Kt � gt]; 1�Nt) �

max
fKt;Ntg

E0
X
t

�tU(Kt�1;Kt; Nt;  t)

2) Recursive formulation: rather than choosing fNt;Ktg1t=0, choose
(Nt;Kt) at each t assuming that (Nt+i;Kt+i); i � 1 will be optimally

selected. Possible because:

a) U is time separable in the states and controls, i.e. we can rewrite the

maximization problem as



max
fKt;Ntg

E0
X
t=0

�tU(Kt�1;Kt; Nt;  t) =

max
K0;N0

U(K�1;K0; N0;  0) + max
K1;N1

�U( �K0;K1; N1;  1)+

max
fK2;N2g

E0�
2U( �K1;K2; N2;  2) + max

fKt;Ntg
E0

1X
t=3

�tU( �Kt�1;Kt; Nt;  t)

given K�1 and separately optimize at each t since (K0; N0) enter only the
�rst maximization, (K1; N1) the second, etc.

b) If agents are faced with the same states ( �Kt�1;  t) they will choose the
same optimal (Kt; Nt) at each t (recursive problem).



What are the states? What are the controls?

States y2t � (Kt�1;  t), controls y1t � (Nt;Kt).

� Time invariant setup (Bellman equation):

V (y2) = max
fK+;Ng

fU [f(K;N; ) + (1� �)K �K+]; 1�Ng

+ �E[V (y+2 )jy2]g (31)

E(V j�) = conditional expectation; a "+" indicates future values.

� You need expectations since the future is unknown.

� Original problem depends on t. Bellman equation is time invariant.

How do we solve (31)? Complicated in general.



� There is an in�nite number V functions, one for each value of y2t.

� There is an in�nite number of unknowns (V unknown).

� There are expectations of future variables.

Special cases when Bellman equation can be solved analytically:

� The time horizon is �nite (e.g. natural resource extraction problem).

� The number of states is �nite.

� Utility is logarithmic or quadratic and the constraints are linear.



Example 3 (Finite time horizon) Suppose T=2, and that we want to min-
imize

P1
t=0(x

2
t + v2t ) + x22 subject to xt+1 = 2xt + vt; x0 = 1 given, by

choices of vt. Recursive formulation:

a) Stage 1: minv1(x
2
1+ v

2
1 + x

2
2) subject to x2 = 2x1+ v1; x1 = �x1, some

�x1. Using the constraint into the objective function

V (x1; 1) = minv1
(�x21 + v21 + (2�x1 + v1)

2) (32)

which implies: v1 = �x1 and V (x1; 1) = 3x21.

b) Stage 2: minv0(x
2
0 + v20 + V (x1; 1)) subject to x1 = 2x0 + v0; x0 = 1.

Using the constraint into the objective function

V (x0; 2) = minv0
(1 + v20 + 3(2 + v0)

2) (33)

which implies: v0 = �1:5 and V (x0; 2) = 4:0. Using v0 into the law of
motion of xt we have x1 = 0:5; x2 = 0:5 and V (x1; 1) = 0:75.



Example 4 (Finite number of states) A supermarket chain needs to allo-

cate six liters of milk to three outlets. If milk is sold gives 2 Euros, if

unsold 0.5 Euros.

Store Demand Probability Allocation Value of
for Milk of Milk Allocation

1 1 0.6 1 2.0
2 0.0 2 3.1
3 0.4 3 4.2

2 1 0.5 1 2.0
2 0.1 2 3.25
3 0.4 3 4.35

3 1 0.4 1 2.0
2 0.3 2 3.4
3 0.3 3 4.35

Allocation value calculated as follows: if 1 liter allocated to store 1: 0.6*

2+ 0.4 * 2=2.0; if 2 liters to store 1: 0.6* 2.0 + 0.4* (2 x2) +0.6*0.5 =

3.1; if 3 liters to store 1: 0.6* 2+ 0.4*(2 x 3)+ 0.6 *(2 x 0.5)=4.2, etc.



9 possible allocations-stores combinations (allocations of 0 or greater than
3 unfeasible). Work backward from store 3 (the far away one). Choice set
for store 3: f1,2,3g; for stores 2 and 3: f3,4,5g; for all stores: f6g.

Let ui(xi) be the value of allocating xi liters to store i. Then:

V3(x3) = u3(x3) (34)

V2(x2) = max
x2+x32[3;4;5]

u2(x2) + V3(x3) (35)

V1(x1) = u1(6� x3 � x2) (36)

Solving Belman equation involves calculating the total value V1(x1) +
V2(x2) + V3(x3) for 9 possible combinations of (x1; x2; x3).

Optimal decision: f1,3,2g. Return function is 9.75 Euros.

Note: Decision f2,2,2g also gives 9.75 Euros. Why it is not chosen?



Example 5 (log utility) Let U(ct; 1�Nt) = ln(ct), � = 1, yt = �tK
1��
t�1 ; gt =

0; 8t, ln zt = � ln zt�1 + et

If V 0(K; �) = 0, Bellman equation maps logarithm functions into loga-
rithmic ones, and the limit V (K; �) will be logarithmic. Solution found as
follows:

(a) Guess a solution: V (K; �) = V0 + V1 lnKt�1 + V2 ln �t.

