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1 Introduction

e Simulation estimators are "distance” estimators similar to GMM.
e They can be used to estimate the structural parameters by simulation.

e Initially conceived for situations where GMM is not applicable. Now they

have a very broad application.



Example 1.1 A model with latent (hidden) variables.

A social planner maximizes

¢
max Eo ) Bul(ct, Ny, ent)
{e, N K 1152, ¢

ct + Kiy1 < f(Kt, Nt, ) + (1 —0) Ky

If u(ce, Nt €9¢) = c"‘9(1 — Nt)l_ﬁezt, the Euler equation is

Ct+1 11— Ny ) Pen g
11— Ny Vey

goo = Ey[B [fr+(1—=9)]—-1]=0

where gi(u,6) = 5, it 1O e (- 9))

Problem! Can’t construct g, since €y; is unobservable.

(1)

(2)

(3)



- We had this problem also when estimating an RBC model (technology
shocks are non observable) but we could find a proxy (Solow residuals)
which is observable.

General result: if unmeasurable shocks (such as ¢e3;) or unobservable
variables (such as capital) enter the orthogonality conditions, GMM and
GIV can not be used to estimate structural parameters.

e What to do then? Use simulation estimators.



- Suppose Ei(gi(yt, 0,vt)) = 0.

- Suppose v; is unobservable, but its distribution is known.
- Draw {v;}! from such distribution, I =1,..., L.

- Construct g} = g(ut, 0, {v¢}') for each draw 1.

- Under regularity conditions, if draws are iid, by the Law of Large Numbers
P
(LLN) % ZlL:]_ gilﬁ — g(yta 97 I/t)-

If variables are unobserved but come from a known distribution, simulate
them, construct g; using simulated data, and apply GMM to " simulated”
orthogonality conditions.



e What if the distribution of unobservable variables is unknown?

- If L is large, by LLN, it does not matter: we get asymptotic normality.

- If L is short, distribution matters; you need to be careful.



In the previous example with preference shocks:

- Draw {ey;},1 =1,..., L times from a normal distribution.

¢ (1= Nyyp)t V¢l

19 1(1 Ny )1- Il

- Construct [8 €2t+1[f + (1 — §)] — 1] for each draw.

N. Vel
- Use %Zt{% >lB H%(ll(l t]+\[1;1 9l 2t+1[f + (1 —9)] — 1]} = 0 as your

orthogonality condition

- Assuming that data for ¢;, V¢, K; are available, estimate 3,1, 9, etc.

Main difference between simulation and GMM estimators of orthogonal-
ity conditions is in the asymptotic covariance matrix. Now it is (1 +
%)B‘lAB_ll > B~1AB~1 since there is a simulation error to take into
account. For large L, this error is negligible.



Economic models with latent variables

a) CAPM line R, = Ry + Bi(Rpr — Ry); Ry unobservable market port-
folio, interest is in (.

b) Fisher equation: r; = ¢y — Eymy 1 (ex-ante vs. ex-post), Eymyy1 unob-
servable, interest is in 7.

e Simulation estimators are popular in microeconometrics: often there
are unobservable reasons for certain choices (preferences) or truncated
variables (e.g. some goods can be bought only in positive amounts).

e Simulation estimators can also be used when all variables are observ-
able and with objective functions which are not the difference between
orthogonality conditions (they are more general than GMM).



2 Generic Simulation Estimators

- Hp(x) is a J x 1 vector of functions of actual data {wt}?zl.

- Hy(y(0,v)) is the same J x 1 vector of functions computed using the
simulated data {y; 7];\;1, once the k X 1 vector of parameters 6 and a
sequence of shocks v are chosen.

Assume:

a)x: and y;(0, v) are stationary and ergodic.

b) Hp(z) & g, as T — oo and Hy(y(6,v)) & p,(0) as N — oo
(Consistency of the estimates of H in actual and simulated data).



Technical conditions:

c) Under the null that the model is true, there exists a unique 6* such that
g = y(0%) (Identifiability).

d) Hyx(y(6,v)) is continuous in the mean.

