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1 Introduction

- Should we calibrate or estimate?

- If one estimates should it be Bayesian or Classical?

- What is exactly calibration?

- Why is calibration popular?

- How do you recognize a good from a bad calibration?



2 Philosophy: Kydland-Prescott (1991,1996)

- Choose a question and select a model capable of answering the question.

- Solve the model.

- Choose the inputs (exogenous stochastic processes and parameters).

- Evaluate the quality of the model (compare the output to the data).

- Perform the experiment/answer the question.



A 2 minute history of econometrics

- Frish (1933): Econometrics is "quantitative economic theory".

- Cowles Commission (1948): Econometrics is testing hypotheses.

- Beginning of 1980s: calibration.

- Now some calibration and some estimation.

Why switching back and forth?

Why quantitative experiments make sense?



3 Uncontroversial steps

� Choice of question: Typically quantitative:

- How much of the variance of xi is due to shock ej? (Kydland and
Prescott (1982))

- Can the addition of a shock v reconcile the discrepancy we have previously
found between the model and the data? (Christiano and Eichenbaum
(1992)).

- How useful is the introduction of a feature z in reproducing the dynamics
of the data? (Wei (1998)).

Sometimes the question is qualitative: can the model reproduce the humped
shaped response of output to monetary shocks? What inertial features may
help in doing this?



� Choice of model: yt = f(�t; �); yt m�1; � k�1, �t l�1 vectors ; l � m.

et exogenous variables, � parameters.

- Must have some relationship with the question asked. Could be RBC/New
Keynesian; Competitive/non-competitive labor market; open/closed econ-
omy.

- Should it be realistic? (i.e. should it be complicated?)

- Should it be data congruent? (i.e. should it explain the data well?)

A model is a false description of the data, meaning:

- There will always be dimensions along which it is unrealistic (will the
representative agent assumption be ever realistic?)

- There will always be some variable which is not explained well.



- What are the properties of the error (discrepancy) between model and

data?

In standard linear econometric models yt = xt�+ut one assumes Et(ut) =

0; corr(ut; ut��) = 0, i.e. the model (Xt�) is correct on average and

explains the correlation structure in the data.

Can we make these assumptions for false economic models? No, in general.

- Should we add ad-hoc features to get a good �t? Mechanisms/features

should be theoretically sound (e.g. incomplete markets or di�erent type of

preferences vs. habits or informational restrictions). Something will always

be left unexplained. A model is NOT reality (see e.g. Ascari (2011) for a

recent reiteration).



� Solution: f unknown; choose h(�t; �), where � = h�(�) such that:

min jjf(�t; �)� h(�t; �)jj < � (1)

jj:jj is some distance metric (could be local or global).

- (Log) linear approximations: local.

- Second or higher order approximations: local.

- Discretization of the state space, projection methods: global.



� Choice of the process for �t.

-Use tractable processes, such as AR(1) or ARMA(1,1).

- Choose the ARMA parameters to match as close as possible the data.

(see next few slides)



4 Controversial steps

4.1 Parameter Selection

How do scientists conduct experiments in biology/physics?

Are economic experiments similar to biology/physics experiments?



� Want to measure the temperature of boiling water at 4000 meters the
mountains.

- Instrument = Thermometer.

- Graduate the instrument to some observations (e.g. make sure that

0 correspond to freezing water and 100 to boiling water at see level).

Interpolate values in the middle.

- Do the measurement, report result, comment.

� Measurement is a number, i.e. water boils at 86C.



Many potential sources of uncertainty in the experiment:

� Uncertainty in the measurement due to say, atmospheric conditions,
unexpected heating problems, etc.. Can be accounted for if the experiment

is repeated are result averaged.

� Uncertainty about the quality of the instrument. Repeat experiment

using di�erent instruments, eliminate extreme measurements, average.

� Uncertainty about the calibration? Could water freeze at di�erent degrees
in summer or winter? Could observations be dependent on unobserved

forces e.g. location dependent? Maybe. Calibrate the thermometer in

di�erent conditions, check if the measurement change.

Can we draw an analogy between experiments in natural sciences and

economics? In part yes.



- Instrument = economic model.

- Graduation = want to make sure that the model reproduces some im-

portant facts (point estimates of some statistics).

i) A RBC model is an extension of a growth model. Make sure it reproduces

long run averages of the data (steady states). Then, use it to ask cyclical

questions.

ii) A New-Keynesian model has distortions. Want the model to reproduce

equilibrium without distortions (
exible price equilibrium). Then, use the

model to evaluate second best policies.



� Problem: the graduation procedure applied to economic experiments
leaves (many) free parameters.

- Economic models are highly parametrized.

- In experimental science this is typically not the case.

- What do we do with the remaining parameters?



Let the actual data be yt; let M1 be graduation statistics � = (�1; �2; �3)

- �3 are parameters which do not appear in M1.

- �2 are parameters that can not be simultaneously determined by M1.

� �2; �3 are thus free parameters. How do you choose them?

- Given some �2 = ��2, and some �t = ��t; it is possible to implicitly solve �1
from 0 = M1(yt;��t; �1; ��2) � ~M1(�1; ��2), where M1 are, typically, steady

states.



To choose �2 one has three options:

i) Refer to other studies. Problems: selectivity bias, estimation approach

used to obtain them could be incoherent with the model. Advantages:

discipline profession.

ii) Fix it arbitrary; need to perform sensitivity analysis.

iii) Use additional observations and some theoretical relation (e.g. r =

��1 � 1 and data on the real rate).