(b) Substitute the guess in (31);

V (K; �) = max
Kt

ln(K
1��
t�1 �t�Kt) + �Et(V0+ V1 lnKt+ V2 ln �t+1) (37)

(c) The FOC of the perfect foresight problem is: 1

K
1��
t�1 �t�Kt

= �V1
Kt

or

Kt =
�V1

1 + �V1
K
1��
t�1 �t (38)



(d) Using (38) in (37)we have

V0 + V1 lnKt�1 + V2 ln �t = ln(K
1��
t�1 �t �

�V1
1 + �V1

K
1��
t�1 �t)

+ �V0 + �V1 ln(
�V1

1 + �V1
K
1��
t�1 �t) + V2�� ln �t

(39)

(e) Collecting terms and matching coe�cients V1 =
(1��)

1��(1��). Inserting

V1 into (39) we get V0 =
ln(1��(1��))+�V1 ln(�(1��))

1�� and V2 =
1+�V1
1��� .

(f) Using the expression for V1 in (38) we have Kt = �(1��)�tK
1��
t�1 and

from the budget constraint ct = (1� �(1� �))�tK
1��
t�1 .

Note : with a "guess and verify" approach, you need to check that the

solution satis�es the �rst order conditions and the resource constraint.



� Solving the Bellman equation analytically is generally impossible.

�With the assumptions made on utility and production, if � < 1, we know

V exists and is unique (see Lucas and Stokey (1989)), so we can compute

V numerically (brute force approach).



Algorithm 2.1

1. Choose an (initial) di�erentiable and concave V 0(K; ). Select para-
meters of the model (�; �, etc.), set a tolerance level �.

2. Compute V 1(K; ) = maxfK+;NgfU [f(K;N; ) + (1� �)K �K+ �
g]; 1�Ng+ �E[V 0(K+;  +)jK; ]g

3. For each j = 2; 3; : : :, set V 0 = V j�1 and repeat step 2. until
jjV j � V j�1jj < �.

4. When V j � V j�1, compute K+ = h1(K; ), N = h2(K; ) maximiz-
ing fU [f(K;N; )+(1��)K�g�K+]; 1�Ng+�E[V j(K+;  +)jK; ]g
for K+; N . Get c from the budget constraint.



Problems with a brute force approach:

� Iterations complicated when number of states is large or the horizon
is in�nite (we need to �nd a function in a high dimensional space).

� Unless V 0 is appropriately chosen, the iteration process is time and
computationally consuming (it may take a long time to converge).



Example 6 (A case where DP can't be used) Two stage game, goverment

dominant player.

Stage 1: Given (Tt; pt), agents choose (ct;Mt), to maximize

E0
X
t

�t(ln ct + 
 ln
Mt

pt
)

subject to

ct +
Mt

pt
� wt +

Mt�1
pt

+ Tt

where Mt are nominal assets, wt is labor income and Tt lump sum taxes.

� Optimality implies
1

ctpt
= �

1

ct+1pt+1
+




Mt
(40)



� Solving forward and using the resource constraint ct = wt � gt

1

pt
= 
(wt � gt)

1X
j=0

�j
1

Mt+j
(41)

� The government budget constraint is gt = Mt
pt
� Mt�1

pt
+ Tt where gt is

random. Government chooses Mt to maximize agents' welfare subject to

(41) and the resource constraint.

Substituting (41) into the utility we have

max
Mt

X
t

�t(ln ct + 
 ln(Mt
(wt � gt)
1X
j=0

�j
1

Mt+j
) (42)

Future Mt a�ects current utility. Government problem is not recursive; it

can not be cast into a Bellman equation.



Summary

� Solving dynamic general equilibrium model is hard: there are mathemat-

ical and numerical complications.

� Without a solution, there is little we can do (we can not estimate, we
can not forecast, we can not do policy analyses, etc.).

� So what do we do? Calculate an approximate solution to the problem

which is valid under in certain circumstances.



3 Approximation Methods

� Many approximation algorithms are available.

- Some locally valid (around some point).

- Other globally valid (for the whole domain of the states).

Older approaches:

- Quadratic approximations of the utility (solves a linear problem).

- Discrete approximations of shocks and state space ( solve a �nite set of

equations).

- Approximation of expectations in the optimality conditions.



3.1 Perturbation methods, basic ideas.

Let xt be a scalar and � a vector of (known) parameters. Suppose we want
to solve f(xt+2; xt+1; xt; �) = 0, where the functional form of f is known.
Here there is no uncertainty; we will add uncertainty later on.

(Think about this as a �rst order condition of an optimization problem
when the constraints have been substituted in).

