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Abstract

This paper provides a general procedure to estimate structural VARs. The
algorithm can be used in constant or time varying coe¢ cient models, and in
the latter case, the law of motion of the coe¢ cients can be linear or non-linear.
It can deal in a uni�ed way with just-identi�ed (recursive or non-recursive) or
overidenti�ed systems where identi�cation restrictions are of linear or of non-
linear form. We study the transmission of monetary policy shocks in models
with time varying and time invariant parameters.
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1 Introduction

Vector autoregressive (VAR) models are routinely employed to summarize the prop-
erties of the data and new approaches to the identi�cation of structural shocks have
been suggested in the last 10 years (see Canova and De Nicoló, 2002, Uhlig, 2005,
and Lanne and Lütkepohl, 2008). Constant coe¢ cient structural VAR models may
provide misleading information when the structure is changing over time. Cogley
and Sargent (2005) and Primiceri (2005) were the �rst to estimate time varying
coe¢ cient (TVC) VAR models and Primiceri also provides a structural interpreta-
tion of the dynamics using recursive restrictions on the matrix of impact responses.
Following Canova et al. (2008), the literature nowadays mainly employs sign re-
strictions to identify structural shocks in TVC-VARs and the constraints used are,
generally, theory based and robust to variations in the parameters of the DGP, see
Canova and Paustian (2011).
While sign restrictions o¤er a simple and intuitive way to impose theoretical

constraints on the data, they are weak and identify a region of the parameter space.
Furthermore, several implementation details are left to the researcher making com-
parison exercises di¢ cult to perform. Because of these features, some investigators
still prefer to use �hard�non-recursive restrictions, using the terminology of Wag-
goner and Zha (1999), even though these constraints are not theoretically abundant.
There exist algorithms to estimate non-recursive structural models (Waggoner and
Zha, 2003) and to estimate recursive overidenti�ed models (Kociecki et al., 2013)
identi�ed with �hard� restrictions. However, their extension to TVC models is
problematic.
TVC-VAR models are typically estimated using a Gibbs sampling routine, where

a state space system is speci�ed, the parameter vector is partitioned into blocks, and
draws for the posterior are obtained cycling through these blocks. When stochas-
tic volatility is allowed for, an extended state space representation is used and one
or more parameter blocks are added to the routine. If a recursive contemporane-
ous structure is assumed, one can sample the block of contemporaneous coe¢ cients
equation by equation, taking as given draws for the parameters belonging to pre-
vious equations. When the system is non-recursive, such an approach disregards
the cross equation restrictions. Thus, the sampling must be done di¤erently. To
perform standard calculations, one also needs to assume that the covariance matrix
of the contemporaneous parameters is block-diagonal. When the structural model is
overidenti�ed, such an assumption may be implausible. However, relaxing the diag-
onality assumption complicates the computations since the conditional distributions
used in the Gibbs sampling do not necessarily have a known format.
This paper proposes a general framework to estimate a structural VAR (SVAR)

that can handle time varying coe¢ cient or time invariant models, identi�ed with
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hard recursive or non-recursive restrictions. The procedure can be used in systems
which are just-identi�ed or overidenti�ed, and allows for both linear and non-linear
restrictions on the parameter space. Non-recursive structures have been extensively
used to accommodate models which are more complex than those permitted by re-
cursive schemes. As shown, e.g., by Gordon and Leeper (1994), inference may cru-
cially depend on whether a recursive or a non-recursive scheme is used. In addition,
although just-identi�ed systems are easier to construct and estimate, over-identi�ed
models have a long history in the literature (see e.g. Leeper et al., 1996, or Sims
and Zha, 1998), and provide a natural framework to test interesting hypotheses.
The algorithm we design exploits the particular format of the structural model

and follows Primiceri�s (2005) suggestion to use a Metropolis step within a Gibbs
sampling routine to draw the vector of contemporaneous parameters. Because a
number of important identi�cation restrictions and general law of motions of the co-
e¢ cients imply a non-linear state space representation for the structural model, we
then nest our basic procedure into Geweke and Tanizaki (2001)�s approach to esti-
mate general nonlinear state space models. Thus, we can deal with many structural
systems in a compact and uni�ed way without having to pay the computational
costs of a full non-linear simulation methodology.
We use the methodology to identify a monetary policy shock in a overidenti-

�ed TVC system, whose structure is similar to the one employed by Robertson and
Tallman (2001), Waggoner and Zha (2003) and Sims and Zha (2006). We show
that there are time variations in the variance of the monetary policy shock and in
the estimated contemporaneous coe¢ cients. These variations, translate in impor-
tant changes in the transmission of monetary policy shocks . We show that time
variations in the transmission of policy shocks are reduced when an alternative law
of motion for the standard deviation of the shocks is used. We also show that,
when long and short run identi�cation restrictions are employed, the transmission
of monetary policy shocks in the 2000s is a¤ected.
The paper is organized as follows, Section 2 builds up intuition describing the

algorithm for a static SVAR with time invariant coe¢ cients and the identi�cation
restrictions that are allowed for. Section 3 considers a time varying coe¢ cients
static SVAR. Section 4 presents the general algorithm applicable to non-recursive,
overidenti�ed TVC-VAR models featuring stochastic volatility. Section 5 extends
the algorithm to deal with state space systems which have a non-linear format.
Section 6 studies the transmission of monetary policy shocks. Section 7 concludes.

3



2 A constant coe¢ cients static SVAR

To build up the intuition, we start from a static SVAR with constant coe¢ cients:

A (�) yt = "t; "t � N (0; I) (1)

where t = 1; : : : ; T ; yt and "t are M � 1 vectors, A (�) is a non-singular M �M
matrix, assumed to be invertible for almost all �, and � is a vector of structural
parameters. The likelihood function of (1) is

L
�
yT j �

�
= (2�)�MT=2 det (A (�))T exp

(
�1
2

TX
t=1

(A (�) yt)
0 (A (�) yt)

)
(2)

Because of det (A (�))T , the Jacobian of the transformation, (2) is non-linear
in �. Thus, the posterior of � will be non-standard. Whenever the SVAR is just-
identi�ed and the restrictions come in a triangular form, posterior draws for � can be
obtained using draws of the reduced-form covariance matrix 
 (�)�1 = A (�)A (�)

0
.

However, when the system is overidenti�ed, 
 (�)�1 is restricted and proper poste-
rior inference needs to take these restrictions into account (see e.g. Sims and Zha,
1998).
To describe our approach to sample � from the posterior when restrictions are

not necessarily just identifying and recursive, we proceed in two steps. First, we
reparameterize the model and present a Metropolis algorithm. Second, we show the
type of identi�cation restrictions which are compatible with the setup.

2.1 The reparameterization and the algorithm

Vectorizing (1) produces vec (A (�) yt) = vec ("t) = "t. Amisano and Giannini
(1997), assume that vec (A (�)) = SA� + sA; where SA and sA are matrices of
ones and zeros. This reparameterization can be made slightly more general so as
to handle certain types of non-linear restrictions. Let � 2 X � Rk; where X is
�su¢ ciently large�- we need X to have this feature because simulations proceed by
rejecting draws - and let f : X ! Rk

0
be continuous, where k0 may be di¤erent from

k. Using vec (A (�) yt) = (y0t 
 I) (SAf(�) + sA), the model can be expressed as:eyt = Ztf(�) + "t (3)

where eyt � (y0t 
 I) sA; Zt � � (y0t 
 I)SA. The likelihood function is then

eL �yT j �� = (2�)�MT=2 (detD(�))T exp

(
�1
2

TX
t=1

[eyt � Ztf(�)]
0 [eyt � Ztf(�)]

)
(4)
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where D(�) = @[vec(A(�)yt)]
@y0t

= Dy+Dz(�), vec (Dy) = sA and vec (Dz(�)) = SAf(�).
The reparameterization in (3) makes it easy to design a proposal distribution to

be used in a Metropolis routine. Thus, let

f �(�) =

"
TX
t=1

Z 0tZt

#�1 " TX
t=1

Z 0teyt
#

(5)

and

P � (�) =

"
TX
t=1

Z 0t (SEE)
�1 Zt

#�1
(6)

where SSE =
PT

t=1 (eyt � Ztf
�(�)) (eyt � Ztf

�(�))0. Set f(�0) = f �(�) and, for
i = 1; 2; : : : ; G:

1. Draw a candidate f(�y) � p� (f(�
i) j f(�i�1)) = t (f(�i�1); rP � (�i�1) ; �),

where r > 0, � � 4, and �t�is a t-distribution.

2. Compute � =
ep(f(�y)jyT )�p�(f(�i)jf(�i�1))ep(f(�i�1)jyT )�p�(f(�i�1)jf(�i)) , where ep(:jyT ) = eL(yT j:)[p(:)I(�)] is

the posterior kernel of f(�y) and f(�i�1) and I(�) an indicator function re-
stricting the prior p(:).