To choose �3 (the parameters not entering M1):

iii) Estimate them using e.g. min�3 jjM2(yt) �M2(��t; ��2; �̂1; �3)jj, where
M2 6=M1 and �̂1 an estimate of �1.

What are M2(yt)? Typically, second moments, auto and cross covari-

ances, spectra, but could also be impulse responses, VAR coe�cients, Gini

coe�cients, wealth distributions,etc.

What kind of estimation approach can you use? Informal method of mo-

ment (grid search), formal methods (GMM, SMM, ML, etc.)

Limited information are typically preferred to full information methods.



Example 4.1

max
(ct;Kt+1;Nt)

E0
X
t

�t
(c#t (1�Nt)

1�#)1�'

1� '
(2)

Gt + ct +Kt+1 = GDPt + (1� �)Kt (3)

ln �t = �� + �z ln �t�1 + �1t �1t � (0; �2z) (4)

lnGt = �G+ �g lnGt�1 + �4t �4t � (0; �2g) (5)

GDPt = �tK
1��
t N

�
t (6)

K0 are given, ct is consumption, Nt is hours, Kt is the capital stock. Let

Gt be �nanced with lump sum taxes and �t the Lagrangian on (3).



The FOC are ((10) and (11) equate factor prices and marginal products)

�t = #c
#(1�')�1
t (1�Nt)

(1�#)(1�') (7)

�t��tk
1��
t N

��1
t = �(1� #)c

#(1�')
t (1�Nt)

(1�#)(1�')�1 (8)

�t = Et��t+1[(1� �)�t+1K
��
t+1N

�
t+1 + (1� �)] (9)

wt = �
GDPt

Nt
(10)

rt = (1� �)
GDPt

Kt
(11)

Using (7)-(8) we have:

�1� #

#

ct

1�Nt
= �

GDPt

Nt
(12)



- Here Kt is the state, (�t; Gt) the shocks, (�t; ct; Nt; GDPt; wt; rt) the

controls (the endogenous variables).

- Seven equations (3)-(6)-(8)-(9)-(10)-(11)-(12)) and seven unknowns

((�t; Gt) are exogenous): a solution exist.



Log linearizing the equilibrium conditions

�̂t � (#(1� ')� 1)ĉt + (1� #)(1� ')
N ss

1�N ss
N̂t = 0 (13)

�̂t+1 +
(1� �)(GDP=K)ss

(1� �)(GDP=K)ss + (1� �))
(\GDP t+1 � K̂t+1) = �̂t (14)

1

1�N ss
N̂t + ĉt �dgdpt = 0 (15)

ŵt �\GDP t + n̂t = 0 (16)

r̂t �\GDP t + k̂t = 0 (17)

\GDP t � �̂t � (1� �)K̂t � �N̂t = 0 (18)

(
g

GDP
)ssĝt + (

c

GDP
)ssĉt + (

K

GDP
)ss(K̂t+1 � (1� �)K̂t)�\GDP t = 0 (19)

(18) and (19) are the production function and resource constraint.



Four types of parameters appear in the log-linearized conditions:

i.) Technological parameters (�; �).

ii) Preference parameters (�; '; #).

iii) Steady state parameters (Nss; ( c
GDP )

ss; ( K
GDP )

ss; ( g
GDP )

ss).

iv) Parameters of the driving process (�g; �z; �
2
z; �

2
g).

Question: How do we obtain values for these 13 parameters?



The steady state of the model (using (9)-(12)-(3)) is:

1� #

#
(

c

GDP
)ss = �

1�Nss

Nss
(20)

�[(1� �)(
GDP

K
)ss + (1� �)] = 1 (21)

(
g

GDP
)ss + (

c

GDP
)ss + �(

K

GDP
)ss = 1 (22)

GDP

wc
= � (23)

K

i
= � (24)

Five equations in 8<13 parameters!! Can't calibrate all parameters using
the steady states. Need to choose.

For example: (20)-(22) determine (Nss; ( c
GDP )

ss; ( K
GDP )

ss; �; �) given
(( g
GDP )

ss; �, #).



Here �2 = [( g
GDP )

ss; �, #] and �1 = [Nss; ( c
GDP )

ss; ( K
GDP )

ss; �; �] and

M1 are steady state relationships.

How do we set the parameters in �2? Use external information!

- ( g
GDP )

ss it is typically chosen to be the average G/Y in the data.

- � = (1 + r)�1 so typically set it so that rss = [0:0075; 0:0150] per

quarter.

- # is related to Frish elasticity of labor supply: use micro study estimates.

Which one? Controversial.



The other 5 parameters of the model do not enter the steady state and
correspond to �3. How do we choose them?

- The parameters of the exogenous process. Rule:

a) If the shock is observable: estimate the free parameters from the data.
Occasionally, shock is observable (government expenditure) or observable
conditional on some parameters (e.g. Solow residuals).

i) �g; �
2
g backed out from government expenditure data.

ii) �z; �
2
z backed out from Solow residual i.e. estimate the variance and

the AR(1) of ẑ = lnGDPt � (1� �)Kt � �Nt, once � is chosen.

b) If �t unobservable: estimate the free parameters so that statistics of
simulated data match statistics of actual data, i.e. choose the variance of,
e.g. preference shocks, so that var(GDPt) = var(GDPMt ).



- For ': coe�cient of relative risk aversion (RRA) is 1� #(1� '). Then

(a) appeal to existing estimates of RRA and, given #, �nd '.