We seek a solution of the form xt+1 = h(xt; �). Then, it must be that:

f(h(h(xt; �)); h(xt; �); xt; �) � F (xt; �) = 0 (43)

Taking a Taylor expansion of h(xt) around some xt = �x yields:

h(xt; �) = h(�x; �) + h0(�x; �)(xt � �x) + 0:5h00( �xt; �)(xt � �x)2 + : : :

� h0 + h1(xt � �x) + 0:5h2(xt � �x)2 + : : : (44)



To compute an approximate solution we need to �nd h0; h1; h2; : : :. Per-

turbation methods give a sequential (recursive) approach to calculate these

coe�cients.

Strategy:

- To �nd h0 � h(�x; �) use a numerical solver (h0 is typically the steady

state solution of the model) or the �rst best solution (e.g. 
exible price

equilibrium in price distorted economies).



- To �nd h1, note that if F (�x; �) = 0, F
j(�x; �) = 0, j = 1; 2; : : :. Then

F 0(xt; �) =
@f

@xt+2

@h

@xt+1

@h

@xt
+

@f

@xt+1

@h

@xt
+
@f

@xt

= f1h
2
1 + f2h1 + f3 = 0 (45)

where f1 =
@f

@xt+2
; f2 =

@f
@xt+1

; f3 =
@f

@xt+2
are evaluated at xt = �x and

@h(xt)

@xt
= h1 + h2(xt � �x) + : : : = h1 (46)

when evaluated at xt = �x.

� Given fi; i = 1; 2; 3, (45) is a quadratic equation in h1. If the utility

function and the production function are concave, one of the two solutions

will be greater than one and one will be less than one (saddle path). A

method to solve this quadratic equation when x is a vector is given below.



- To �nd h2 di�erentiate F
0(xt; �) = 0 to obtain

F 00(xt; �) = (f11h
2
1 + f12h1 + f13)h

2
1 + f1(h1h2 + h2h

2
1)

+ (f21h
2
1 + f22h1 + f23)h1 + (f31h

2
1 + f32h1 + f33)

+ f2h2 = 0 (47)

where fij =
@2f

@xt+i@xt+j
and

@2h(xt)

@x2t
= h2 when evaluated at xt = �x. Given

h1; fi; fij, this is a linear equation in h2. Easy to solve.

� Third order approximations. Di�erentiate F 000(xt; �) and solve for h3

� For approximation higher than j = 2 need to solve linear equations to

�nd hj; j = 3; 4; etc:.



� If there is uncertainty, let � be a scalar controlling the uncertainty in the
equation. Then, the Taylor expansion is valid around � = 0 (see later on

or den Haan (2009a)).

� Procedure gives intuitive results (e.g. certainty equivalence for �rst order
approximations, etc.).

� Perturbation techniques approximate arbitrary well a function at a point
away from �x. To do this, the function h needs to be smooth (di�erentiable

many times) and the Taylor expansion large enough.

For a �xed Taylor expansion (say, �rst order), the approximation away from

�x can be arbitrarily bad (see below).



� Perturbation methods rely on the implicit function theorem.

Let H(x; y) be a function mapping Rn �Rm ! Rm. Assume

i) Hy(x; y) is not singular.

ii) H(�x; �y) = 0, some (�x; �y).

iii) H is di�erentiable a su�ciently large number of times.

Then there exists a y = h(x) such that H(x; h(x)) = 0 and the derivatives

of h(x) can be obtained by implicit di�erentiation.



3.2 Log-linear Approximations

- Give the same result as linear perturbation applied to the log of the FOCs.

� Linear vs. log-linear approximations: which one to choose?

i) When the problem is mildly non-linear, a log-linear approximation is

preferable.

ii) A Log-linear approximation has the interpretation of percent deviation

from the steady state.



Mechanics of log-linear approximations:

Let xt = log(Xt)� log( �X), Xt is a vector and �X a pivot point. There are

two types of FOCs of a DSGE model:

1 = Et[g(xt+1; xt)] (48)

1 = f(xt; xt�1) (49)

with f(xt = 0; xt�1 = 0) = 1; g(xt+1 = 0; xt = 0) = 1.

A �rst order expansion of (48)-(49) around (xt; xt�1) = (0; 0) gives:

0 � Et[gt+1xt+1 + gtxt)] (50)

0 � ftxt + ft�1xt�1 (51)

where fj =
@f
@xj

and gj =
@g
@xj
.



� (50) and (51) are a system of linear expectational equations. We know

how to solve these since at least Sargent (1978).

� The approximation is valid only around �X. The solution can not be

generally used to study problems which involve large deviations from �X.

In particular: can't study e.g. dynamics due to unit roots. Can't study

dynamics that lead to another regime, etc.

� Certain models do not have the setup of (48)-(49); e.g. Rotemberg and
Woodford (1997): consumption at time t depends on the expectations of

variables dated at t+ 2. Need to rede�ne the problem.



Example 7 In an RBC model with no goverment expenditure, log utility,

where output is produced with capital and there one period lag in trans-

forming investment into capital, the Euler equation is:

c�1t = �Et[c
�1
t+1(1� �) + �c�1t+2(�K

��1
t+1 �t+2)] (52)

De�ne c�t+1 = ct+2 and assume �t = ��t�1 + et; Et(et) = 0. Solve using

c�1t = �Et[c
�1
t+1(1� �) + �(c�t+1)

�1(�(Kt+1)
��1(��t+1 + et+2)]

c�t+1 � ct+2

Rule: transform higher order processes into vectors of AR(1) processes.