3. Draw a v � U (0; 1); set f(�i) = f(�y) if v < � and f(�i) = f(�i�1) otherwise.

Note three facts about the algorithm. First, a t-distribution with small number
of degrees of freedom is chosen to explore the tails of the posterior; when � is large
the proposal resembles a normal distribution. Second, and more importantly, the
f(�) vector is jointly sampled and the covariance matrix of P �(�) is non-diagonal.
As we discuss later, these features distinguish our algorithm from those present
in the literature and provide the �exibility needed to accommodate a variety of
structural models. Third, we need a Metropolis step to draw � since equations (5)
and (6) ignore the Jacobian term D(�) appearing in (4).
Kociecki et al. (2013) have derived a closed form solution for the posterior of �

under the assumption that det (D (�)) = 1. It turns out that their posterior collapses
to our proposal when the prior for � is di¤use. Baumeister and Hamilton (2013)
obtain an analytic expression for the posterior for � under a slightly di¤erent model
setup when sign restrictions are used for identi�cation and show that, asymptotically,
the posterior for � is the prior restricted to the set of structural models that
diagonalize the covariance matrix 
 (�) :The algorithm they employ to draw from
the posterior of � is similar to the one described in this subsection.
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2.2 Identi�cation restrictions

The model (3) is su¢ ciently general to deal with linear restrictions (both of exclu-
sion and non-exclusion types) and with certain types of non-linear restrictions. We
present a few examples for illustration. We focus on over-identi�ed systems because
just identi�ed ones only require adjustments of SA and of sA.

2.2.1 Short-run linear restrictions

Suppose A (�) features both exclusion and non-exclusion linear restrictions:

A (�) =

24 1 0 ��2
�1 1 0
0 �2 1

35
Then:

vec (A (�)) �

26666666666664

1
�1
0
0
1
�2
��2
0
1

37777777777775
=

26666666666664

0 0
1 0
0 0
0 0
0 0
0 1
0 �1
0 0
0 0

37777777777775
| {z }

SA

�
�1
�2

�
| {z }
f(�)

+

26666666666664

1
0
0
0
1
0
0
0
1

37777777777775
| {z }
sA

2.2.2 Short-run non-linear restrictions

Suppose A (�) features exclusion restrictions and nonlinear constraints:

A (�) =

24 1 0 �3
�1 1 0

0 (�2 + 1)
2 1

35 (7)
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Then

vec (A (�)) �

26666666666664

1
�1
0
0
1

(�2 + 1)
2

�3
0
1

37777777777775
=

26666666666664

0 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 1
0 0 0
0 0 0

37777777777775
| {z }

SA

24 �1
(�2 + 1)

2

�3

35
| {z }

f(�)

+

26666666666664

1
0
0
0
1
0
0
0
1

37777777777775
| {z }
sA

If we de�ne e�2 � (�2 + 1)
2, f (�) = (�1; e�2; �3)0 is still a linear vector-valued

function. Given posterior draws for e�2, we can recover �2 = pe�2 � 1; providede�2 > 0. Hence, certain non-linear restrictions can be handled with an additional ac-
cept/reject step. A similar approach can be used in the slightly more general case in
which, for example, f (�) =

�
�1; (�2 + 2�3)

2 ; �3
�0
. Here, we set e�2 � (�2 + 2�3)2 >

0 and use draws of e�2 > 0 and �3, to obtain �2 = pe�2 � 2�3.
A case we can not handle with a reject step is the following:

A (�) =

24 1 0 �1�2 � 1
�1 1 0
0 �2 1

35 (8)

Here

vec (A (�)) =

26666666666664

1
�1
0
0
1
�2

�1�2 � 1
0
1

37777777777775
=

26666666666664

0 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 1
0 0 0
0 0 0

37777777777775
| {z }

SA

24 �1
�2

�1�2 � 1

35
| {z }

f(�)

+

26666666666664

1
0
0
0
1
0
0
0
1

37777777777775
| {z }
sA

Adding an inequality constraint does not help since the third component of f (�)
does not have independent variations. Still, if we set ~f (�) = (�1; �2);draws for
�1�2 � 1 can be obtained from the draws of (�1; �2): Thus, the posterior of f (�)
can be simulated using the subset of the coe¢ cients with independent variations.
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2.2.3 Long-run restrictions

Long run restrictions generally imply nonlinear constraints on the parameters of a
VAR. As the editor has pointed out, these restrictions could be dealt with in our
framework if det (A (�;B)) = det (A (�)) ; that is, if the Jacobian of the transfor-
mation is independent of the matrix of reduced form autoregressive coe¢ cients B.
In this case, draws for B can be made from standard conditional distributions. In
general, however, this is not the case. To see this consider:

A (�) yt = A+yt�1 + "t; "t � N (0; I) (9)

The corresponding VAR is:

yt = Byt�1 + [A (�)]
�1"t (10)

where B � [A (�)]�1A+; and the (long run) cumulative matrix is:

D � (IM �B)�1 [A (�)]�1 (11)

Let

A (�) =

24 1 �3 �5
�1 1 �6
�2 �4 1

35 D =

24 D11 D12 D13
D21 D22 D23
D31 D32 D33

35 (12)

and let bij be the typical elements of (IM �B)�1 : Then

D = 1

det[A (�)]

24 b11 b12 b13
b21 b22 b23
b31 b32 b33

35�
24 1� �4�6 �4�5 � �3 �3�6 � �5
�2�6 � �1 1� �2�5 �1�5 � �6
�1�4 � �2 �2�3 � �4 1� �1�3

35
with det[A (�)] 6= 0. Assume, for example, �4 = D21 = D31 = 0 so that there
are both short and long run (zero) restrictions. D21 = 0 implies �b21 (�4�6 � 1) �
b23 (�2 � �1�4)�b22 (�1 � �2�6) = 0: Since �4 = 0, we have b21�b23�2�b22 (�1 � �2�6) =
0. Similarly, D31 = 0 implies �b31 (�4�6 � 1)� b33 (�2 � �1�4)�b32 (�1 � �2�6) = 0
or b31�b33�2�b32 (�1 � �2�6) = 0. Thus, there are non-linear constraints that draws
of bij and of �i must satisfy and det (A (�;B)) is generally not independent of B.
We discuss in section 5 how to deal with these types of systems.

2.2.4 Sign restrictions

Although sign restrictions are not the focus of this paper, it is straightforward to
show that they can be handled with the algorithm of section 2.1. Let A(�) be
a general matrix with no exclusion restrictions and inequality constraints on, say,
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the �rst column. Then, one draws ��s as above and checks if the �rst column
satis�es the required constraints. Thus, sign restrictions can be dealt with the same
accept/reject step we have used for non-linear short run restrictions. Mixture of
zero and sign restrictions, as those suggested by Arias et al. (2014), can be handled
in the same way.

3 Time-varying coe¢ cients static SVAR

Before we move to the standard TVC-SVAR models used in the literature, it is
useful to study the intermediate step of a static TVC-SVAR. The model is

A (�t) yt = "t; "t � N (0; I) (13)

�t = �t�1 + �t; �t � N (0; V ) (14)

where V is a full rank, positive de�nite matrix, �0 is given, A(�t) is assumed to be
invertible for almost all �t; for all t. This model is re-parametrized as:

eyt = Ztf(�t) + "t (15)

f(�t) = f(�t�1) + �t (16)

where eyt � (y0t 
 I) sA and Zt � � (y0t 
 I)SA. To obtain the joint distribu-
tion of f(�)T � ff(�t)gTt=1 and of V; one can use a Gibbs sampler, as long as
p
�
f(�)T j yT ; V

�
and p

�
V j yT ; f(�)T

�
are available. Given standard prior assump-

tions, p
�
V j yT ; f(�)T

�
has an inverted Wishart format and it is easy to draw from.