Then:

05k = argmin[Hr(z) — Hy(y(0,v))]WrN[Hr(x) — Hn(y(0, )]

P : . .
where Wy — Wis a J X J symmetric matrix.

Under a)-d) Ogp is consistent and asymptotically normal.



Intuition for the result:

If g7 = 57 1[h(2) — 7 SEN h(yi(6))], and Wy = W we are back
into GMM framework, so previous results apply.

Major advantage relative to GMM: g is now the difference between con-
tinuous functions of actual and simulated data - could be moments, auto-

correlation functions, VAR coefficients, etc.

Many estimators are in this class. Two are of interest.



2.1 Simulated Methods of Moments (SMM)

H are moments of the actual and the simulated data. To find Ogf:

i) Choose a 69 and a {v;}, solve and simulate the model and calculate
Hy(y(6°, v1)).

i) Find 9 r by minimizing: [Hp(x) — HN(y(H%E,V))]WTN[HT(x) —
HN(CU(QSE» V))]'-

iii) Solve and simulate the model and calculate HN(y(Q}qE, v¢)). Find Q%E
as in ii). Continue.

iv) IfII[H:r(SL‘) HN(y(%E,V))]WTN[HT(x) Hn(y(0'5p, )] - [HT(ZL’)—
Hy (y(0% 2, IIWrN[Hp(2)— Hy(y(0% 5, V)l < v or |[055—0551 <
L, or both, + small, stop.



IMPORTANT: Must use the same {v:} sequence during the iterations;
otherwise don’t know if objective function changes because parameters

change or because shocks change.
o If W1 =1, Ogg is consistent but inefficient.

e If you want to use an optimal W, insert between steps ii) and iii) of the al-
oo

gorithm W, = S4(w = 0) where Sk, (w = 0) = 200 gT(HgE)gT_T(Hng)’.

e To get standard errors use a Monte Carlo approach, i.e. repeat algorithm
for different v; sequences, plot the histogram of the resulting 6gr and
compute standard errors from this distribution (typically difficult to get
meaningful standard errors from the Hessian of the objective function).



e SMM can be used to select parameters for computational experiments.
Difference is that we have standard errors for the parameters - and that
the model is assumed to be true in the dimensions represented by H only.

Example 2.1 Equity Premium Puzzle (Merha-Prescott (1985)).

The interest is in Hp(xz) = [R/,EP]. Can a RBC model reproduce
these data moments? Standard approach: choose 0y = (u,o,m) (pa-
rameters of the endowment process) using external information; choose
61 = (B, p) (parameters of preferences) such that simulated Hpn(y(0)) =
[R1(61,05), EP(01,0,)] is as close as possible Hp(x). A puzzle obtains
because for 01 in a reasonable range (Hp(x) — Hn(y(01,02)) is large.



Can do this exercise formally with SMM:

a) Set Hp(xz) = [R), EP, PD,var(R)),var(EP),var(PD)], PD is the
price earning ratio. This is what the data gives you.

b) Set Hy(y(0)) = [R/(0), EP(0), PD(0),var(R" (), var(EP(9)),
var(PD(0))]. This is what the model gives you, given 0.

c) Choose W]QIT =1.

d) Iteratively minimize [Hy(z)—H n(y(0% ) IWh N [Hr(z)—Hy (y(0% )]

Recall that if the number of moments is the same as the number of para-
meters the choice of W does not matter.



2.2 Indirect Inference

Generalization of SMM, where H are continuous function (rather than
moments) of the data.

e Data instrumental function: H(y¢). An estimator is Hp = %Zt h(yt).
Assume consistency: Plim Hp = E(h(yt)); P is the pdf of y;.

e Model instrumental function: H(y;(6)). An estimator is Hy = %

> i h(yi(0)). Assume consistency: Pxlim Hy = Ex(h(y;(0))); Px is the
pdf of y;, given 6.

e Technical conditions:

i) 0 = [01, 03]; 02 are nuisance parameters (needed for simulations);



i) Hp(601,02) is a function (unique mapping between 6 and H).
iii) There exist a true HO:

iv) Encompassing: H9 = H (09, 05) for any estimator 6, of 0.
Then an Indirect Inference estimator (IIE) of 0 is

Orrp = arg eTian[HT — Hn(01,02)/ Qr[Hp — Hy(61,62)] (4)

where Py lim Qp = Q.

e Dridi, Guay, Renault (2007) give sufficient conditions and prove consis-
tency and asymptotically normality of this estimator.