Example 8 (Example of a log linearization of a FOC)

Uc;t

UN;t
=

1

f 0N
(53)

Let U(c;N) = ln ct + ln(1�Nt); F (N;K; �) = N
�
t K

1��
t�1 �t. Then (53) is

1�Nt

ct
=

1

�N
��1
t K

1��
t�1 �t

(54)

Taking logs

log(1�Nt)� log ct+log �� (1��)(logNt� logKt�1)+ log �t = 0 (55)

First order expansion of log(1�Nt) � h(N) is h( �N)+h( �N)0(N � �N). So



log(1�Nt) = log(1� �N) +
�1
1� �N

(Nt � �N) =

log(1� �N) +
� �N
1� �N

Nt � �N
�N

�

log(1� �N) +
� �N
1� �N

N̂t (56)

Repeating the derivation for other terms and noting that values in the

steady states cancel out we have

� �N
1� �N

N̂t + ĉt � (1� �)(N̂t � K̂t�1) + �̂t = 0 (57)



Tricks to log-linearize without di�erentiation (Uhlig (1999)):

Replace Xt by �Xext, xt is small. Then for a0 a constant and yt small:

- ext+a0yt � 1 + xt + a0yt.

- xtyt � 0.

- Et[a0e
xt+1] / Et[a0xt+1].

Example 9 Suppose the budget constraint is Ct + Gt + INVt = GDPt.

Then �Cect + �Gegt + �inveinvt = �GDPegdpt; use rule i) to get �C(1 + ct) +
�G(1+gt)+ �inv (1+invt)� �GDP (1+gdpt) = 0. Since �C+ �G+ �inv = �GDP

this implies that �Cct + �Ggt + �inv invt � �GDPgdpt = 0.



Solution to a system of log-linear equations can be found in two ways:

- with the method of the undetermined coe�cients.

- �nding the saddle-path (Vaughan's method). This is applicable only to

a restricted number of cases, see King and Watson (2002).



3.2.1 Method of undetermined coe�cients

Write log-linearized �rst order conditions as:

0 = AAy2t +BBy2t�1 + CCy1t +DDy3t (58)

0 = Et[FFy2t+1 +GGy2t +HHy2t�1 + JJy1t+1 +KKy1t + LLy3t+1 +MMy3t]

0 = y3t+1 �NNy3t � �t (59)

AA; : : : ;MM , are matrices involving the parameters of the model and

NN has only stable eigenvalues, y2t are the states, y1t are the controls,

y3t are the innovations in the shocks. Assume a solution of the form:

y2t = PPy2t�1 +QQy3t (60)

y1t = RRy2t�1 + SSy3t (61)

� Uhlig (1999) shows that (60)-(61) exists and is unique and how PP;QQ,
RR;SS can be found.



� PP;QQ;RR; SS are nonlinear combinations of the parameters entering
the AA; : : : ; NN matrices, which in turn are functions of the structural

parameters �.

� Solution is a state space system: (60) is a transition equation, (61) is a
measurement equation.

� Solution is also a restricted VAR(1). Let

B0 =

"
SS
QQ

#
; B1 =

"
0 RR
0 PP

#
Then Yt = B1Yt�1 +B0y3t, where Yt = [y1t; y2t]

0.



Example 10 (Solving an RBC model with undetermined coe�cients)

max
fct;Ktg

E0
X
t

�t
c
1�'
t

1� '
(62)

ct +Kt � (1� �)Kt�1 �K
1��
t�1 �t = 0 (63)

Let E�t = �ss; �̂ � (�t � �ss)=�ss = ��̂t�1 + et; et � (0; �2).

FOC:

Et[c
�'
t � �c�'t+1((1� �)K��

t �t+1 + (1� �))] = 0

ct +Kt � (1� �)Kt�1 �K1��
t�1 �t = 0 (64)

or

Et[(�Kt + (1� �) +K1��
t�1 �t)

�' �
�(�Kt+1 + (1� �) +K1��

t �t+1)
�'((1� �)K��

t �t+1 + (1� �))] �
Et[v(Kt+1;Kt;Kt�1; �t+1; �t)] = 0 (65)



Solution: A Kt = g(Kt�1; �t) such that (65) is satis�ed.

Finding g(Kt�1; �t) is di�cult. Compute an approximate solution around
the steady states.

a) Compute steady states: given �ss solve the following for (css;Kss)

(css)�' � �(css)�'((1� �)(Kss)���ss + (1� �)) = 0 (66)

css +Kss � (1� �)Kss � (Kss)1� ��ss = 0 (67)

(These are the FOCs once we eliminate expectations and time subscript.)

Solution: Kss = (��1�(1��))=(1��)�ss)1=�), css = �Kss+(Kss)1���ss.