The conditional posterior p
�
f(�)T j yT ; V

�
can not be computed in a standard

fashion since Zt is neither exogenous nor predetermined. Thus, (15)-(16) is not the
typical state space model considered in the literature. Still, it is relatively easy to
compute the kernel of this conditional posterior. Note that

p
�
f(�)T j yT ; V

�
= p (f(�T ) j yT ; V )

T�1Y
t=1

p
�
f(�t) j f(�t+1); yt; V

�
/ p (f(�T ) j yT ; V )

T�1Y
t=1

p
�
f(�t) j yt; V

�
p (f(�t+1) j f(�t); V )(17)

From (16) p (f(�t+1) j f(�t); V ) is normal. The kernel of other terms in the ex-
pression can be constructed noticing that p(f(�t)jyt; V ) / ~L(ytjf(�t); V )p(f(�t));
where p(f(�t)) is given, and

~L(ytjf(�t); V ) = (2�)�M=2 det (D (�t)) expf�
1

2
(~yy � Ztf(�t))

0(~yt � Ztf(�t))g
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Thus, given f(�0j0) and P0j0; and construct Kalman �lter updated estimates of f(�t)
and of its covariance matrix for each t = 1; : : : ; T as

\f(�tjt) = \f(�tjt�1) +Kt

heyt � Zt \f(�tjt�1)
i

Ptjt = Ptjt�1 � Ptjt�1Z
0
t


�1
t ZtP

0
tjt�1

where \f(�tjt�1) = \f(�t�1jt�1); Ptjt�1 = Pt�1jt�1 + V; Kt = Ptjt�1Z
0
t


�1
t ; 
t =

Z 0tPtjt�1Zt + I: Smoothed estimates are f �(�T jT ) =[f(�)T jT , P �T jT = PT jT and

f �(�tjt+1) = \f(�tjt) + PtjtZ
0
tP

�1
t+1jt

�
f �(�t+1jt+2)� Z 0t

\f(�tjt)
�

P �tjt+1 = Ptjt � PtjtZ
0
tP

�1
t+1jtZtP

0
tjt�1 t = T � 1; : : : ; 1 (18)

We use (18) to calibrate the proposal distribution for the Metropolis algorithm.

3.1 The basic algorithm

Set an initial f(�0) and for i = 1; 2; : : : ; G
Step 1: Given

�
yT ; V i�1� , compute ff �(�i�1tjt+1)gTt=1; fP

�(i�1)
tjt+1 gTt=1 using (15)-(16)

. Then:

1. For t = 1; : : : ; T , draw a candidate f(�yt) � p�
�
f(�t) j f(�i�1t )

�
= t

�
f �(�i�1tjt+1); rP

�(i�1)
tjt+1 ; �

�
,

r > 0, � � 4. Set f(�y)T = ff(�yt)gTt=1; p�(f(�)T j f(�i�1)T ) =
TY
t=1

p�(f(�t) j

f(�i�1t )).

2. Compute � = ep(f(�y)T )�p�(f(�i�1)T jf(�)T )ep(f(�i�1)T )�p�(f(�)T jf(�i�1)T ) ; where ep(f(�y)T ) = eL(yT jf(�y)T ; V ) �
[p(f(�y)T )I(f(�))] and I(f(�)) is an indicator restricting the prior distribu-
tion.

3. Draw v � U(0; 1); set f(�i)T = f(�y)T if v < � and f(�i)T = f(�i�1)T

otherwise.

Step 2: Given (yT ; f(�i)T ), draw (V i)�1 � p((V i)�1 j f(�i)T ; yT ) =W
�
vV ; V

�1
�
,

where
vV = T + vV

V
�1
=

"
V +

TX
t=1

(f(�t)� f(�t�1)) (f(�t)� f(�t�1))
0

#�1
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and vV and V are prior parameters.
Given the structure of the problem, if coe¢ cients are constant, f �(�t) = f �(�);

P �t = P �;for all t = 1; : : : ; T , and the algorithm collapses to the one described in
section 2.1.

4 A standard time-varying coe¢ cients SVAR

Assume that a M � 1 vector of non-stationary variables yt; t = 1; : : : ; T can be
represented with a �nite order autoregression of the form:

yt = B0;tCt +B1;tyt�1 + :::+Bp;tyt�p + ut (19)

where B0;t is a matrix of coe¢ cients on a �M � 1 vector of deterministic variables
Ct; Bj;t; j = 1; : : : ; p are square matrices containing the coe¢ cients on the lags
of the endogenous variables and ut � N (0;
t), where 
t is symmetric, positive
de�nite, and full rank for every t. For the sake of presentation, we do not include
exogenous variables, but the setup can be easily extended to account for them.
Let the structural shocks be "t � N (0; I), let ut = A�1t �t"t; where At � A(�t)
is the contemporaneous coe¢ cients matrix, �t is a vector of free parameters, and
�t = diagf �m;tg contains the standard deviations of the structural shocks at t in
the main diagonal. The SVAR is:

yt = X 0
tBt + A�1t �t"t (20)

where X 0
t = I


�
C 0t; y

0
t�1; : : : ; y

0
t�p
�
and Bt =

�
vec (B0;t)

0 ; vec (B1;t)
0 ; : : : ; vec (Bp;t)

0�0
are aM�K matrix and a K�1 vector, K = �M�M+pM2. It is typical to assume:

Bt = Bt�1 + �t (21)

�t = �t�1 + �t (22)

log (�m;t) = log (�m;t�1) + �m;t (23)

and letting �t = [�1t; : : : ; �Mt], set:

V = V ar

0BB@
2664
"t
�t
�t
�t

3775
1CCA =

2664
I 0 0 0
0 Q 0 0
0 0 V 0
0 0 0 W

3775 (24)

where Q; V;W are full rank matrices.
Thus, the setup captures time variations in i) the lag structure (see (21)), ii) the

contemporaneous reaction parameters (see (22)) and iii) the structural variances
(see (23)). Common patterns of time variations within blocks are possible if the
rank of either Q; V or W is reduced. Models with breaks at a speci�c date can be
accommodated by adding restrictions on (21)� (23), see Canova et al. (2012).
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4.1 Relaxing standard assumptions

Consider the concentrated model obtained with estimates of the reduced-form VAR
coe¢ cients bBt:

At

�
yt �X 0

t
bBt� � Atbyt = �t"t (25)

Let vec (At) = SAf(�t) + sA, where SA and sA are matrices with ones and zeros of
dimensions M2� dim(f(�)) and M2� 1; respectively. The concentrated model can
be reparametrized as

(by0t 
 I) (SAf(�t) + sA) = �t"t

and the state space is composed of

eyt = Ztf(�t) + �t"t

f(�t) = f(�t�1) + �t

and of equation (23), where eyt � (by0t 
 IM) sA; Zt � � (by0t 
 IM)SA. Given (cBT ;�T ;V),
we need to draw f(�)T � ff(�t)gTt=1, from p

�
f(�)T j eyT ;�T ;V ; cBT

�
.

Standard algorithms (see Primiceri, 2005) partition f(�t) into blocks associated
with each equation, say f(�t) =

�
f(�t)

10; f(�t)
20; : : : ; f(�t)

M 0�0 ; and assume that
these blocks are independent, so that V = diag (V1; : : : ;VM). Then

p(f(�)T j eyT ;�T ;V ; cBT ) =
MY
m=2

p
�
f(�m)T j f(�m�1)T ; eyT ;�T ;V ; cBT

�
�p
�
f(�1)T j eyT ;�T ;V ; cBT

�
(26)

Thus, for each equation m, the coe¢ cients in equation m � j; j � 1 are treated as
predetermined and changes in coe¢ cients across equations are uncorrelated. The
setup is convenient because equation by equation estimation is possible. Since the
factorization does not necessarily have an economic interpretation, it may make
sense to assume that the innovations in the f(�t) blocks are uncorrelated. However,
if we insist that each element of �t has some economic meaning, the diagonality of V
is no longer plausible. For example, if �t contains policy and non-policy parameters,
it will be hard to assume that non-policy parameters are invariant to changes in the
policy parameters (see e.g. Lakdawala, 2012).
The algorithm described in the previous section relaxes both assumptions, that

is, the vector f(�t) is jointly drawn and V is not necessarily block diagonal. This
modi�cation allows us to deal with recursive, non-recursive, just-identi�ed or overi-
denti�ed structural models in a uni�ed framework. There are, however, computa-
tional costs, since system-wide estimation methods are now needed.
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4.2 The general algorithm

Set initial values for ((B0)T ; f(�0)T ; (s0)
T ; (�0)T ;V0), where s is J-dimensional vec-

tor of discrete indicator variables described below. Then:

1. Draw (Bi)T from from p
�
(Bi)T j byT ; f(�i�1)T ; (si�1)T ; (�i�1)T ;V i�1��IB �BT

i

�
;

where IB (:) truncates the posterior to insure stationarity of impulse responses.p(:)
is normal and can be computed using Kalman �lter recursions and a multi-
move (Carter and Kohn) or a single move (Koop and Potter) strategy.

2. Draw f(�i)T from

p
�
f(�i)T j byT ; (si�1)T ; (�i�1)T ;V i�1; (Bi)T )

�
/ p

�
f(�iT ) j byT ; si�1T ;�i�1T ;V i�1; Bi

T

�
�

T�1Y
t=1

p
�
f(�it) j byT ; si�1t ;�i�1t ;V i�1; Bi

t

�
�

pt+1
�
f(�it+1) j f(�it); byT ; si�1t ;�i�1t ;V i�1; Bi

T

�
using the approach described in section 3.1.