(b) �x ' arbitrarily;

(c) use (7) or (9) to estimate it by e.g. GMM (see later on);

(d) select it by simulation so that, e.g., var(ct) = var(cMt ).



� Problem: estimates �3 are typically conditional on ��2; �̂1.

Distribution of �3 distorted if ��2; �̂1 are inconsistent estimators of �2; �1.

Example 4.2

yt = xt� + ut (25)

ut = �ut�1 + �t �t � iid(0; �2�) (26)

The GLS estimator for (�; �): use yt � �yt�1 = �(xt � �xt�1) + �t.

(�̂j�) = (~x0t~xt)�1(~x0t~yt) where ~x = xt � �xt�1 and ~y = yt � �yt�1.

When is �GLS = �̂j�̂ obtained e.g. with a two step approach?

If �̂ consistent: (�̂j�̂) P! (�̂j�) =
R
(�; �)d� as T !1 � �GLS. Otherwise

problems.



Example 4.3 - Set T=1000, replications =1000.

- True values: � = 0:5; � = 0:9

Distribution of �j�̂
25th percentile mean 75th percentile

� = 0 0.396 0.478 0.599
� = 0:4 0.443 0.492 0.553
� = 0:9 0.479 0.501 0.531

� Moments of the distribution of � depend on �̂.



General Problems

- Potentially many estimates of �2, which one to choose?

- Potentially many estimates of �3, depending on the estimation approach,

which one to choose?

- Di�erent parameters obtained with di�erent objective functions. Consis-

tent inference is di�cult.



Alternative approach

- Treat �2; �3 as joint free parameters. Setup a prior (range) consistent
with available evidence or with the prior of researchers; use steady states
to back out range of values for �1.

a) Objective range (Canova (1994), Canova (1995)).

b) Subjective range (DeJong, Ingram, Whiteman (1996); Geweke (1999)).

Example 4.4 a) Most existing estimates of ' (obtained with di�erent es-
timation approaches) are around 2. Some have used values up to 10 in
calibration (Merha and Prescott (1985)). Hence, the a-priori distribution
for ' can be approximated with a �2(4), which has the mode at 2 and 5%
of probability above 6.

b) ln' � N(3; 1).



- This way we have ranges for �1 which are consistent with the steady

states.

Advantages:

- Avoids selection bias for �2 and/or �3:

- Uses all available information about parameters and model structure.

- Can be used to check what is the potential range of outcomes of the

model when parameters are within some interval (prior-predictive analysis,

see e.g. Leeper et al. (2011)).

- Provides automatic sensitivity analysis within a range of values.



Example 4.5 New Keynesian Phillips curve.

�t = ��t+1 +
(1� �p)(1� �p�)

�p
mct + et (27)

et is an expectation error. Use the output gap as observable proxy for marginal costs.
What are the prior range for AR(1) of in
ation, given uniform ranges for (�p; �)?.

0.98 0.982 0.984
0.986 0.988 0.99 0.992 0.994 0.996 0.998

0.3
0.4

0.5
0.6

0.7
0.8

0.9
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1
1.01
1.02

betazeta

A
R

1



- Steady state calibration is equivalent to �rst moment matching.

- Steady state calibration, plus estimation of �3 is equivalent to �rst and

second moment matching.

- Calibration uses economically interesting moments to �nd parameters.

Standard econometric approaches use orthogonality or statistical conditions

- less relevant from an economic point of view.



4.2 Evaluation of a calibrated model

Is the model appropriate to conduct the experiment? Need to make sure
it is the case.

� If calibrated to the steady state, certain data are automatically matched
on average. Need something more.

� If the model is false, can't use standard statistics to do additional checks
(e.g. check if there is no serial correlation in the discrepancy between model
and data). Moreover, statistical �t and economic trust are di�erent.

� Typically, construct stylized facts (second moments, turning points, im-
pulse responses, etc.) in the model and the data and compare them.

� The stylized facts used to evaluate the model should be di�erent than
the statistics M1 and M2 used to calibrate the parameters.



Preliminary data transformation are needed to compute stylized facts. De-

trending vs. �ltering.

- Detrending: some variables may have unit roots. Second moments may

not be de�ned.

- Filtering 1: the second order implication of the model are not comparable

with the data (there is much more in the data). Filter actual data.

- Filtering 2: the model and the data have many implications. For com-

parison focus only on the cyclical components (�lter both actual data and

model simulated data).

Under certain assumptions �ltering detrends the data, i.e. it makes the

data stationary.



Problem:

- Detrend or �lter?

- If detrend, which method do we use? Typically LT, Segm-LT, FOD

- If �lter, which �lter do we use? Typically, HP, BP.

Can we construct stylized facts without �ltering or detrending? (Harding

and Pagan (2002, 2006))

Branch to other set of notes.



How do you compare a model and to the data? Five approaches:

� Informal comparison using moments.

� Formal/informal comparison using the time series representation of the
decision rules.

� Informal examination of the properties of estimated shocks.

� Probabilistic comparison.

� In-sample and out-of-sample regression methods.



4.2.1 Informal comparisons

Assume you have found a reasonable way to compute stylized facts. These

are numbers (e.g. the variability of cyclical output is 1.76)

- Model output is a number as well (without uncertainty in either � or �

or both, variability of output in the model is a number, say 1.45).

- How do you compare 1.76 and 1.45? Eyeball econometrics!!

- Could allow sampling uncertainty in � (e.g. simulate the calibrated model

10 times using the same � but di�erent shocks). If averages are computed,

still compare a number to a number.