Example 2.2 Suppose you run a regression with data on forward and spot
exchange rates of the form

St+1 =a + bF; 441 + uy (5)

If uncovered interest parity is satisfied we should expect a = 0,b = 1. In
practice b # 1 and often negative.

Suppose you have a model which has something to say about spot and
forward rates. Suppose, given some vector of structural parameters 0,
you solve it and simulate data from it. Then you can run the following
regression

Sit1 =a(0) +b(0)Fy 1 +uy” (6)

where the superscript m indicates simulated data.

An indirect inference estimator of 6 is one which makes wi(a — a(0)) +
wo(b — b(0)) as close as possible to zero.



Special case of interest: H(y;) are structural impulse responses.

Example 2.3

Lt

Uy

Tt

h

1
_ E —(i; — F
1+hyt 1+ 1+h tYt+1 + SO(Zt (1 Te41) + V1
w 5 (1 —¢B)(1—)
1+w6m_1+1+w5m+1+ (1 + wB)C Tt + vt

Qbr'it—l + (1 - gbr)(qbwﬂ-t—l + beﬂft—l) + V3¢

(7)

(8)
(9)

h = degree of habit persistence, o = relative risk aversion coefficient, =
discount factor, w = degree of indexation of prices, ( = degree of price
stickiness; ¢,., ¢, ¢, are policy parameters; vi,vy; are AR(1) with para-

meters py, P2, V3¢ is iid. Parameters 0y = (67 ®, G, gb?“) ¢7T7 ¢337 P1; P2; h, w)
(The variances of the three shocks not identified from scaled impulse re-

sponse).

Set H(yt) = [ R(@tyk|v3t), IR(my|v3e), IR(igqx|vse)], k=1,...,20.



- Many arbitrary features: weighting matrix? Max number of IRF consid-
ered? Length of VAR?

Hall et al. (2007): criterion to optimally choose the maximum number of
IRFs to be used in the exercise (call it p).

Idea: only "relevant” responses should be used, "redundant” ones should
be purged (improve efficiency, reduce small sample biases).

e Let p» > p1 and Vj be the covariance matrix of the structural parameters
where ¢ = p1,pp Then p; + 1,...,po are redundant if Vj, = V}; (non-
redundant if V},, — V), is positive semidefinite).

® pg is the horizon associated with the relevant IRF if (i) pg € (p,...)
(h is the lower bound of admissible lengths); (ii) Vp; — Vjp, is positive
semidefinite for p; = pg + Ap; (iii) Vp, = V5 if pg < D; (P is the upper
bound of admissible lengths).



Algorithm 2.1 1. Choose an upper p and a lower p and let p € (p, p).

2. Estimate impulse responses in the data up to horizon p. Collect them
into a column vector %,

3. Calculate theoretical impulse responses up to horizon p. Collect them
into a column vector vy,(0) where 0 are the structural parameters of the
model.

4. Estimate 6 using p = arg min(¥, — v,(0)) Wh (5, — 7p(0)) where W},
Is a weighting matrix.



5. Compute Vp = cov(8) = [[p(00) Wplp(00)] 2 [Mp(00) WpX~ Wil p(60)]

[T p(60) Wyl p(0g)] 1 where I'p(0) = 879%(9 and Y is the covariance ma-
trix of 4.

0.5
Iogj(%; ) if the model has a VAR(q) rep-

: _ log(T%/q) .
resentation or R(p) = log(|Vp|) +p T057, if the model has a VAR(c0)

6. Compute R(p) = log(|Vp|) +p

representation.

7. Choose the p that minimizes R(p).



Aside: Calculation of IRFs by projection methods

Jorda (2005): compute responses using a sequence of VAR(q) models.