3. Given (byT ; (Bi)T ; f(�i)T ), the model is linear and composed of

bAtbyt � y��t = �t"t

and (23), but the error is not normal. For the m� th equation we have

y�m;t = log
h�
y��m;t

�2
+ c
i
� 2 log (�m;t) + log "2m;t (27)

where c is a small constant. Since "m;t is Gaussian, log "2m;t is log (�
2) distrib-

uted and can be approximated by a mixture of normals. Conditional on st,
the indicator for the mixture of normals, the model is linear and Gaussian.
Thus, as in Del Negro and Primiceri (2013):

(a) Draw (si)T , given ((y��)T ; (Bi)T ; f(�i)T ; (�i�1)T ) and compute

P
�
sm;t = j j y��m;t; log (�m;t)

�
/ qj��

�
y�m;t � 2 log (�m;t)� �j + 1:2704


j

�
where j = 1; : : : ; J ;� (x) is the normal density, qj a set of weights, x is
the standardized error term log "2m;t, and �j and 
j are the mean and the
standard deviation of the j�th mixture. Draw u � U (0; 1). Set sm;t = j
if P

�
sm;t � j � 1 j y��m;t; log (�m;t)

�
< u � P

�
sm;t � j j y��m;t; log (�m;t)

�
.
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(b) Given (byT ; (Bi)T ; f(�i)T ; (si)T ), use standard Kalman smoother recur-
sions to draw f�tgTt=1 from (27) � (23), given sT obtained in step (a).
To ensure independence of the structural variances, each �m;t is sampled
assuming a diagonal W .

4. Draw V i from p
�
V i j byT ; f(�i)T ; (si)T ; (�i)T ; (Bi)T

�
. V i is sampled assuming

that each block follows an independent inverted Wishart distribution.

Then use (Bi)T ; f(�i)T ; (si)T ; (�i)T ;V i as initial values and repeat the sampling
for i = 1; : : : ; G.

5 Extensions

In the setup we have used so far, we are constrained about the identi�cation re-
strictions we can employ; for example, long run restrictions produce a non-linear
model for �t and �t. Recent identi�cation procedures which restrict certain term
multipliers (for example, the maximum e¤ect of a monetary shock on output occurs
x-months after the disturbances) or the variance decomposition (as it is done in the
news shock literature, see e.g. Barsky and Sims, 2012), also generate a non-linear
model for (�t; �t). In addition, while it is standard to use a log-linear setup for
the law of motion of the volatilities, one may want to consider GARCH or Markov
switching speci�cations, which also generate a non-linear or non-normal laws of
motion of the coe¢ cients.
In all these cases the sequential Monte Carlo methods discussed in Creel (2012)

and Herbst and Schorfheide (2013) are the natural candidates to estimate the struc-
tural non-linear model. These methods however are computationally intensive and
there are still a number of theoretical and practical issues that are unsolved. Thus,
we prefer to take an intermediate step, which still allows us to deal with all these
cases, but is much less computationally demanding. Clearly, there are simpli�cations
involved. For example, we will be assuming that the posteriors can be approximated
by normals. Nevertheless, we believe it is important to have a tool that can cover
these situations without having to pay the costs of a fully non-linear simulation
methodology.
We describe next how the setup so far analyzed needs to be modi�ed to deal

with the cases of interest. In doing so, we extend Geweke and Tanizaki�s (2001)
algorithm for estimating non-linear, non-Gaussian state spaces to TVC models.
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5.1 The setup

Consider the general non-linear state space model:

yt = zt (�t; �t) + ut(�t; �1t) (28)

�t = wt(�t�1) + st(�t�1; �2t) (29)

�t = tt (�t�1) + rt (�t�1; �3t) (30)

ft (�t) = ht(�t�1) + kt(ut�1
�
�t�1; �1t�1

�
) (31)

where yt, �1t are M � 1 vectors; �t and �2t are K�� 1 vectors; �t and �3t are K�� 1
vectors; �1t � N (0; Q1t), �2t � N (0; Q2t), �3t � N (0; Q3t). Assume that zt (:),
ut(:), wt(:), st (:), tt (:), rt (:), ft(:), ht(:) and kt(:) are continuous and di¤erentiable
vector-valued functions. To estimate this system, we can linearize it around the
previous forecast of the state vector, so that

zt(�t; �t) ' zt(bbtjt�1;batjt�1) + bZ1t(�t �bbtjt�1) + bZ2t(�t � batjt�1)
ut(�t; �1t) ' ut(b�tjt�1; 0) + bu�;t(�t � b�tjt�1) + bu�1;t�1;t
wt
�
�t�1

�
' wt(bbt�1jt�1) + bwt(�t�1 �bbt�1jt�1)

st
�
�t�1; �2t

�
' st(b�t�1jt�1; 0) + bs�;t(�t�1 �bbt�1jt�1) + bs�2;t�2;t

tt (�t�1) ' tt(bat�1jt�1) + bTt(�t�1 � bat�1jt�1)
rt (�t�1; �3t) ' rt(b�t�1jt�1; 0) + br�;t(�t�1 � bat�1jt�1) + br�3;t�3;t

ft(�t) ' ft(b�tjt�1) + bft(�t � b�tjt�1)
ht(�t�1) ' ht(b�t�1jt�1) + bht(�t�1 � b�t�1jt�1)

kt(ut�1
�
�t�1; �1t�1

�
) ' kt(bu�1;t�1�1;t�1)

where bZi;t; i = 1; 2; bu�;t, bu�1;t, bwt, bTt, bs�;t, bs�2;t br�;t, br�3;t are matrices corresponding
to the Jacobian of zt (:), ut (:),wt (:), tt (:), st(:), rt(:), evaluated at �t = bbtjt�1; �t =batjt�1; �t = b�tjt�1, �1;t = �2;t = �3;t = 0. Thus, the approximated model is

byt ' bZ1t�t + bZ2t�t + bdt + bu�1;t�1;t (32)

�t ' bwt�t�1 + bgt + bs�2;t�2;t (33)

�t ' bTt�t�1 + bct + br�3;t�3;t (34)bft�t = bht�t�1 + kt(bu�1;t�1�1;t�1) (35)

where

bdt = z1t

�bbtjt�1�� bZ1tbbtjt�1+z2t �batjt�1�� bZ2tbatjt�1+u(b�tjt�1; 0)�bu�;t(b�tjt�1��t) (36)
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bct = tt
�bat�1jt�1�� bTtbat�1jt�1 + rt(b�tjt�1; 0)� br�;t(b�tjt�1 � at�1) (37)

bgt = wt

�bbt�1jt�1��cWt
bbt�1jt�1 + st(b�tjt�1; 0)� bs�;t(b�tjt�1 � bt�1) (38)

When i) zt (:), wt (:), tt (:), ut (:) are linear, ii) st (:) is independent of �t, iii) rt (:) is
independent of �t and iv) ut (:) is independent of �t, bdt = 0, bct = 0, bgt = 0. In one
of the cases considered by Rubio Ramírez et al. (2010) bdt 6= 0, while if the law of
motion of the structural coe¢ cient is non-linear or there are non-linear identi�cation
restrictions, bct 6= 0 or bgt 6= 0.
5.2 Estimation

Since (32)-(35) are linear, the algorithm described in section 4 can now be applied.
The only di¤erence is that we now draw from distributions or proposals which
are centered at the Extended Kalman Smoother estimates. For example, given
f(�0; y

T ;�T ), we construct updated estimates according to

\f(atjt) = \f(atjt�1) +Kt

h
yt � zt

�
\f(atjt�1)

�i
Ptjt = Ptjt�1 � Ptjt�1 bZ 0t��1t bZtP 0tjt�1

where \f(atjt�1) = tt( \f(at�1jt�1)), Ptjt�1 = bTtPt�1jt�1 bT 0t+br�2;tQ2tbr0�2;t Kt = Ptjt�1 bZ 0t��1t ,
and �t = bZ 0tPtjt�1 bZt + bu�1;tQ2tbu0�1;t.
Smoothed estimates are f �(�T jT ) = \f(aT jT ), P �T jT = PT jT and

f(�tjt+1)
� = \f(atjt) + Ptjt bZ 0tP�1t+1jt �f(�t+1jt+2)� � tt(\f(atjt)

�
(39)

P �tjt+1 = Ptjt � Ptjt bZ 0t hPt+1jt + br�2;tQ2tbr0�2;ti�1 bZtP 0tjt�1 (40)

for t = T �1; : : : ; 1;. Hence, when f(�) is nonlinear, we draw f(�)T from a proposal
centered at (39)-(40). Notice that the approximate model is used only in predicting
and updating the mean squared error of f(�t).
Depending on the exact speci�cation of the non-linear model, one or more steps

in the algorithm may require some adjustments. We describe the modi�cations
needed for the application of section 6 in the on-line appendix.
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6 The transmission of monetary policy shocks

We employ our procedure to study the transmission of monetary policy shocks in an
overidenti�ed structural TVC-VAR when short run zero restrictions are used. We
are interested in knowing whether the propagation of policy shocks has changed over
time and in what way. To robustify inference we study how our conclusions change
when the law of motion of the standard deviation of the shocks is altered and when
mixed long and short run restrictions are used to identify policy shocks. We also
evaluate the merits of di¤erent methods to draw the autoregressive parameters of
the model.