Note that v(Kss;Kss;Kss; �ss; �ss) = 0 (the steady state solution satis-

�es the �rst order conditions).

b) Log-linear approximation around the steady state:

Etv(Kt+1;Kt;Kt�1; �t+1; �t) �
Et(a1K̂t+1 + a2K̂t + a3K̂t�1 + a4�̂t+1 + a5�̂t) = 0 (68)

where K̂t = (Kt�Kss)=Kss, a1 = v1K
ss; a2 = v2K

ss; a3 = v3K
ss; a4 =

v4�
ss; a5 = v5�

ss and, e.g., v2 = @v(Kss;Kss;Kss; �ss; �ss)=@Kt.



c) Use the method of undetermined coe�cients to solve (68). That is:

i) Assume K̂t = AK̂t�1 +B�̂t.

ii) Find A;B such that, for any K̂t�1; �̂t, the following is satis�ed

Et[a1(A
2K̂t�1 +AB�̂t +B��̂t +Bet+1) +

a2(AK̂t�1 +B�̂t) +

a3K̂t�1 + a4��̂t + a4et+1 + a5�̂t] = 0 (69)

or taking expectations of future variables

[a1A
2 + a2A+ a3]K̂t�1 + (a1AB + a1B�+ a2B + a4�+ a5)�̂t �

F1(A)K̂t�1 + F2(A;B)�̂t = 0 (70)

This equation is true if and only if F1(A) = 0 and F2(A;B) = 0. These
are two equations in two unknowns A;B. The solution is recursive; solve
F1(A) = 0 for A, plug solution into F2(A;B) = 0, �nd B.



Since a1A
2 + a2A+ a3 = 0, the solution for A is

A = �
a2 � (a22 � 4a1a3)0:5

2 � a1
(71)

Two roots for A. Possibilities:

- one root greater and one less than one (saddle point) ! keep the one

less than one. In this case the equilibrium is stable.

- both greater than one! all equilibria are unstable. Linear approximation

ceases to be useful.

- both less than one: ! multiple equilibria. Shocks may move economy

across di�erent equilibria, both of which are stable.



Complication 1: if some control variables are chosen prior to the realization

of shocks need to modify the equations. Suppose

maxE0
X
t

�t
c
1�'
t

1� '
+ log(1�Nt) (72)

ct +Kt � (1� �)Kt�1 = N
�
t K

1��
t�1 �t (73)

and suppose investment decision made after the shock but hours decision

before the shock is realized. The FOC are

EtUk(Kt+1; Nt+1;Kt; Nt;Kt�1; �t+1; �t) = 0 (74)

UN(Kt; Nt;Kt�1; �t) = 0 (75)

The log linearized FOC are:

Et[a1zt+1 + a2zt + a3zt�1 + a4st+1 + a5st] = 0



where Etzt =

"
Et(Ntj�̂t�1)
Et(Ktj�̂t)

#
; st =

"
�̂t
�̂t�1

#
. De�ne P �

"
� 0
1 0

#
;

and let a1 =

"
U1kK

ss U2kN
ss

0 0

#
; a2 =

"
U3kK

ss U4kN
ss

U1NK
ss U2NN

ss

#
;

a3 =

"
Uk5K

ss 0

UN1 K
ss 0

#
; a4 =

"
U6k�

ss 0
0 0

#
; a5 =

"
U7k�

ss 0
U4n�

ss 0

#
where U

j
i is the derivative of Ui with respect to its j-th element.



Assume zt = Azt�1 +Bst. Solution requires:

F1(A) = 0

0 =

"
0 �F11 + F12
F21 F22

#
st � ~F2st = 0

Solve the �rst equation for A, the second for B once A is obtained. Note

that ~F2 is consistent with the information structure since

B =

"
0 B12
B21 B22

#
.

Complication 2: if there is more than one control variable F1(A) = 0 is

a matrix equation so the solution is a matrix polynomial. There exist a

unique stable solution to the problem under the conditions of Uhlig (1999).



- Solving the matrix quadratic equation F1(A) = 0 is di�cult. Typically

cast the problem into a generalized eigenvalue-eigenvector setup; use the

generalized Schur decomposition (see Uhlig (1999, Klein (2001)). Other

methods: King and Watson (1998), Sims (2001). For standard problems,

all methods give roughly the same results (see later).

- For stability: number of unstable roots = the number of jump (forward

looking) variables. With some parametrization: less unstable roots than

jump variables ! multiple equilibria (many paths converge into the same

steady state). This may occur for economic reasons (strategic complemen-

tarities, government policies, sunspots etc.), inappropriate choice of states

or parameters.



Example 11 (Sticky price model) Assume U(ct; Nt;mt) = ln ct + ln(1 �
Nt) +

m1��t
1�� , and the production function yt = k�t N

1��
t �t. Set N

ss =

0:33; �ss = 1:005; � = 0:99; ( C
GDP )

ss = 0:7, � = 7 (consumption
elasticity of money demand), 
p = 0:75 (on average �rms change prices
every three quarters). Persistence of technology disturbances=0.95; per-
sistence of monetary policy shocks=0.75 Parameters of policy rule: $1 =
0:5;$2 = 1:6. The decision rules are:266666666664

b�tbktbctbytbNtbwtbitbmt

377777777775
=

26666666664

0:12 0:02
1:36 0:90
0:80 0:53
16:95 �0:51
26:49 �1:37
0:80 0:53
10:07 �0:25
1:30 �0:11

37777777775
� b�t�1bkt�1

�
+

26666666664

�0:03 0:01
0:20 �0:01
0:44 �0:01
2:73 �0:19
2:70 �0:31
0:44 �0:01
1:36 0:90
0:12 0:12

37777777775
� b�1tb�2t

�

b�1t = technological disturbance; b�2t = monetary disturbance.