Yi+1 = Boi1+ B11yi—1+Bo1yi—2+ ...+ Bg1yt—q + uz+1 (10)
Yir2 = Boo+ B1oyi—1+ Booyi—2+ ...+ Byoyi—q + usyo (11)

Po= (12)
Bo,r + B1syi—1+ Boryr—2 + - .- + Bgryt—q + ut+r (13)

Yt+r

The non-structural responses are él,ky k = 1,...,7 and structural re-
sponses are él,kD, k=1,...,7 where D is an identification matrix.

Call 4,, the vector of estimated responses. Estimate 6 using ép = arg min(ﬁfp—
VP(Q))'Wp(’?p — yp(e)) where W), is a weighting matrix.

Can apply Hall et al. (2007) approach to select optimal p.



3 Comparing estimators a NK Phillips curve

(- -8E)

Sp
where mc; = é\%%t are real marginal costs, ¢, is the probability of not

mt = BEymiy1 + ¢ (14)

changing prices, m; is the inflation rate. Assume marginal costs are ob-
servable (or proxied by GDP gap).

Alternative way of writing this equation:

1 — 1 —
B R C o5 o M 15)

5 Cph

where Eyi(e;11) = 0, i.e. et is an expectational error.




e GMM estimates of 6 = (3, (},) are obtained using, for example,

1 1 (1—¢p)(1—8¢)
— Y [mpa1 — =7 — Jm¢ = 0 (16)
th:[ t+l g (P meg|my
1-¢)(1—
%Z[Wﬂ—l — %ﬂ't ! Cpg(ﬁ ng)mct]ﬁt—l = 0 (17)
t p
1— 1—
%Z[MH - %7775 . Cpg(ﬁ BCp)mCt]Wt—z = 0 (18)
t p

That is, by minimizing (g7(0)27)W7(g97(0)27)" by choice of 6, given

1— 1—
WT £> W, where 2T = (7TT, T™r—_1, 7TT_2)/, gt = 7Tt—|—1_%7"'t_( Cpg(ﬁ Bcp)mct.
p




e SMM estimates (3, () are obtained using, for example,

= mam) =

given that

%% Z(mm) (=g, 2(1 B¢,) 1 Z(mcm) (19)
B %% zt:(mm—l) = szil = 1 Z(mcmt 1)
11 (1—-¢,)(1—8¢)1
= pr 2 (mmen) = g 2 mama)
(20)

%Zt et117mt—r = 0,V7 > 0. (Here we assume N =T.)



If Hyp = [ S(meame), 7 Se(meg1mi-1), 4 St(meami—2)'] and
Hyp(0) = [53 Sum(0)m(8)) — T2 L 5, (mevmi(6)),
llzt(mwm 1(6)) — L (mcm 1(6)),

51 Sum(0)m(0)) — IS y—
estlmates of 0 are found m|n|m|2|ng (Hyp — Hy(0))Wp(Hy — Hy(0)),

where again W Ew.

Difference with GMM s that the m;_;,j = 0, 1,2 entering Hx(y(0)) are
simulated, given 6. Need to solve the model to be able to simulate the
relevant data. Don’t need this with GMM.



e Indirect inference estimates 6 obtained using, e.g., the reduced form
equation

and the structural equation

1 (1—¢p)(1— B¢p)
Ty1] = =Tt — mce + epa (22)
s CpPB "
and minimizing Hp(0)WrH7(0) by choice of 8 where Hp(0) =

1— 1— i
(br — %; bgap — ( Cpé)“](gﬁ BCP))/ and, again, W i W.

Need to solve the model to be able to simulate (22).

Since criterion functions are different, the weighting matrices are dif-
ferent, instruments may be different, there is no reason to expect the
three procedures will give the same estimates for a given data set.