6.1 The SVAR model

The vector of endogenous variables is yt = (GDPt; Pt; Ut; Rt;Mt; P comt)
0, where

GDPt is a measure of aggregate output, Pt a measure of aggregate prices, Ut the
unemployment rate, Rt the nominal interest rate, Mt a monetary aggregate and
Pcomt represents a commodity price index. The structure of A(�t) is as in table 1,
where X indicates a non-zero coe¢ cient.

Reduced form n StructuralGDPt Pt UtRtMt Pcomt

Non-policy 1 1 0 0 0 0 0
Non-policy 2 X 1 0 0 0 0
Non-policy 3 X X 1 0 0 0
Monetary policy 0 0 0 1 X 0
Money demand X X 0 X 1 0
Information X X X X X 1

Table 1: Identi�cation restrictions

The structural model is identi�ed via exclusion restrictions as follows:

1. Information equation: Commodity prices (Pcomt) convey information about
recent developments in the economy. Therefore, they react contemporaneously
to all structural shocks.

2. Money demand equation: Within the period money balances; are a function
of the structural shocks to core macroeconomic variables (Rt; GDPt; Pt).

3. Monetary policy equation: The interest rate (Rt) is used as an instrument
for controlling the money supply (Mt). No other variable contemporaneously
a¤ects this equation.
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4. Non-policy block : Following Bernanke and Blinder (1992), the non-policy vari-
ables (GDPt; Pt; Ut) react to policy, money or informational changes only with
a delay. This setup can be formalized by assuming that the private sector uses
only lagged values of these variables as states or that private decisions have to
be taken before the current values of these variables are known. The relation-
ship between the variables in the block is left unmodeled and, for simplicity,
a recursive structure is assumed.

In this setup it is easy to understand why independence in coe¢ cients of di¤erent
equations is unappealing: changes in policy and non-policy coe¢ cients are likely to
be correlated. Let "t =

�
"1t "2t "3t "mpt "mdt "it

�0
be the vector of structural

innovations. The structural model is26666664
1 0 0 0 0 0
�1;t 1 0 0 0 0
�2;t �5;t 1 0 0 0
0 0 0 1 �11;t 0
�3;t �6;t 0 �9;t 1 0
�4;t �7;t �8 �10;t �12;t 1

37777775
| {z }

A(�t)

�

26666664
GDPt
Pt
Ut
Rt
Mt

Pcomt

37777775 = A+t (L)

26666664
GDPt�1
Pt�1
Ut�1
Rt�1
Mt�1

Pcomt�1

37777775+�t
26666664

"1t
"2t
"3t
"mpt
"mdt
"it

37777775
(41)

where A+t (L) is a function of A(�t) and Bt and we normalize the main diagonal of
At so that the left-hand side of each equation corresponds to the dependent variable.
Finally,

�t =

26666664
�1t 0 0 0 0 0
0 �2t 0 0 0 0
0 0 �3t 0 0 0
0 0 0 �mpt 0 0
0 0 0 0 �mdt 0
0 0 0 0 0 �it

37777775
is the matrix of standard deviations of the structural shocks.
The structural model (41) is non-recursive and overidenti�ed by 3 restrictions.

Overidenti�cation obtains because the policy equation is di¤erent from the Taylor
rule generally employed in the literature. It is easy to check (see on-line appendix
A) that the (constant coe¢ cient version of the) system is globally identi�ed and
therefore suitable for interesting policy experiments.

6.2 The prior and computation details

The VAR is estimated with 2 lags; this is what the BIC criteria selects for the con-
stant coe¢ cient version of the model. The priors are proper, conjugate for computa-
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tional convenience, and given byBprior
0 � N

�
B; 4 �VB

�
, Qprior � IW

�
k2Q �VB; (1 +K)

�
,

�prior0 � N (�; diag (abs (�))), Sprior � IW (k2S � diag (abs (�)) ; (1 + dim�)), log (�0)
prior �

N (�; 10 � IM), W prior
i � IW (k2W ; 1 + 1) ; i = 1; : : : ;M .

To calibrate the hyperparameters, we use the �rst 40 observations as a training
sample: B andVB are estimated with OLS and � and � with Maximum Likelihood
using 100 di¤erent starting points and the constant coe¢ cient version of the model.
We set k2Q = 0:5 � 10�4, k2S = 1 � 10�3; k2W = 1 � 10�4 and J = 7. We generate
150; 000 draws, discard the �rst 100; 000 and use one every 100 of the remaining for
inference. The results we present are independent of whether thinning is performed.
Convergence was checked using standard statistics. Draws for Bt are discarded if
the stability condition fails. The function I� (:) ; used to eliminate outlier draws, is
uniform over the interval (�20; 20) : In our application, all draws were inside the
bounds. The acceptance rate for the Metropolis step is 35:6 percent.
Since the structural model has M = 6, dim(�) = 12, and SA and sA are

SA =

26666666666666666666666666666666666664

01�dim(�)�
1 01�(dim(�)�1)

��
01�(2�1) 1 01�(dim(�)�2)

�
01�dim(�)�

01�(3�1) 1 01�(dim(�)�3)
��

01�(4�1) 1 01�(dim(�)�4)
�

02�dim(�)�
01�(5�1) 1 01�(dim(�)�5)

�
01�dim(�)�

01�(6�1) 1 01�(dim(�)�6)
��

01�(7�1) 1 01�(dim(�)�7)
�

05�dim(�)�
01�(8�1) 1 01�(dim(�)�8)

�
04�dim(�)�

01�(9�1) 1 01�(dim(�)�9)
��

01�(10�1) 1 01�(dim(�)�10)
�

03�dim(�)�
01�(11�1) 1 01�(dim(�)�11)

�
01�dim(�)�

01�(12�1) 1 01�(dim(�)�12)
�

06�dim(�)

37777777777777777777777777777777777775
sA = [e

0
1; e

0
2; e

0
3; e

0
4; e

0
5; e

0
6]
0
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where ei are vectors in RM with

ei = [ei;j]
M
j=1 such that ei;j =

�
1; j = i
0; j 6= i

:

6.3 The Data

The data comes from the International Financial Statistics (IFS) database at the
International Monetary Fund and from the Federal Reserve Board (www.
imfstatistics.org/imf/about.asp and www.federalreserve.gov/econresdata/
releases/statisticsdata.htm, respectively). The sample is 1959:I - 2005:IV. We stop
at this date to avoid the last �nancial crisis and to compare our results to those of
Sims and Zha (2006), who use a (restricted) Markov switching model over the same
sample. The GDP de�ator, the unemployment rate, the aggregate Gross Domestic
Product index (Volume, base 2005=100), the commodity prices index, and M2 are
from IFS, the Federal Funds rate is from the Fed. All the variables are expressed in
year-to-year rate changes, i.e. y�t = log (yt)� log (yt�4), except for the Federal Funds
and the unemployment rate, and standardized, that is, we use (y�t � E (y�t )) =std (y

�
t ),

to have all the variables on the same scale.

6.4 Comparing routines for drawing BT

To draw BT one can employ Carter and Kohn�s (1994) multi-move strategy where
the components of BT are jointly sampled from normal distributions having mo-
ments centered at Kalman smoother estimates. Koop and Potter (2011) argued
that multi-move algorithms are ine¢ cient when one requires stationarity of the im-
pulse responses at each t; especially if the VAR is of medium/large dimension. To
avoid non-explosive impulse responses, it is common since Cogley and Sargent (2005)
to assume that all the eigenvalues of the companion form matrix associated with Bt
lie within the unit circle for t = 1; : : : ; T . When the multi-move logic is used, if one
element of the sequences violates the stationarity restrictions, the entire sequence
is discarded, making the algorithm ine¢ cient. As an alternative, Koop and Potter
suggest to evaluate the elements of the BT sequence separately using a single-move
algorithm and an accept/reject step. We describe how the algorithm works in our
structural system in the on-line appendix B.
To deal with the stationarity issue, one could also consider the shrinkage ap-

proach of Canova and Ciccarelli (2009). The approach was originally designed to
deal with the curse of dimensionality in large scale panel VAR models, but can also
be used in our context. When Bt is of large dimension and each of the components
is an independent random walk, the probability that explosive draws for at least one
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coe¢ cient are obtained is very large. Canova and Ciccarelli make Bt function of a
much lower dimensional vector of factors �t, who independently move as a random
walk, and this can reduce the ine¢ ciency of the algorithm. We describe how this
algorithm works in the on-line appendices C and D.
We compare these three approaches to sample BT in our medium scale SVAR