Interpretation:

- Monetary disturbances have little contemporaneous impact on all vari-

ables except interest rates (small real e�ects of monetary policy).

- Technology shocks explain the majority of the variance of consumption,

output, hours and real wages at most horizons.

- Limited e�ect from lagged to current in
ation (low persistence). Stronger

e�ect from lagged to current capital.

- �1t: contemporaneously y "; � #. �3t: contemporaneously y #; � ".
Monetary and technology shocks have similar contemporaneous y; � cor-

relations because of Taylor rule.



Some tips

- Decision rules contain all the information you need about contempora-

neous and lagged dynamics of the system. Learn to stare at them.

- Dynamics depend on the parameterization. Di�cult to know how a

parameter a�ects the decision rules: the mapping between the parameters

� and the matrices PP;QQ;RR; SS is unknown (we only have a numerical

approximation).

- To learn about the properties of your model change � and see how the

decision rules change. If they do not, it will be di�cult to estimate the

parameters, even if the model is the true DGP.

- Is the solution accurate? Can we trust it?



Recall: A good approximate solution must satisfy the �rst order conditions.

i) Simulated data for the approximate solution.

ii) Plug-in simulated data in the original optimality conditions (without

expectations).

iii) Check properties of the errors (di�erence between right hand side and

left hand side of the equations).

iv) Repeat 1)-iii) many times and average the errors over simulations.



0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
­ 7 0 0 0

­ 6 0 0 0

­ 5 0 0 0

­ 4 0 0 0

­ 3 0 0 0

­ 2 0 0 0

­ 1 0 0 0

0

1 0 0 0

2 0 0 0
Eu le r  e r r o r

Approximation error using log-linear solution in the Euler equation of a 3

equations NK model

Mean = -0.17*e+06; standard deviation 4.29*e+06.



3.3 Comparing methods

1) Uhlig (2001) (solving.m). System should be of the form:

0 = AAy2t +BBy2t�1 + CCy1t +DDy3t (76)

0 = Et[FFy2t+1 +GGy2t +HHy2t�1 + JJy1t+1 +KKy1t + LLy3t+1 +MMy3t]

0 = y3t+1 �NNy3t � �t (77)

Solution is:

y2t = PPy2t�1 +QQy3t (78)

y1t = RRy2t�1 + SSy3t (79)



2) Klein (2001)([F,P]=solab(A,B,ns)). System should be of the form:

AEtyt+1 = Byt (80)

where yt = [xt; y1t]; xt = [zt; y2t]; zt is the vector of exogenous states and

ns is the total number of states (= dim(xt)).

The solution is:

y1t = Fy2t (81)

y2t = Py2t�1 + y3t (82)

Bonaldi (2009): Ulhig and Klein solutions are equivalent.



3) Sims (2001):([G4,c,G5,f1,f2,f3,gev,eu] = gensys(G0,G1,C,G2,G3,div)).

System should be of the form

G0yt = C +G1yt�1 +G2y3t +G3�t (83)

where yt = [y1t; y2t]
0 and � = yt+1�Et[yt+1] is a vector of expectational

errors.

Solution is:

y�t = c+G4y
�
t�1 +G5y3t + f3(I � f1 L

�1)�1f2 y3t+1: (84)

where y�t = Syt, S is a selection matrix of rank equal to the number of

stable eigenvalues of [G0; G1] and �t is assumed to be a linear function

of the structural errors i.e. � = V y3t, L is generated inside the program.

Typically, div is omitted from argument list.



- If y3t is iid solution is

yt = c+G4yt�1 +G5y3t (85)



Note:

- eu(1)=1:existence; eu(2)=1 uniqueness; eu=[-2,-2] coincident zeros.

- Solution uses: 1) QZ decomposition of G0; G1, 2) eigenvalue-eigenvector

decomposition of matrices of the system.

- Allows general form of serial correlation of y3t, singularity of G0, and it

is valid both in discrete and continuous time.

- Can be used to calculate both determinate and indeterminate solutions.

- No distinction between states and controls (jump and predeterminated

variables). Simply attach a forecast error to the variables with expecta-

tions.



3.4 Computing statistics from the solution

- Once you have the (linear) solution, it is easy to simulate data, compute

moments, or trace out impulse responses.

Recall, the solution is of the form:

y2t = PP (�)y2t�1 +QQ(�)y3t (86)

y1t = RR(�)y2t�1 + SS(�)y3t (87)

� We need to choose the inputs: � (the parameters), fy3tgTt=1(the path
for the shocks) and y20 (the initial conditions).