Table: Estimates of US NK Phillips curve

IV-GMM SMM
B Cp J-Test p-value IG; Cp J-Test p-value
0.907 (10.35)0.700 (5.08) x~(5)=0.15 |0.999 (0.001)0.999(0.014) x~(1) = 0.00

e GMM estimates obtained with constant and 2 lags of inflation and mar-
ginal costs. SMM estimates obtained by matching variance the first three
autocovariances of inflation (numerical standard errors reported)

Table: Indirect Inference Estimates of US NK Phillips curve

b bgap I5] Cp criterion function
Actual 0.993 (0.05) -0.04 (0.143)
Simulated (actual gap) | 0.996(0.0062) 0.032 (0.001) [0.7520.481]  0.01012
Simulated (simulated gap)(0.997(0.00008)-0.004 (0.0006)0.9800.324 0.02321

e Indirect inference estimates obtained with two specifications one with
actual marginal cost(MC); one where a process for the MC is estimated
using an AR(2) and a constant on HP filtered data and then simulated
together with inflation (standard errors are in parenthesis).




- Model roughly replicates actual b.

- Because bgqp is poorly estimated, simulations using the actual gap have
hard time to produce the correct sign for this coefficient.

- Estimated ¢, are very low (roughly, prices change every 1-2 quarters), 3
unreasonably low when the actual gap is used.

- Criterion function still not zero in both cases. Convergence problems?
Model incorrect?



4 Identification issues

- Can we identify (and estimate) the parameters of a model?
- Can we get a good fit even though parameter estimates are wrong?

- Can we get wrong policy conclusions because of identification problems?
E[A(0)zi1+1 + B(0)zt + C(0)zi—1 + D(0)z¢ 41 + F(0)z] =0

ziy1 = G(0)zt + ey
Stationary (log-linearized) RE solution:

xt = J(0)zi—1 + K(0)er

Zt = G(Q)Zt_l + et



Model responses to shock j: Mgy = C’(@)(L)et cC@O) L) = (I —
J(0))"1K () and L is the lag operator.

Data responses to shock j: x4 = W(L)e‘z.

Or11E = a?“g;nin g9(0) = a"“ggnin(wtg 2 (0)) W (T) (245 — 21} (0))-



e Can we recover the true 0s? We need:

- g(0) has a unique minimum at 6 = 6

- Hessian of g(0) is positive definite and has full rank.
- Curvature of g(6) is " sufficient”.

In DSGE, the distance function is non-linear function of 6; too compli-
cated to work out conditions analytically — identifiability of 6 could be
problematic.

e Different objective functions (different g) may have different "identifica-
tion power”.



Potential Problems

- Observational equivalence: two or more models are consistent with the
same empirical impulse responses.

- Under-identification: parameters may not enter impulse responses.

- Partial under-identification: two sets of parameters may enter impulse
responses only proportionally.

- Weak identification: the objective function has a unique minimum but it
is very flat in the neighborhood of the minimum.

Note: weak identification could be asymmetric. Also problems may emerge
because only a subset of the model implications (impulse responses) are
considered.



Example 1: Observational equivalence

1 A1A :
1) Tt = mEixt—l—l + >\11—|—)%2xt—1 + V¢, where: )\2 > 12> )\1 > 0.

)\z—l—)\l
A2

The RE (stable) solution is: & = A\jzs_1 + vt

Given v = 1, the responses of x; are [>‘2+2)‘1 A >‘2+2>‘1 A222F A ]

1 )\2 9 s

Using at least two horizons, A{ and A> can be estimated.

2) yr = AMYr—1 + wy

Yyt responses to an impulse in wy are identical to x+ responses to an impulse
)\2—|—)\10_U

in v if o = "



3) yt = %Etyt+1 where y; 11 = Eyir1 + wy and wy iid (0, 03).

The RE (stable) solution is y = A\y;—1 +we. If o = >‘2;\r2>‘1cm, the three

processes are indistinguishable from impulse responses.

Beyer and Farmer (2004): models like

Azt + DEyxy 1 = Bixy 1+ BoEy 12t + Cog

also have a representation as in 3).

Other examples: Kim (2001, JEDC); Ma (2002, EL); Altig, et al. (2005);
Ellison (2005).