- Weaker interpretation (we do not want the model to grossly violate some

basic statistics). Di�cult to say what "grossly" means.



- Fancier business cycle accounting: Chari, Kehoe, McGrattan (2007).

In a RBC model the intratemporal condition is

�1� #

#

ct

1�Nt
= �

GDPt

Nt
(28)

Calibrate #; �. Use data on ct; Nt; GDPt. Call the di�erence between LHS

and RHS of (28) a " labor wedge".



- If theory is correct and calibration is right, the wedge should be zero for

every possible t. If it is not:

- Study what factors can account for size, serial correlation and other

properties of the "wedge".

- Compare the time series properties of the wedge with (estimated) struc-

tural shocks. Study what kind of frictions can induce the "wedge"?

Reverse engineering approach: checks what is needed to make sure that

the �rst order condition of the model satisfy the data counterpart. Can be

used also for estimated models.



Example 4.6 (Chari, Kehoe, McGrattan (2009)) In Smets and Wouters

(2003, 2007) wage markup dominant source of 
uctuations in output,

hours and in
ation (in the long run above 50 percent).

Smets and Wouters: lt = [
R 1
0 l
1=1+�t
it di]1+�t so elasticity of substitution is

1+�t
�t
. Intratemporal condition is wt = (1� �t)

Ult
Uct
.

From BC accounting: ztFlt(1� � t) =
Ult
Uct
. If �rms do not have monopoly

power and prices not sticky wt = ztFlt. Hence (1� � t) =
1

1��t

Markup shocks are labor wedge shocks (this is why they are important!).



i) Are they reasonable? Not really: standard deviation of markup shocks is
25.87. Fluctuations in elasticity too large; composition of lt can't change
so much!! Careful: metric of comparison here is HP �ltered data.

ii) Are they structural? i.e. are they invariant to e.g. (monetary) policy
intervention? Are they bad/good shocks? Potential stories: 1) 
uctuations
in the bargaining power of unions due to variations in policies toward unions
(bad shock, not invariant to policy interventions); 2) 
uctuations in the
value of leisure (good shock, invariant).

iii) Do they give an appealing view of BC 
uctuations? If 1) business cycles
due to greed of workers (bid up wages when bargaining power change); if
2) 1970s recession due to attack of workers laziness. Both unappealing.

Conclusion: A model where the main source of 
uctuation is a reduced
form shock (lacking interpretation) and where the economics is hard to
accept, can not be used to do computation experiments.



4.2.2 Comparison using the decision rules I: VARs

Example 4.7 The log-linearized conditions of the RBC model are:

�̂t � (#(1� ')� 1)ĉt + (1� #)(1� ')
N ss

1�N ss
N̂t = 0 (29)

�̂t+1 +
(1� �)(GDP=K)ss

(1� �)(GDP=K)ss + (1� �))
(\GDP t+1 � K̂t+1) = �̂t (30)

1

1�N ss
N̂t + ĉt �dgdpt = 0 (31)

ŵt �\GDP t + n̂t = 0 (32)

r̂t �\GDP t + k̂t = 0 (33)

\GDP t � �̂t � (1� �)K̂t � �N̂t = 0 (34)

(
g

GDP
)ssĝt + (

c

GDP
)ssĉt + (

K

GDP
)ss(K̂t+1 � (1� �)K̂t)�\GDP t = 0 (35)



Letting y2t = (�̂t; K̂t); y1t = (ĉt; N̂t; \GDP t; ŵt; r̂t), y3t = [�̂t; ĝt]
0,

yt = [y1t; y2t]
0:

A0yt+1 = A1yt +A2y3t

A0 =

26666666666664

1 � (1��)(GDP=K)ss
(1��)(GDP=K)ss+(1��) 0 0

(1��)(GDP=K)ss
(1��)(GDP=k)ss+(1��) 0 0

1=(GDPK )ss 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

37777777777775



A2 =

266666666664

0 0
0 �(g=GDP )ss
0 0
0 0
�1 0
0 0
0 0

377777777775

A1 =

266666666666664

1 0 0 0 0 0 0

0
(1��

(GDPK )ss
�( c

GDP )
ss 0 1 0 0

0 0 1 1
1�Nss �1 0 0

�1 0 #(1� ')� 1 �(1�#)(1�')N
ss

1�Nss 0 0 0

0 1� � 0 � �1 0 0
0 0 0 1 �1 1 0
0 1 0 0 �1 0 1

377777777777775



Solution:

B0(�)yt = B1(�)yt�1 +B2(�)y3t (36)

Log-linearized solution of a DSGE is a restricted VAR(1): compare vector

autoregressive representations of the model and of the data.

i) Via lag restrictions.

Example 4.8 Decision rules of a basic RBC model imply that a VAR(1)

should be enough to represent the dynamics of the data. Is it true? i.e. if

we run a VAR on the data, would the coe�cients on t� 2, t� 3 be equal
to zero? Generally no.

ii) Via exclusion restrictions.



Example 4.9 Decision rules of a basic RBC model imply that in a VAR(1)

with capital, consumption lags should not enter the empirical model for

consumption. Is it true in the data? Generally no.

iii) Via unit root/cointegration checks (Canova, Finn and Pagan (1994)).

Example 4.10 If the technology shock �t has a unit root, all the variables

in yt but hours and the real rate must have a unit root. Further since the

trend is common and log ct � log yt should be stationary. Is it true?

� If there are non-observable variables, can't compare format of decision
rules to a VAR.