� To simulate data: with (86) and (87) produce time paths for fy1t; y2tgTt=1.



� To compute moments (in population): solve (86) for y2t. Plug the
solution in (87). Then

y1t = RR(�)(I � PP (�))�1QQ(�)y3t�1 + SS(�)y3t � H(L; �)y3t (88)

and Ey1t = H(L; �)E(y3t), var(y1t) = H(L; �) var(y3t)H(L; �)
0, etc.

(For sample moments: use the simulated data - careful since statistics
depend on the draws of y3t).

� To compute impulse responses:

i) Set y2t�1 = 0; y3t = 1(�e). Compute y1t = RR(�)y2t�1 + SS(�)y3t =
SS(�)y3t.

ii) Set y3t+� = 0 for all � > t; and compute

y2t+� = PP (�)y2t+��1 (89)

y1t+� = RR(�)y2t+� (90)



3.5 Second order approximations

First order approximations insu�cient, when evaluating welfare across poli-

cies that do not have direct e�ects on steady state, when risk considerations

are important (e.g. in asset pricing problems), etc.

Second order approximations intermediate between �rst order and global

(nonlinear) approximations.

� Let yt = [y1t; y2t]0. Write the FOC of the optimization problem as:

EtJ(yt+1; yt; ��t+1) = 0

J is a n� 1 vector of functions, yt a n� 1 vector of endogenous variables,
�t a n1 � 1 vector of shocks � (0; 1) and � a parameter controlling the

uncertainty in the shocks.



� First order approximation:

Et[J1dyt+1 + J2dyt + J3�d�t+1] = 0 (91)

where dxt is the deviation of xt from some pivotal point.

This is computed assuming yt+1 = h(yt; ��t+1; �), linearly expanding it

around h(yss; 0; 0), substituting the linear expression in (91) and matching

coe�cients.

� Second order approximation:

Et[J1dyt+1 + J2dyt + J3�d�t+1 +

0:5� J11dyt+1dyt+1 + J12dyt+1dyt + J13dyt+1�d�t+1 +

J22dytdyt + J23dyt�d�t + J33�
2d�t+1d�t+1)] = 0 (92)



The solution principle is the same as in the linear case, since second order

terms enter linearly in the speci�cation.

Thus, assume yt+1 = h(yt; ��t+1; �), take a second order expansion

around h(yss; 0; 0), substitute the expansion into (92) and match coef-

�cients.

Schmitt Grohe and Uribe (2004): problem can be solved sequentially - �nd

the �rst order terms �rst and the second order ones later (application of

perturbation methods); see also Kim et al. (2008).



Example 12 Two country RBC model, identical population and weights
in social planner problem, capital adjustment costs are zero, output is
produced with local capital only.

The planner objective is maxE0
P
t �

t(
c
1�'
1t
1�'+

c
1�'
2t
1�'), the resource constraint

is c1t + c2t + k1t + k2t � (1 � �)(k1t�1 + k2t�1) = �1tk
1��
1t�1 + �2tk

1��
2t�1

and ln �it; i = 1; 2 is iid with mean zero and variance �
2.

In equilibrium c1t = c2t and Euler equations for capital accumulations in
the two countries are identical. Setting ' = 2; � = 0:1; 1 � � = 0:3; � =
0:95, the steady state is (ki; �i; ci) = (2:62; 1; 00; 1:07); i = 1; 2. The �rst
order policy function for i = 1; 2 is:

�
kit
�
=

�
0:444 0:444 0:216 0:216

�264 k1t�1
k2t�1
�1t
�2t

375 (93)



The second order policy function is

kit =

�
0:444 0:444 0:216 0:216

�264 k1t�1
k2t�1
�1t
�2t

375� 0:83�2

+ 0:5
�
k1t�1 k2t�1 �1t �2t

� 264 0:22 �0:18 �0:02 �0:08
�0:18 0:22 �0:08 �0:02
�0:02 �0:08 0:17 �0:04
�0:08 �0:02 �0:04 0:17

375
264 k1t�1
k2t�1
�1t
�2t

375
(94)

� In second order solution, �2 matters. When technology shocks are

volatile, less capital will be accumulated.

� Entries in second order terms small. Curvature of the solution small.



3.6 Other approaches

i) Perfect foresight approach.

- Solves non-linear equations of the system (no log-linearization needed).

- Assumes that future values of yt are known.

- Needs very good initial conditions (steady states could be used if they

can be easily calculated).

ii) Global methods.

- Projection methods/Parametrizing expectations.

- Collocation methods.



3.7 A Comparison of methods

JBES (1991): Special issue on the topic.

Marimon and Scott (1999): full array of methods

Ruge Murcia (2006): comparison of solution/estimation

Fernandez Villaverde and Rubio Ramirez (2006): linear vs. nonlinear ap-

proximations

Caldara, Fernandez, Rubio, Yao (2009): need non-linear approximations

with non-expected utility models.



3.8 Additional Tips

- Try �rst order approximations. Check later if higher order (or non-linear)

approximations give similar results.