Solution:

Example 2: Under-identification

Yt
US7
o

= a1Fwer1 + a2(is — Eymeg1) 4 v
= azFimie1 + agys + voy
= asbymir1 + v3e

Ut 1 0 a V1t
7t | = | aa 1 aoas V¢
it O 0 1 V3t

® a1, a3, as disappear from the solution.

e Different shocks identify different parameters.

e Different variables identify different parameters.

(23)
(24)
(25)



Example 3: Weak and partial under-identification

ct + ki1 = ki z 4 (1 — 0)ky

Select 3 = 0.985,¢ = 2.0,p = 0.95,n = 0.36,0 = 0.025,2%° = 1.
Simulate data. Study out how the population objective function change
when two parameters around are changed using responses of capital, real
wages, consumption and output to technology shocks.
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What causes the problems?
Law of motion of capital stock in almost invariant to :
(a) variations of n and p (weak identification)

(b) variations of 8 and § additive (partial under-identification)



Can we reduce problems by:

(i) Changing W(T')? (before W(T') = I, long horizon may have little
information)

(ii) Matching VAR coefficients?

(iii) Altering the objective function?



Consequences of weak and partial identification:

- Remain stuck at initial conditions if algorithm is poor.

- Estimates could be random.

- Parameter estimates inconsistent, asymptotic distribution non-normal,

standard t-tests incorrect (Choi and Phillips (1992), Stock and Wright
(2003)).



Standard fixups:

- Multiply objective function by 1019 (OK for weak identification, does not
do it for partial identification).

- Start from different initial conditions; take infimum of minimum (here
infimum over all 8 is 8 = 0.97).

- Fix B (problem!).



Fixing beta



Yt
Tt
it

h: degree

Identification and estimation

N+ B + 206 — Bymis) +
— . —( 2+ — T ()
1+hyt 1 11 h tYt+1 ¢ t tTTt+1 1t
_ W (¢ +v)(1—-¢B)(1 —)
= 1+w6m—1+1+w57ﬁs+1+ (11 wh)C Yt + V2t

= Mit—1+ (T — N)(Anmme—1 + Ayye—1) + v3t

of habit persistence (.85); v: inverse elasticity of labor supply

(3); ¢: relative risk aversion (2); 3: discount factor (.985); w: degree of
price indexation (.25); (: degree of price stickiness (.68);

)\r,)\w,)\y:

policy parameters (.2, 1.55, 1.1);

v1t: AR(p1) (.65); vor: AR(po) (.65); wvsy: i.i.d.



Bl PN BN LD LN Bl R
B ABl BT IRE A\ LAl A
iy A | P\
4 IR N i R =1 RS | | IR P | S E F
% 1Bl Ly gl H 1 , ,,m,f,A
o/ Ml /- N Bl /B ks
. w PN . . L
b B S| . B
2 ke = B Al N : Bl -
8l B = | R | | S
: Npcc Bl L S| - : (o
@ - . ) .
g Ik e 11 N g <] o] ol s
CBl N\ ol
B AL il r gl
3 Pl sl gl
ol /B B /Bl
a/ 18l <] <) S
- 8° 7 8° g3y
N . 3 I
” o Bl ”w” VR S . B
2 ke Bl Pl Al N 1 f : w,,ﬁw
8 s P m_” P ] < S =1
N g & L . %
* B L | =1 R A N ol w
al , S R =TV I A ol SR - Bl el B
2=h 82U g0k 202 T 2 so0=tge0=4 LOMegg oy