4.2.3 Comparing using decision rules II: ARMA

- The log-linear solution of a DSGE model for the observable variables is

not VAR(1) but an ARMA.

Result If

"
�11(`) �12(`)
�21(`) �22(`)

# "
y1t
y2t

#
=

"
�1t
�2t

#

The univariate representation for y1t is

[�11(`)� �12(`)�22(`)
�1�21(`)]y1t = �1t � �12(`)�22(`)

�1�2t (37)



Example 4.11 In an RBC model with labor/leisure choice the solution for
N̂t is ARMA(1;1).

Comparison 1: Check if ACF of hours is the same in model and data.

Comparison 2: What kind of ARMA model can we �t to the actual data.
Do estimated coe�cients match theoretical ones?

Let u(ct; Nt) = log(ct) + #N(1 � Nt), Gt = 0 and � = 0:99; � =
0:36; #N = 2:6; � = 0:025; �z = 0:95; �z = 0:07. US S.A. data: Av-
erage Weekly Hours of Private Nonagricultural Establishments.

ACF of hours, sample 1964;1-2003:1
standard deviationcorr(ht; ht�1)corr(ht; ht�2)corr(ht; ht�3)

actual data 0.517 0.958 0.923 0.896
simulated data 0.473 0.848 0.704 0.570

ARMA(2,2) for actual hours
AR(1) AR(2) MA(1) MA(2)

actual data 1.05(4.54) -0.07 (-0.33) -0.12 (-0.49) -0.05(-0.64)



Conclusions:

1) Standard deviation similar, ACF of the model less persistent.

2) Data wants AR(1) for hours. First theoretical coe�cient = 1.57, larger

than the �rst estimated coe�cient=1.05.



4.2.4 Shock analysis

� Back out shocks needed to match the data. Are they reasonable? Do
they display features which match what we know about them?

B0(�)yt = B1(�)yt�1 +B2(�)y3t (38)

- Given � and y0 �nd y3t; t = 1; 2; : : :.
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Estimated shocks. NK model with backward looking policy rule
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Estimated Shocks. NK model with contemporaneous policy rule



4.2.5 Probabilistic evaluation methods

a) Using simulation variability

Suppose your are interested in �y1;y2(�); � = 0; 1; 2; : : :. Fix �

1) Draw (f�tgTt=1)l, solve the model, and compute �y1;y2(�)
l.

2) Repeat step 1) L times.

3) Order simulations outcomes.

4) Calculate, e.g.,



- the number of replications for which �y1;y2(�)
l < �y1;y2(�) (i.e. calculate

the percentile of the simulated distribution whether the actual value is).

- whether the actual value is inside a 68% (95%) simulation interval.

g(ρ(x))

  ρ(y)

Distribution in the model and value in the actual data



Since: �̂y1;y2(�)
D! N(�y1;y2(�); V�(�)) where V�(�) =

1
2T (1�j�y1;y2(�)j)

2

and limT!1 T 0:5
(�y1;y2

(�)��̂y1;y2(�))
V�(�))0:5

D! N(0; 1) each � .

Could also:

- Compare T 0:5
(�y1;y2

(�)l��y1;y2(�))
(V A� (�))

0:5 to a N(0; 1) and record rejection rate
(say at a 5% level) or p-values.

- Repeat L times. Construct the empirical distribution of p-values or the

percentages of times the model is rejected.



Example 4.12 Compare correlation hours-wage in the RBC and in the data

Cross correlation hours/wage
corr(ht; wt�1) corr(ht; wt) corr(ht; wt+1)

Size (% below actual) 0.40 0.27 0.32
Normality (% rejection) 0.59 0.72 0.66
68% Bands [ 0.39, 0.65] [ 0.45, 0.70] [ 0.38, 0.64]
actual correlations 0.517 0.522 0.488



Can add parameter uncertainty to the simulations:

- Jointly draw �l from some prior distribution and (f�tgTt=1))l from a given

distribution.

- Repeat exercises as before. How much would parameter uncertainty add

to the properties of the model?



b) Using sampling variability

Suppose interest in some statistics and let Sh be the statistics of the model

and Sy the statistics of the data.

- For �xed �t; �, Sh can be computed without error (either analytically,

from the VAR representation of the solution or by simulating very long

time series).

- To compute the error in measuring Sy in actual data:

i) Specify a time series model of yt. Estimate �y and �
2
y.

ii) Draw �l from a N(0; �2y) or from the empirical distribution of yt � �y.

Construct ylt = �y + �l. Compute Sly



iii) Repeat i) and ii) L times.

iv) Order simulated Sly, construct percentiles and con�dence intervals.

Examine where simulated value lies.

� To draw from the empirical distribution need uncorrelated and homoschedas-
tic �t.



c) Using sampling and simulation variability

Example 4.13 Continuing with hours-wage correlation exercise

Correlation Hours­Labor Productivity
Model and Actual Distributions

0.00 0.12 0.24 0.36 0.48 0.60 0.72 0.84
0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5



- 95% simulated interval of actual correlation (0.44,0.52) is inside the 68%

interval for the model correlation (0.35, 0.75).

- Only central 25% mass of the distribution for the model correlation is

inside the 68% interval of the distribution for the actual one.



4.2.6 Regression methods: in-sample checks

� Compute RMSE/MAD for basic model and competitors.

Let y1t and y
2
t the predicted value of yt from models m1 and m2. Estimate

jointly

yt � y1t = �+ �1t (39)

yt � y2t = �+ �2t (40)

where �1t ; �
2
t have the same variance, �

2. Estimate the mean and the vari-

ance of each model separately. Use a �2(2) test to verify if the restrictions

hold (if they do than RMSE = (�2 + �2)0:5 is the same for the two

speci�cations).