model to better understand the pros and cons of each routine. The standard multi-
move routine is very ine¢ cient, if variables are non-standardized. In fact the ac-
ceptance rate is only 0.46% when year-on-year growth rates are used and 0.60%
when quarterly growth rates are employed. As a referee suggested, the slightly bet-
ter results obtained with quarterly growth rates is due to the fact that, with this
transformation, the data displays lower persistence. When the data is standardized,
acceptance rates improve with both data transformations (now they are 10.2% and
11.5% respectively). Standardization reduces ine¢ ciencies because not all variables
necessarily have the same units.
In the single-move algorithm, the averages acceptance rates for BT when the

data is standardized are 97% and 91% for year-on-year and quarterly growth rates,
respectively. However, the e¢ ciency gains are more than compensated by the higher
computational costs: we need about 12 hours to estimate the model with the multi-
move routine but about 96 hours with the single move routine. Note that the
precision of the two algorithms is roughly the same.
Apart from the constants, the vector Bt has 72 components. To maintain as

much as possible the covariance structure of the data unchanged, we estimate the
shrinkage model with 15 factors: one common factor, one factor for each equation
(6), one factor for each lag (2), one factor for each variable (6). � is a 72�15
matrix loading the factors on the required elements of the Bt vector. When � is
composed of zeros and ones, we needed about 10 hours to estimate the model and
the acceptance rate is 78% when the data is standardized. When the elements of
� are also estimated the computational time increases to about 24 hours and the
acceptance rate for BT drops to 24%; when data is standardized.
In sum, both the multi-move and the shrinkage algorithms have reasonable com-

putational costs but the latter has better acceptance rates. The single move algo-
rithm is computationally much more demanding - we need to compute a constant
of integration at each t and at each step of the Gibbs sampler - and this more than
compensates for the e¢ cient gains.
In the next subsections we comment on the results obtained using standardized

year-on-year growth rates and the multi-move algorithm.

21



6.5 Time variations in structural parameters

We �rst describe the time variations that our model delivers. In the left panel of
�gure 1 we report the highest 68 percent posterior tunnel for the variability of the
monetary policy shock and in �gure 2 the highest 68 percent posterior tunnel for
the non-zero contemporaneous structural parameters �t.
There are signi�cant changes in the standard deviation of the policy shocks and

a large swing in the late 1970s-early 1980s is visible. Given the identi�cation restric-
tions, this increase in volatility must be attributed to some unusual and unexpected
policy action, which made the typical relationship between interest rates and money
growth di¤erent. This pattern is consistent with the arguments of Strongin (1995)
and Bernanke and Mihov (1998), who claim that monetary policy in the 1980s was
run di¤erently, and agrees with the results of Sims and Zha (2006).
A few of the non-policy parameters [�1;t; �2;t; �5;t] exhibit considerable time vari-

ations which are a posteriori signi�cant. Note that it is not only the magnitude that
changes; the sign of the posterior tunnel is also a¤ected. Also worth noting is the
fact that both the GDP coe¢ cient in the in�ation equation (�1;t) and the in�ation
coe¢ cient in the unemployment equation (�5;t) change sign, suggesting a generic
sign switch in the slope of the Phillips curve.

Figure 1: Median and posterior 68 percent tunnels, volatility of monetary policy
shock. Left panel: stochastic volatility; right panel GARCH(1,1).
The parameter �11;t, which controls the reaction of the nominal interest rates

to money growth, also displays considerable changes. In particular, while in the
1970s and in the �rst half of the 1980s the coe¢ cient was generally small and
at times insigni�cant, it became much stronger in the rest of the sample (1986-
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2005). Interestingly this time period coincides with the Greenspan era, where o¢ cial
statements claimed that monetary policy was conducted using the interest rate as
instrument and money aggregates were endogenous.
The coe¢ cients of the money demand equation, [�3;t; �6;t; �9;t]

0 are also unstable.
For example, the elasticity of money demand to the nominal interest rate (�9;t) is
negative at the beginning of the sample and turns positive since the middle of the
1970s, with some episodes when it is not signi�cantly di¤erent from zero. The
elasticity of money (growth) demand to in�ation is low and sometimes insigni�cant,
but increasing in the last decade. Thus, homogeneity of degree one of money in
prices does not hold for a large portion of our sample. Finally, time variations in
elements of �t are correlated (see, in particular, �5;t and �8;t or �1t and �11t). Thus
our setup captures the idea that policy and private sector parameters move together.
Thus, in agreement with the DSGE evidence of Justiniano and Primiceri (2008)

and Canova and Ferroni (2012), time variations appear in the variance of the mon-
etary policy shock and in contemporaneous policy and non-policy coe¢ cients.

Figure 2: Estimates of �t

6.6 The transmission of monetary policy shocks

We next study how the observed time variations a¤ect the transmission of monetary
policy shocks. Since �mpt is time-varying, we normalize the impulse to be one at all
t. Thus, the time variations we describe are due to changes in the propagation but
not in the size of the shocks. We compute responses as the di¤erence between two
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conditional projections, one with the structural shock set to one and one with the
structural shock set to zero.
In theory, a surprise increase in the monetary policy instrument, should make

money growth, output growth and in�ation fall, while unemployment should go up.
Such a pattern is present in the early part of the sample, but disappears as time goes
by. As �gure 3 indicates, monetary policy shocks have the largest e¤ects in 1981;
the pattern is similar but weaker in 1975 and 1990. In 2005, responses are somewhat
perverse (in�ation and output growth signi�cantly increase and unemployment sig-
ni�cantly falls after an interest rate increase). Di¤erences in the responses of output
and unemployment between, say, 1981 and 2005 are a-posteriori signi�cant. Thus,
the ability of monetary policy to a¤ect the real economy has considerably changed
over time and policy surprises are interpreted in di¤erent ways across decades.

Figure 3: Dynamics following a monetary policy shock, di¤erent dates.

Despite these noticeable variations, the proportion of the forecast error variance
of output, prices and unemployment due to policy shocks is consistently small (see
�gure 4). Monetary policy shocks explain 10 percent of the forecast error variance of
in�ation at all dates and about 15-20 percent of the variability of output growth and
the unemployment rate, with a maximum of about 25 percent in the early 1980s.
Thus, as in Uhlig (2005) or Sims and Zha (2006), monetary policy has modest real
e¤ects.
These results are very much in line with those of Canova et al. (2008), even

though they use sign restrictions to extract structural shocks, and with those of
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Boivin and Giannoni (2006), who use sub-sample analysis to make their points. They
di¤er somewhat from those reported in Sims and Zha (2006), primarily because they
do not allow for time variations in the instantaneous coe¢ cients, and from those
in Fernández Villaverde et al. (2010), who allow for stochastic volatility and time
variations only in the coe¢ cients of the policy rule.

Figure 4: Percentage of the forecast error variance due to monetary policy shock in the
long run, di¤erent dates.

6.7 A time invariant over-identi�ed model

We compare these results with those obtained in a constant coe¢ cient overidenti�ed
structural model. Given that time variations seem relevant, we would like to know
how the interpretation of the evidence would change if one estimates a model with
constant coe¢ cients.
To illustrate the di¤erences, we report in �gure 5 the responses of the variables

to a unexpected monetary policy impulse at four dates (1975, 1981, 1990, 2005) in
the two systems. Clearly, there is more uncertainty regarding the liquidity e¤ect in
the time varying SVAR model at some dates. Furthermore, the responses of output
growth, in�ation and unemployment in the constant coe¢ cients model are di¤erent
and the dynamics prevailing in the 1970s seem to dominate.

25



1975 1981

1990 2005

Figure 5: Time varying and time invariant responses.

Overall, di¤erences between TVC and time invariant models are generally smaller
than previously reported. The reason is that we standardize the data prior to
estimation. If this transformation is not performed, di¤erences in the two systems
become substantially larger.