Distance function



(9029
jris

Distance function and contours plots



NK model: Matching monetary policy shocks

True values| Population T =120 T = 200 T=1000 |[T=1000 wrong
15 .985 .987 (.003) | .98 (.007) .98 (.006) .98 (.007) .999 (.008)
¢ 2 2 (.003) |1.49 (2.878)(1.504 (1.906)|1.757 (.823) 10 (.420)
% 3 4.082 (1.653)/4.184 (1.963)4.269 (1.763)4.517 (1.634)| 1.421 (2.33)
¢ .68 .702 (.038) | .644 (.156) | .641 (.112) | .621 (.071) .998(.072)
Ar 2 247 (.026) | .5652 (.272) | .481 (.266) | .352 (.253) | .417 (.099)
A 1.55 1.013 (.337) 1.058 (1.527)/1.107 (1.309)|1.345 (1.186)| 3.607 (1.281)
Ay 1.1 1.683 (.333) 14.304 (2.111)2.924 (2.126)(1.498 (2.088)| 2.59 (1.442)
P1 .65 5 (.212) 5 (.209) 5 (.212) 5 (.167) .5 (.188)
Po .65 5 (.207) 5 (.208) 5 (.213) 5 (.188) 5 (.193)
w 25 .246 (.006) 1 (.360) 1 (.35) 1 (.306) 0 (.384)
h .85 .844 (.006) 1 (.379) 1(.321) 1 (.233) 0 (.166)

Standard errors in parenthesis.




e Population estimates differ from true ones.

e As T' — oo estimates do not converge to population or true ones.

e Standard errors do not decrease with sample size. They are random.
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Impulse responses, Monetary Shocks, Population estimates

Think your model is great, but estimates far away from true ones!!
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depreciation rate (.0182)
parameter (.564)
share of capital (.209)
risk aversion (3.014)
discount factor (.991)
price stickiness (.887)
price indexation (.862)
response to y (.234)
int. rate smoothing (.779)
(1-8¢p)(1—¢p)

(1+87)Cp

(1-8¢y)(1—=Cy)
(14+8) 1+ 1+ w) o A D)C o

wage markup (1.2)
steady state 7 (1.016)
habit persistence (.448)
inverse el. of N (2.145)
inv. el. to Tobin’s q (.15)
wage stickiness (.62)
wage indexation (.221)
response to 7w (1.454)
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Cp Yp Cuw Y Obj.Fun.
Baseline 0.887 0.862 0.62 0.221
x0 = Ib + 1std | 0.8944 | 0.8251 | 0.615 0 1.8235E-07
x0 = I|b + 2std | 0.8924 | 0.7768 | 0.6095 | 0.1005 | 3.75E-07
X0 = ub - 1std | 0.882 | 0.7957 | 0.6062 | 0.1316 2.43E-07
X0 = ub - 2std | 0.9044 | 0.7701 | 0.6301 0 8.72E-07
Case 1 0 0.862 0.62 0.221
x0 = Ib + 1std | 0.1304 | 0.0038 | 0.6401 | 0.245 | 2.7278E-08
x0 = Ib + 2std | 0.1015 | 0.0853 | 0.6065 | 0.1791 4. 84E-08
X0 = ub - 1std | 0.0701 | 0.1304 | 0.6128 | 0.1979 4.72E-08
X0 = ub - 2std | 0.0922 | 0.0749 | 0.618 0.215 3.05E-08
Case 2 0 0 0.62 0.221
x0 = Ib + 1std | 0.1396 | 0.0072 | 0.6392 | 0.2436 | 3.1902E-08
x0 =1Ib + 2std | 0.0838 | 0.1193 | 0.6044 | 0.1683 4.38E-08
X0 = ub - 1std | 0.0539 | 0.1773 | 0.6006 | 0.1575 | 5.51E-08
X0 = ub - 2std | 0.0789 | 0.0971 | 0.6114 | 0.1835 2.61E-08
Case 3 0 0.862 0.62 0
x0 = |Ib + 1std | 0.0248 0 0.6273 | 0.029 7.437E-09
x0 = |b + 2std | 0.4649 0 0.7443 | 0.4668 2.10E-06
x0 = ub - 1std | 0.0652 | 0.0004 | 0.6147 | 0.0447 7.13E-08
x0 = ub - 2std | 0.6463 | 0.2673 | 0.8222 | 0.3811 | 5.56E-06