� Compute unbiasedness regressions

yt = a+ by�t + ut (41)

y�t is the predicted value. Ideally a = 0; b = 1.

� Compute predictive regressions

yt = aybt + by�t + et (42)

ybt is the predicted value, say, from a baseline time series model. Look for

b 6= 0, i.e. does the structural model adds information to the time series

model?



� Add predicted values in a VAR and test signi�cance (similar in spirit to
predictive regressions - looks at lagged info)

yt = A(`)yt�1 +B(`)y�t�1 + ut (43)

Test B(`) = 0, jointly or separately for each equation.

� Case studies: how the model performs in particular episodes, i.e. a

recession or an expansion; a period of high or low in
ation, etc.

� If predictive analysis is performed can look at the distribution of prediction
errors. Compare, for example, overlap of the distributions of di�erent

models (structural vs. time series) to see if there is additional information

in the structural model.



Example 4.14 Candidate models: i) ARMA(1,1), ii) BVAR-TVC with out-

put, in
ation and interest rate and a iii) New-Keynesian model. Evaluation

based on the �t of the in
ation equation. Sample 1955:1-2002:4.

1) ARMA:�t = �1�t�1 + et + �2et�1

2) TVC-BVAR:

yt = at + bt(`)yt�1 + et
�t = ��t�1 + (1� �)�0 + ut
�t � N(0;
), � = vec(at; bt(`)).



3) NK model:

IS : xt = Etxt+1 � 1
�(rt � Et�t+1) + gt

PC : �t = �Et�t+1 +
�(1��)(1���)

� xt + ut
Taylor �Rule : rt =  rrt � 1 + (1�  r)(�xxt�1 + �p�t�1) + et
with vt = (gt; ut) = �vt�1 + �t; �t iid N(0; �

2).

Pick parameter from estimates in Canova (2009), � = 0:983; � = 3:04; � =

0:7709.



In-sample In
ation RMSE, percentage points

Model ARIMABVAR-TVC NK
1.88 1.04 1.33

In-sample, in
ation correlations: actual and predicted

Model -1 0 1
ARIMA 0.67 0.88 0.76
BVAR-TVC 0.77 0.89 0.72
NK 0.56 0.68 0.51

Unbiaseness regressions

Model a b p-value a = 0; b = 1
ARIMA 0.159 (2.01) 0.79 (1.88) 0.03
BVAR-TVC 0.109 (1.56) 0.67 (2.06) 0.02
NK 0.035 (0.99) 0.56 (1.71) 0.01



Predictive regressions

Model a b
ARIMA-NK 0.82 (2.17) 0.23 (1.65)
BVAR-NK 0.73 (1.96) 0.35 (2.00)

Case study: Peak in
ation, late 1970s

Model date 68% range
ARIMA 1979:2 [1978:4, 1980:2]
BVAR 1979:4 [1979:1, 1980:4]
NK 1981:2 [1979:4, 1982:2]
Actual 1980:1



4.2.7 Forecasting with calibrated models

Recall: log linearized decision rule of a DSGE model is of the form:

y2t = A22(�)y2t�1 +A21(�)y3t (44)

y1t = A1(�)y2t = A11(�)y2t�1 +A12(�)y3t (45)

y2t = states and the driving forces, y1t = controls, y3t shocks. Aij(�); i; j =
1; 2 are time invariant matrices which depend on �, the structural parame-

ters. There are cross equation restrictions since �i; i = 1; : : : ; n appears in

more than one entry of these matrices.

- (45) is a state space or a restricted VAR(1) model

- Assume � = �� (calibrated).



� Unconditional forecast: y3t+� = 0; 8� > 0, let the system run. With

a VAR(1) representation: let yt = (y1t; y2t). Then yt+� = A�yt and

y2t+� = SÂ� , where A = A(��) and S is a selection matrix, picking up the

second set of elements from A.

To calculate uncertainty around point forecasts:

1. Draw �l from some (prior) distribution, compute Al andylt+� ; l =

1; 2; : : : ; L, each horizon � .

2. Order ylt+� over l, each � and extract 16-84 or 2.5-97.5 percentiles.



� Conditional forecast 1: Manipulating shocks.

This is the same as computing impulse responses, i.e. need to orthogonalize

the disturbances if they are not orthogonal. Only di�erence is that the

impulse may last more than one period. Choose y3t+� = �y3t+� ; � =

0; 1; 2; : : : ; �� . Given A �nd y2t+� = A22(�)y2t+��1 + A21(�)y3t+� and

y1t+� = A1(�)y2t+� .

To calculate uncertainty around the forecasted path, use same algorithm

employed for unconditional forecasts (i.e. draw �'s from some (prior) dis-

tributions).



� Conditional Forecast 2: Manipulating endogenous states
Back out the shocks needed to produce the path �y2t+� ; � = 0; 1; 2; : : :.

Use the �rst equation of (45) to do this. Then y1t+� = A1(�)�y2t+� ; � =

1; 2; : : :. Same as above to compute uncertainty around the forecasted

path.

Identi�cation problem: there may be di�erent elements of y3t which may

induce the require path for y2t+� .

Example 4.15 What is the range of paths for consumption from next quar-

ter up to 10 years if the capital stock is higher by ten percent in all these

periods? Question: how do we increase the capital stock? Via technology

shocks? Via labor supply shocks?