- Second order approximation necessary for welfare calculations. Higher

order approximations needed if risk variations needs to be considered or if

there are kinks in the model (occasionally binding constraints).

- Approximate the �rst order conditions (which allow for distortions if

su�ciency is satis�ed) rather than the value function.

- Careful with sunspot, imaginary eigenvalues.



- First order approximations inappropriate for problems involving large

shocks (what if oil prices go to 200 dollars per barrel?), structural pol-

icy changes (what happens if we switch from targeting exchange rates to

targeting in
ation?), transition economies.

- What to do in these situations is problem dependent. Higher approxima-

tions work better. Putting a unit root in technology is not necessarily the

best solution.

- Dynare can solve nonlinear models directly using perfect foresight.

- Latest version of Dynare (above 4.3) have built in �rst, second and third

order solutions. Use symbolic rather than numerical computations.



4 Perturbation methods in non-stationary mod-

els

� How do you use perturbation methods when the model feature non-

stationary shocks? Problem! Steady state does not exist.

� Strategy:

1) Scale the model by the non-stationary shock. This transforms a non-

stationary problems into a stationary one.

2) Specify the optimality conditions for the scaled model.

3) Apply perturbation methods to the optimality conditions of the scaled

model.



Example 13 Take a textbook New Keynesian model (see Gali(2008))

- Add habit in consumption, a preference shock and a stochastic elasticity

of variety of goods.

- The optimality conditions of the model are:
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�t is the Lagrangian on the budget constraint

Rt = 1 + rt = 1=bt is the gross nominal rate of return on bonds
Qt+k
Qt

=
�t+1=Pt+1
�t=Pt

is the stochastic discount factor

MCrt+k =
MCt+k
Pt+k

is the real (aggregate) marginal cost.

Ct is aggregate consumption, Yt is aggregate output, Wt the real wage,Pt
the aggregate price level, �t the in
ation rate,Nt hours worked.

�t a preference shock, �t a markup shock, Zt a TFP shock.

h a habit parameter, �n the Frish elasticity, �p the probability of non-

changing prices, 1 � � the share of labor in production, � the discount

factor,



Non stationary technology shock

- Assume the preference shock is ln�t = �� ln�t�1 + ��t where �
�
t � N(0; �2�) and the

markup shock be iid.

- Assume technology process is

Zt = ZctZ
T
t

lnZTt = bt+ eZ;Tt

lnZct = �z lnZ
c
t�1 + eZ;ct

- The equilibrium conditions need to be rescaled by ZTt . Let bYt = Yt
ZT
t

, bCt = Ct

ZT
t

andcWt =
Wt

ZT
t

, bLt = Lt(ZTt )�c, bQt+k = bLt+kPt+k. Then:
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- Since cNt = Nt

(ZTt )
�c�1
�n

, consistency is insured if �c = 1. This makes hours

worked is stationary.

-The Euler equation is
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These are then the FOC of the transformed model. Perturbation methods

can now be applied.



Non stationary preference shock

- Assume that the technology shock is ln zt = �z ln zt�1+ �
z
t where �

z
t � N(0; �2z) and the

markup shock is iid.

- Assume that the preference process is

�t = (�
T
t )
1+�n�ct

ln�Tt = ln�
T
t�1 + eT;�t

ln�ct = �� ln�
c
t�1 + ec;�t

where ej;�t � N(0; �2j;�) with j = T; c.

- Assume that �c = 1 and � = 0 ( CRS in production is needed).

- De�ne bCt = Ct=�Tt , bYt = Yt=�Tt , bNt = Nt=�Tt , bLt = �t(�Tt )
��n, bQt+k = b�t+kPt+k.

- The equilibrium conditions are then
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Perturbation methods can be used with this set of equations.



There are problems allowing for non-stationary shocks in a model:

1) The FOCs depend on which shock is assumed to be non-stationary.

2) Consistency requires log utility.

3) With non-stationary preference shocks, we also need constant returns

to scale in production.



5 Exercises

Exercise 1 In example 4 show that the allocation (3,2,1) is not optimal.

Exercise 2 Repeat the steps of example 5 when � 6= 1.

Exercise 3 Consider the model maxE0
P

t �
t c

1�'
t

1�' + log(1�Nt)

ct + kt+1 � (1� �)kt = N�
t k

1��
t �t (95)

E�t = �ss; �̂ � (�t � �ss)=�ss = ��̂t�1 + et; et � (0; �2).Find F1(A) and F2(A;B). Find
the decision rules when ' = 2; � = 0:99; � = 0:65; � = 0:02.

Exercise 4 Consider the model with a lag in delivering capital maxE0
P

t �
t c

1�'
t

1�'+log(1�
Nt)

ct + kt+2 � (1� �)kt+1 = N�
t k

1��
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E�t = �ss; �̂ � (�t � �ss)=�ss = ��̂t�1 + et; et � (0; �2) and the capital accumulation
equation is kt+1 = (1� �)kt+ invt�1. Find F1(A) and F2(A;B). Find the decision rules
when ' = 2; � = 0:99; � = 0:65; � = 0:02.