Cp Yp Cuw Y Obj.Fun.
Case 4 0.887 0 0.62 0.8
x0 = 1Ib + 1std | 0.9264 | 0.3701 | 0.637 | 0.4919 | 3.5156E-07
x0 = Ib + 2std | 0.9076 | 0.2268 | 0.6415 | 0.154 3.51E-07
X0 = ub - 1std | 0.9014 | 0.3945 | 0.6477 0 6.12E-07
X0 = ub - 2std | 0.9263 | 0.3133 | 0.6294 | 0.4252 4.13E-07
Case 5 0.887 0 0 0.221
x0 = Ib + 1std | 0.9186 | 0.3536 | 0.0023 0 4.7877E-O7
x0 = 1lb + 2std | 0.8994 | 0.234 0 0 3.06E-07
X0 = ub - 1std | 0.905 | 0.3494 | 0.0021 0 4. 14E-07
X0 = ub - 2std | 0.9343 | 0.5409 | 0.0042 0 0.64E-07
Case 6 0.887 0 0 0.221
x0 =1Ib + 1std | 0.877 | 0.0123 | 0.0229 0 2.4547E-06
x0 = Ib + 2std | 0.8919 | 0.0411 | 0.0003 0 4.26E-07
X0 = ub - 1std | 0.907 | 0.2056 | 0.001 | 0.0001 6.58E-07
x0 = ub - 2std | 0.8839 | 0.0499 | 0.0189 0 2.46E-06
Case 7 0.887 0 0 0.221
x0 = Ib + 1std | 0.9056 | 0.2747 | 0.0154 0.25 1.60E-06
x0 = |b 4+ 2std | 0.9052 | 0.2805 0 0.25 2.41E-07
X0 = ub - 1std | 0.9061 | 0.3669 | 0.0003 0.25 4.26E-07
x0 = ub - 2std | 0.8985 | 0.194 0.001 0.25 2.07E-07
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Figure 8: Impulse responses, Case 4.




Detecting identification problems
a) Ex-post diagnostics:
- Erratic parameter estimates as 1" increases.
- Large or non-computable standard errors. Crazy t-statistics.
b) General Diagnostics:
- Plots objective function (around calibrated values).

- Check the condition number of the Hessian (ratio of the largest to the

smallest eigenvalue).



c) Tests:

- Cragg and Donald (1997): Testing rank of Hessian. Under regularity
conditions: (vec(H) —vec(H)) Q(vec(H) —vec(H)) ~ x2((N — Lg)(N —
Lo)) N = dim(H), Lo =rank of H.

- Anderson (1984): Size of characteristic roots of Hessian. Under regularity

conditions: “=5t—— — Normal distribution.



Applied to the last model: rank of H = 6; sum of 12-13 characteristics
roots is smaller than 0.01 of the average root — 12-13 dimensions of weak

or partial identification problems.

Which are the parameters is causing problems?

Byh,01,0,1, %, Yp, Yws Aw, Py Pys Pz

Why? Variations of these parameters hardly affect law of motion of states!

Almost a rule: For identification need states of the model to change
substantially when structural parameters are changed.



5 Exercises

Exercise 1: Consider the CAPM line Ry, = Rs+ 8,,(Rm — Ry); where Ry, is the return on
an a particular asset, )/ is the unobservable market portfolio return and Ry is the return
on the risk free rate. Consider US data, use for R; the ex-post real rate (i.e. Ry =¢—m)
and for Ry the return on Dow Jones 30 (DJ30). Estimate the slope of the relationship

B by simulation.

Exercise 2: Consider the equity premium puzzle. Let Hy(z) = [R/, EP, PD,var(R7),

var(EP),var(PD)], where Ry is the risk free rate, EP = R — Ry, where R is the
return on stocks, PD is the price earning ratio, X indicates the mean of = and wvar(x)
the variance of . Using a basic RBC model with labor-leisure choice, utility of the form
=
the parameters of the model 3, ¢, p,, 0. by simulation (Hint: add back steady states to

—log(1 — N¢), AR(1) technology shocks and no adjustment costs to capital, estimate

the solution before simulating. Need also to add some steady state parameters to the set

of parameters to be estimated).



Exercise 3: In the setup of example 2.2 consider matching 20 responses of output and
inflation only to monetary shocks using US data. How different results are from those

obtained matching 20 responses of all variables to monetary shocks?