� Conditional Forecast 3: Manipulating endogenous controls. Separate

y1t = [yA1t; y
B
1t] and y

A
1t+� = �yA1t+� ; � = 0; 1; 2; ::::. Back out the path

of y2t+� needed to produce �y
A
1t+� . With this path compute y

B
1t+� . Same

identi�cation problems as above; less problematic.

Example 4.16 Suppose that interest rates are (discretionarily) kept 50 ba-

sis point higher than the endogenous Taylor rule would imply. What is the

e�ect on in
ation?



4.2.8 Regression methods: out-of-sample checks.

Out-of-sample RMSE, percentage points, in
ation forecasts

Model 1 quarter 4 quarters 8 quarters
ARIMA 1.43 2.16 2.92
BVAR-TVC 1.21 1.72 1.89
NK 1.33 1.58 1.87

Out-of-sample Predictive regressions, estimates of b

Model 1 quarter 4 quarters 8 quarters
ARIMA-NK 0.35 (1.71) 0.42 (1.97) 0.34 (2.00)
BVAR-NK 0.17 (1.66) 0.35 (1.89) 0.44 (2.06)



5 Sensitivity of the measurement

Suppose we are happy with the model and perform a measurement.

Do we trust the measurement? To evaluate need to repeat experiment

taking into account

a) data uncertainties (measurement error, possibly due to di�erent �ltering

approaches).

b) model uncertainties (parameters and shocks)

� With probabilistic methods, automatically calculate measurement uncer-
tainty (see e.g. example 4.4)



Is there a simple way to summarize uncertainty in the measurement?

� Elasticity measures (uncertainty due to parameters): ��S
00
(�)

S
0
y(�)

�

� �
((Sy(�+�)=�)+�)=�

Sy(�+�)=�
. How much does Sh changes when we change �?.

� Elasticity measures (uncertainty due to data): Sy changes when we
change yt? (can do by bootstrapping, by taking regional or international

data, etc.).



6 An example

Question: Can an RBC model generate the high saving-investment corre-

lation observed in OECD countries?

Two country RBC model, single consumption good, labor is immobile.

E0

1X
t=0

�t

1� '
[C#it(1�Nit)

(1�#)]1�'

GDPit = �it(Kit)
1��(XitNit)

� i = 1; 2

Kit+1 = (1� �i)Kit +
b

2
(
Kit+1
Kit

� 1)2Kit; { = 1; 2

where Cit is consumption, 1�Nit is leisure, � is the discount factor, 1�
#(1�') the coe�cient of relative risk aversion, # the share of consumption



in utility, Kt is capital, � is the share of labor in GDP, Xit = gnXit�1 8i,
gn � 1, b is a parameter. Assume:"

ln �1t
ln �2t

#
=

"
��1
��2

#
+

"
�1 �2
�2 �1

# "
ln �1t�1
ln �2t�1

#
+

"
�1t
�2t

#

where �t = [�1t �2t]
0 � N(0;

"
�2� �12
�12 �2�

#
) and [��1; ��2]

0 is a vector of

constants. Here �12 controls the contemporaneous and �2 the lagged

spillover of the shocks. Government budget constraint:

Gi = Tit + T
y
i GDPit

The resource constraint is:

	(GDP1t�G1t�C1t�K1t+1+Kit)+(1�	)(GDP2t�G2t�C2t�K2t+1+Kit) � 0 (46)

where 	 is the fraction of world population living in country 1.



Actual saving are computed as Sat = GDPt � Ct �Gt.

Data refers to the period 1970:1-1993:3 for US and for Europe after linear

trend elimination.

With the model, generate samples of T=95 and replicate 500 times.

Evaluate the model using the diagonal elements of the 4�4 spectral density
matrix of the data (savings and investment for the two countries) and the

coherence between saving and investment in the two countries.



Parameters selection

Parameter Basic Empirical Density Subjective Density
Share of consumption (#) 0.5 Uniform [0.3,0.7] Normal (0.5, 0.02)
Steady State hours (N ss) 0.20 Uniform[0.2, 0.35] Normal (0.2, 0.02)
Discount Factor (�) 0.9875 Trunc. N [0.9855, 1.002] Normal(0.9875, 0.01)
Utility Power (') 2.00 Trunc. �2(2)[0; 10] Normal(2, 1)
Share of Labor (�) 0.58 Uniform[0.50, 0.75] Normal(0.58, 0.05)
Growth rate (gn) 1.004 Normal(1.004, 0.001) 1.004
Depreciation Rate (�) 0.025 Uniform[0.02, 0.03] Normal(0.025, 0.01)
Persistence (�1) 0.93 Normal(0.93, 0.02) Normal(0.93, 0.025)
Lagged Spillover (�2) 0.05 Normal(0.05, 0.03) Normal(0.05, 0.02)
Standard Deviation of
technology (��) 0.00852 Trunc. �2(1) [0, 0.0202] Normal(0.00852, 0.004)
Immediate Spillover (�12) 0.40 Normal(0.35, 0.03) Normal(0.4, 0.02)
Country Size (	) 0.50 Uniform[0.10, 0.50] 0.5
Adjustment cost (b) 1.0 1.0 1.0
Tax Rate (T y) 0.0 0.0 0.0



The Fit of the Model

US SpectraEurope SpectraUS CoherenceEurope Coherence
Sa Inv Sa Inv Sa-Inv Sa-Inv

Actual data 0.75 0.88 0.68 0.49 85.41 93.14
Simulated data 0.36 0.18 0.35 0.18 94.04 93.00
(�xed parameters)

Covering
Fixed parameters 46.46 8.63 55.71 43.57 98.99 92.91
Subjective density 35.30 23.40 32.89 37.00 98.17 90.34
Empirical density 19.63 18.60 21.11 20.20 94.71 95.69

Critical Value
Fixed parameters 90.80 99.89 82.16 93.91 15.60 49.04
Subjective density 71.80 89.90 66.00 76.60 19.80 51.89
Empirical density 62.50 79.70 73.30 74.60 33.46 29.60

Error
Fixed parameters 0.25 0.55 0.30 0.28 -9.17 0.37
Subjective density 0.19 0.56 0.29 0.28 -9.01 0.81
Normal density 0.13 0.58 0.42 0.35 -6.07 -2.86



Covering = how many times on average, at business cycle frequencies,

the diagonal elements of the spectral density matrix and the coherences

of model generated data lie within a 95% con�dence band for the corre-

sponding statistics of actual data.

Critical Value = percentile of the simulated distribution of the spectral

density matrix of saving and investment in the two countries where the

value of the spectral density matrix of the actual data (taken here to be

estimated without an error) lies, on average, at business cycle frequencies.

Error = median error (across simulations) needed to match actual spectral

density with model.



Experiment: What is the e�ects of tax cuts from 0.20 to 0.00?

Investment  differences

Horizon (Quarters)
0 5 10 15

0.00

0.05

0.10

0.15

0.20
Utility differences

Horizon (Quarters)
0 5 10 15

0

1800

3600

5400

7200

Compensating variations: 0.11 each period, 14% of Css.

For # 2 [0:3; 0:7] and ' 2 [1; 4], average compensating variation is

[0.09,0.12] each period.



7 Criticisms to calibration exercises

- Choice of parameters is often arbitrary/incoherent (Canova, 1994, Hansen

and Heckman, 1996).

- Incoherent use of loss functions (Hansen and Heckman,1996). Use dif-

ferent loss functions to choose di�erent parameters.

- Models with same input but di�erent speci�cation of the primitives (e.g.

CES utility vs non-expected utility) may produce di�erent measurements.

- Straight-jacket (Pesaran and Smith, 2011) or discipline provider (Kydland

and Prescott 1996)?



8 Exercises

Exercise 1 Consider the RBC model

maxE0
X
t

�t
c1�'t

1� '
+ log(1�Nt) (47)

ct + kt+1 � (1� �)kt = N�
t k

1��
t �t (48)

E�t = �ss; �̂ � (�t � �ss)=�ss = ��̂t�1 + et; et � (0; �2).

a) Log linearize the equilibrium conditions.

b) Derive the steady states and appropriately calibrate the parameters of the model.
Describe how you choose the free parameters.

c) Find the decision rules (the matrices of the solution). Describe at least two set of
restrictions that the model imposes on the data.

d) Test these implications using data from your favorite country.



Exercise 2 Consider the RBC model

maxE0
X
t

�t
c1�'t

1� '
+ log(1�Nt) (49)

ct + kt+1 � (1� �)kt = N�
t k

1��
t �t (50)

E�t = �ss; �̂ � (�t � �ss)=�ss = ��̂t�1 + et; et � (0; �2).

a) Log linearize the equilibrium conditions.

b) Choose a range for the parameters of the model. Trace out how var(c)=var(y) varies
as we change '; �2. Compute var(c)=var(y) in the data of your county. Does the model
�t well?

c) Study what would be the e�ect of a 10 percent increase in the volatility of technology
shocks on var(c)=var(y).



Exercise 3 Consider the model with capacity utilization:

maxE0
X
t

�t[ln ct + #l(1�Nt)] (51)

ct + it = �t(Ktkut)
1��N�

t (52)

E�t = �ss; �̂ � (�t� �ss)=�ss = ��̂t�1+ et; et � (0; �2), where kut is capacity utilization
(and is a choice variable), capital accumulates according to Kt+1 = (1� �(kut))Kt + it
and �(kut) = �1ku

�2
t where �1; �2 are parameters.

a) Log linearize the equilibrium conditions.

b) Derive the steady state and calibrate the parameters of the model. Choose �1; �2 so
that utilization is 1 in the steady state. Describe how you choose the free parameters.

c) Find the decision rules (the matrices of the solution). Construct one and two steps
ahead forecasts for output assuming k0 = kss + 0:01.

d) Simulate output data using yt = yt�1+et; et � N(0; 0:05) and y0 = 100. How do the
forecast of the model compare to the simulated data? Calculate the mean square error.



Exercise 4 Consider the model with capacity utilization:

maxE0
X
t

�t[ln ct + #l(1�Nt)] (53)

ct + it = �t(Ktkut)
1��N�

t (54)

E�t = �ss; �̂ � (�t� �ss)=�ss = ��̂t�1+ et; et � (0; �2), where kut is capacity utilization
(and is a choice variable), capital accumulates according to Kt+1 = (1� �(kut))Kt + it
and �(kut) = �1ku

�2
t where �1; �2 are parameters.

a) Log linearize the equilibrium conditions.

b) Choose a range for the parameters of the model. Trace out how the �rst autoregressive
coe�cient of simulated of output changes as we change �2; �. Compute the �rst order
autoregressive coe�cient of output in the data of your favorite country. Does the model
�t?

c) Study what would be the e�ect a 10 percent drop in the persistence of technology
shocks (�) on the autoregressive coe�cient of simulated output.