6.8 Altering the law of motion of the volatility

To check whether our results depend on the speci�cation of the law of motion of the
volatilities, we now assume that instead of (23) we use

�2m;t = (1� �) + ��2m;t�1 + �
�
y��m;t�1

�2
+ �m;t (42)

Since with this GARCH(1,1), the resulting model is non-linear, we employ the setup
of section 5 to draw sequences for the parameters. Details on how the algorithm
is modi�ed in this case are in appendix E. For comparison purposes, we report the
time pro�le of the posterior distribution of the standard deviation of the monetary
policy shock (in the second panel of �gure 1) and the responses to a monetary policy
shock in 1975:1, 1981:1, 1990:1, and 2005:1 (see �gure 6)
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Figure 6: Transmission of monetary policy shocks, GARCH(1,1) speci�cation

A few interesting conclusions emerge from the �gures. The qualitative features
of the results are broadly unaltered. For example, there is a peak in the volatility
of the monetary policy shock in the late 1970s-early 1980s and a standard prize
puzzle in response to a policy shock. Quantitatively, however, important changes
occur. The volatility of the monetary policy shock is estimated to be generally
larger and the peak in the early 1980s is �fty percent taller. Because a larger
portion of the dynamics of the endogenous variables is now capture by volatility
changes, the responses to policy shocks are generally smaller and less signi�cant
than in the baseline case. For instance, contrary to what we had in �gure 3, the
responses of prices and money are never signi�cant and those of the unemployment
rate are signi�cant only in the very short run. In addition, time variations in the
transmission of monetary policy shocks are smaller: if we exclude the medium term
response of the unemployment rate, the responses of the other �ve variables are
roughly constant at all horizons . Thus, inference about the e¤ects of policy shocks
and the changes in the transmission mechanism may depend on nuisance features.
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6.9 Using short and long run restrictions

As a �nal robustness check, together with the restrictions we have imposed in table 1,
we also impose the restriction that monetary policy shocks have no long run e¤ect
on output. We do not restrict the long run behavior of the unemployment rate
since there are theories which allow long run movements of the unemployment rate
in response to monetary policy shocks, see e.g. Farmer and Benhabib (2000). Also
in this case, the model becomes nonlinear and the algorithm described in section 5
is used to estimate the model. Details on the modi�cations needed are in the on-line
appendix F.
Figure 7 presents the responses of the variables to a monetary policy shock.

The basic qualitative feature of the responses are unchanged: it takes some time
to output and the unemployment rate to react; prices are sluggish in response to
a surprise increase in interest rates. Quantitatively some di¤erences emerge. In
2005 the response of output is perverse - output increases in response to a monetary
policy contraction for at least 20 quarters. In 1975, the response of prices is much
more persistent than without long run restrictions and the peak response of the
unemployment rate stronger. In general, when long run restrictions are imposed,
time variations in the transmission of monetary policy shocks are increased.

Figure 7: Transmission of monetary policy shocks, long run restrictions.

7 Conclusions

This paper proposes a uni�ed framework to estimate structural VARs. The method-
ology can handle time varying coe¢ cient or time invariant models identi�ed with
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recursive or non-recursive constraints that can be linear or non-linear and that can
produce just identi�ed or overidenti�ed systems. Our algorithm adds a Metropolis
step to a standard Gibbs sampling routine but nests the structural model into a
general non-linear state space system. Thus, we greatly expand the set of structural
VARs that researchers can deal with within the same estimation framework.
We apply the methodology to study the transmission of monetary policy shocks

in a non-recursive overidenti�ed TVC model similar to the one used by Robertson
and Tallman (2001), Waggoner and Zha (2003) with �xed coe¢ cients. We exam-
ine the merits of multi-move vs. single-move routines and �nd that once data are
standardized, the computational costs of using a single-move routine are larger than
the e¢ ciency gains. We show that there are time variations in the variance of the
monetary policy shock and in the estimated contemporaneous coe¢ cients. These
variations translate in signi�cant changes in the transmission of monetary policy
shocks. The time variations are considerably reduced when an alternative law of
motion for the standard deviation of the shocks is used. We show that, when a mix-
ture of long and short run restrictions are employed, the transmission of monetary
policy shocks in the 2000s is a¤ected.
The range of potential applications of the methodology is large. For example, one

could use the same setup to identify �scal shocks or externally generated shocks in
models that theory tightly parametrizes. One could also use the same methodology
to identify shocks imposing magnitude restrictions on impulse responses, as in Rubio
Ramírez et al. (2010) or variance decomposition restrictions, as in Barsky and Sims
(2012). The estimation complexity is important but not overwhelming and all the
computations can be performed on a standard PC with su¢ cient RAM memory.
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On-line Appendix

A: Global Identi�cation of the constant coe¢ cient SVAR of
section 6

Consider the constant coe¢ cients version of the SVAR model used in section 6:26666664
1 0 0 0 0 0
�1 1 0 0 0 0
�2 �5 1 0 0 0
0 0 0 1 �11 0
�3 �6 0 �9 1 0
�4 �7 �8 �10 �12 1

37777775
| {z }

A(�)

�

26666664
GDPt
Pt
Ut
Rt
Mt

Pcomt

37777775 = A+ (L)

26666664
GDPt�1
Pt�1
Ut�1
Rt�1
Mt�1

Pcomt�1

37777775+ �
26666664

"yt
"pt
"ut
"mpt
"mdt
"it

37777775

with

� =

26666664
�i 0 0 0 0 0
0 �md 0 0 0 0
0 0 �mp 0 0 0
0 0 0 �y 0 0
0 0 0 0 �p 0
0 0 0 0 0 �u

37777775
To verify that the system is globally identi�ed, we rewrite the model using the
notation of Rubio Ramirez et. al. (2010). Let yt � (GDPt; Pt; Ut; Rt;Mt; P comt)

0

and "t �
�
"yt ; "

p
t ; "

u
t ; "

mp
t ; "mdt ; "it

�0
. Pre-multiplying by ��1, we obtain

��1A (�) yt = �
�1A+ (L) yt�1 + "t

with "t � N (0; I6). De�ne A0
0 � ��1A (�) and A0 (L) � ��1A+ (L). Then:

y0tA0 =

pX
L=1

y0t�LAL + "0t
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where

A0
0 =

26666664
�y 0 0 0 0 0
0 �p 0 0 0 0
0 0 �u 0 0 0
0 0 0 �mp 0 0
0 0 0 0 �md 0
0 0 0 0 0 �i

37777775

�1 26666664
1 0 0 0 0 0
�1 1 0 0 0 0
�2 �5 1 0 0 0
0 0 0 1 �11 0
�3 �6 0 �9 1 0
�4 �7 �8 �10 �12 1

37777775

=

26666664

1
�y

0 0 0 0 0
�1
�p

1
�p

0 0 0 0
�2
�u

�5
�u

1
�u

0 0 0
0 0 0 1

�mp
�11
�mp

0
�3
�md

�6
�md

0 �9
�md

1
�md

0
�4
�i

�7
�i

�8
�i

�10
�i

�12
�i

1
�i

37777775
Denoting A0 = [akj] we have

A0 =

26666664
a11 a12 a13 0 a15 a16
0 a22 a23 0 a25 a26
0 0 a33 0 0 a36
0 0 0 a44 a45 a46
0 0 0 a54 a55 a56
0 0 0 0 0 a66

37777775
The matrices Qj , j = 1; : : : ; 6, present in Theorem 1 of Rubio Ramirez et al. (2010)
are:

Q1 =

26666664
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

37777775 ;Q2 =

26666664
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

37777775

Q3 =

26666664
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

37777775 ;Q4 =

26666664
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

37777775
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Q5 =

26666664
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

37777775 ;Q6 =

26666664
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

37777775
De�ne the matrices

Mj (A0) =

�
QjA0�

Ij 0j�(M�j)
� � ; j = 1; : : : ;M (43)

so that

M1 =

2666666664

0 a22 a23 0 a25 a26
0 0 a33 0 0 a36
0 0 0 a44 a45 a46
0 0 0 a54 a55 a56
0 0 0 0 0 a66
0 0 0 0 0 0
1 0 0 0 0 0

3777777775
;M2 =

266666666664

0 0 a33 0 0 a36
0 0 0 a44 a45 a46
0 0 0 a54 a55 a56
0 0 0 0 0 a66
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

377777777775

M3 =

26666666666664

0 0 0 a44 a45 a46
0 0 0 a54 a55 a56
0 0 0 0 0 a66
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

37777777777775
;M4 =

2666666666666664

a11 a12 a13 0 a15 a16
0 a22 a23 0 a25 a26
0 0 a33 0 0 a36
0 0 0 0 0 a66
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

3777777777777775
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M5 =

266666666666666664

0 0 a33 0 0 a36
0 0 0 0 0 a66
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

377777777777777775
;M6 =

26666666666666666664

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

37777777777777777775
Since allMj have full column rank, the model is globally identi�ed.

B: Single-move Metropolis for drawing Bt
The Koop and Potter�s (2011) approach for drawing the elements of the BT se-
quence separately works as follows. Given f(�i�1)T ; (�i�1)T ; Qi�1; V i�1;W i�1, the
measurement equation is

yt = X 0
tBt + A�1t �t"t

and the transition equation is

Bt = Bt�1 + �t

with �t � N (0; Q) ; B0 given, and A�1t �t"t = ut � N (0;
t). To sample the
individual elements of BT , all t � 1:

1. Draw a candidate By
t � N (�t;	t) where

�t =

(
Bit�1+B

i�1
t+1

2
+Gt

h
yt �X 0

t

�
Bit�1+B

i�1
t+1

2

�i
; t < T

Bi
t�1 +Gt

�
yt �X 0

t

�
Bi
t�1
��

; t = T

Gt =

�
1
2
Qi�1Xt (X

0
tQ

i�1Xt + 
t)
�1

; t < T

Qi�1Xt (X
0
tQ

i�1Xt + 
t)
�1

; t = T

	t =

�
1
2
(IK �GtX

0
t)Q

i�1 ; t < T
(IK �GtX

0
t)Q

i�1 ; t = T

2. Construct the companion formmatrixB
y
t and evaluate I

�
max

���eig �Byt���� < 1�,
where I (:) is an indicator function taking the value of 1 if the condition within
the parenthesis is satis�ed.
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3. The acceptance rate of By
t is

!B;t = min

8>><>>:
I
�
max

���eig�Byt����<1�
�(Byt ;Qi�1)

1

�(Bi�1t ;Qi�1)

; 1

9>>=>>; = min

8<:I
�
max

���eig �Byt���� < 1�� �Bi�1
t ; Qi�1

�
�
�
By
t ; Q

i�1
� ; 1

9=;
where � (:) is an integrating constant, measuring the proportion of draws that
satisfy the inequality constraint. To compute �(:) one �rst draws By;l

t �
N
�
By
t ; Q

i�1
�
, for l = 1; : : : ; L, constructs the companion form matrixB

y;l
t and

evaluates �l = I
�
max

���eig �By;lt ���� < 1�. Second, one evaluates ��By
t ; Q

i�1
�
=XL

l=1
�l

L
and � (Bt;i�1; Qi�1) and compute the acceptance probability. When

t = T , this probability is

!B;T = I
�
max

���eig �Byt���� < 1�
4. Draw a v � U (0; 1). Set Bi

t = Bc
t if v < !B;t and set Bi

t = Bi�1
t otherwise.

Since Q depends on Bt, we need to change the sampling scheme also for this
matrix. Assume that Q�1 � W

�
v;Q�1

�
so that the unrestricted posterior is Q�1 �

W
�
v;Q

�1
�
with v = v + T and Q

�1
=

"
Q+

TX
t=1

(Bt;i �Bt�1;i) (Bt;i �Bt�1;i)
0

#�1
.

Then draw a candidate
�
Qy
��1 � W

�
v;Q

�1
�
and for t = 1; : : : ; T , evaluate

�
�
Bi
t; Q

y� and � (Bi
t; Q

i�1), for a �xed L; and calculate

!Q = min

(
TY
t=1

� (Bi
t; Q

i�1)

� (Bi
t; Q

y)
; 1

)

Finally, we draw a v � U (0; 1), setQi = Qc if v < !Q andQi = Qi�1. In the exercise
we conduct in section 6, we set L = 25; when evaluate the integrating constants � (:)
at each t.
Note that in a multi-move approach � (:) = 1, when sampling both BT and Q.

Therefore, Koop and Potter�s approach generalizes the multi-move procedure at the
cost of making convergence to the posterior, in general, much slower and, because
� (:) needs to be simulated at each t, of adding considerable computational time.
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C: A shrinkage approach to draw BT when � is known

The model is still consists of (20), (22) and (23) but now (21) is substituted by

Bt = ��t + �t �t � N(0; I) (44)

�t = �t�1 + �t �t � N(0; Q) (45)

where dim(�t) � dim(Bt) and where the matrix � is known, as in Canova and
Ciccarelli (2009). Using (45) into (44) we have

yt = X 0
t��t + A�1t �t"t +X 0

t�t � X 0
t��t +  t (46)

where  t � N (0; Ht) with Ht � A�1t �t�
0
t

�
A�1t

�0
+X 0

tXt.
To estimate the unknowns we do the following:

1. Sample �T with a multi-move routine using (46) and (45) .

2. Given �T , we compute byt = yt � X 0
t��t. Pre-multiplying by At, we get the

concentrated structural model

Atbyt = At�t = �t"t + AtX
0
t�t

As before
(by0t 
 IM) (SAf(�t) + sA) = �t"t + AtX

0
t�t

so that the second state-space system is

eyt = Ztf(�t) + �t"t + AtX
0
t�t (47)

f(�t) = f(�t�1) + �t (48)

and we draw f(�)T using our proposed Metropolis step. The variance of the
measurement error is �t�0t+At (�t)X

0
tXtA

0
t (�t) and it is evaluated at f(�tjt�1).

3. Given (�T , f(�)T ): bAtbyt = �t"t + bAtX 0
t�t

Since bAtX 0
t is known, let the lower-triangular Pt satisfy Pt

� bAtX 0
tXt

bA0t�P 0t = I.
Then

Pt bAtbyt = y��t = Pt�t"t + Pt bAtX 0
t�t

with var
�
Pt bAtX 0

t�t

�
= I and where Pt�t�0tP

0
t + Pt

� bAtX 0
tXt

bA0t�P 0t is a di-
agonal matrix. This transformation is similar to Cogley and Sargent (2005);
however, since bAtX 0

t is known, we only need to sample the variances of �m;t.
We do this using the log(�2) approximation of a mixture of J normals.
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4. Given (�T ; f(�)T ;�T ), sample Q; V;W from independent inverted Wishart
distributions.

5. Given new values of �m;t, we construct A�1t �t�
0
t

�
A�1t

�0
+ X 0

tXt and go back
to step 1.

D: A Shrinkage approach to draw BT when � is unknown

When the �0s are known, the algorithm needs to be modi�ed as follows.
The TVC-SVAR model is:

yt = X 0
tBt + A�1t �t"t

where X 0
t = IM 


�
D0
t; y

0
t�1; : : : ; y

0
t�k
�
, with

Bt = ��t + !t

�t = �t�1 + �t

f(�t) = f(�t�1) + �t

log (�t) = log (�t�1) + �t

V ar

0BBBB@
266664
"t
!t
�t
�t
�t

377775
1CCCCA =

266664
I 0 0 0 0
0 Q 0 0 0
0 0 R 0 0
0 0 0 V 0
0 0 0 0 W

377775
where Q and R are diagonal matrices. We exploit the hierarchical structure of the
model to simulate the posterior distribution, as in Chib and Greenberg (1995):

1. Given (�t, �t Q), sample Bt using:

yt = X 0
tBt + A�1t �t"t

with A�1t �t"t = ut � N (0; Ht). That is, for each t = 1; : : : ; T draw:

Bt � N
�
Bt; V Bt

�
where

V Bt =
�
V B�1 +XtH

�1
t X 0

t

��1
Bt = V Bt

�
V B�1Bt +XtH

�1
t yt

�
and priors

V B = Q; Bt = ��t
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2. Given (Bt, �t), compute the residuals (Bt � ��t) and sampleQ using an inverse
Wishart distribution.

3. Given Bt, sample �t using the state space form:

Bt = ��t + !t

�t = �t�1 + �t

4. Given �t, sample R using an inverse Wishart distribution.

5. Given (Bt,�t, Q) draw � using:

Bt = ��t + !t; t = 1; : : : ; T

where, in order to achieve identi�cation, we normalize the �rst upper block of
� to be an identity matrix, as in Koop and Korobilis (2010). That is, denote
F = dim(�t) and K = dim(Bt), then � is a K � F matrix. The �rst F rows
of � are:

�(1:F)�(1:F) = IF

Moreover, since !t � N (0; Q), and we have assumed that Q is diagonal,
we draw the loadings row by row for each element of Bt. That is, for each
f = F + 1; : : : ; K draw:

�f�(1:F) � N
�
�f ; V �f

�
with

V �f =
�
V ��1 +Q�1(f;f)

�
�T
� �
�T
�0��1

�f = V �f

�
V ��1�f +Q�1(f;f)�

TBT
f

�
where �T is a F � T matrix of explanatory variables, BT

f is a T � 1 vector
that contains the dependent variable and Q(f;f) is the corresponding element
of matrix Q drawn previously. The priors are �f = 0F�1; V � = k2�IF with
the hyperparameter k2� = 0:01.

6. Given (Bt, Q), sample (f(�t), V , �t, W ) as before. Then go back to 1.
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E: Sampling the GARCH model

To sample volatilities when their law of motion is assumed to be a GARCH(1,1),
we need to modify the transition and the measurement equations used in step 3 of
the algorithm of section 4. The m� th equation of the model is:

y��m;t = �m;t"m;t (49)

where �m;t is the m�th diagonal element of �t. Assume

�2m;t = (1� � + ��2m;t�1 + �
�
y��m;t�1

�2
) + �m;t (50)

with �t � N (0;W ), where � and W are known parameters.
The system (49)� (50) is now non-linear. Equation (49) can be written as:

y��m;t = z (�m;t) + ut(�m;t; "m;t)

Since z (�m;t) = 0, the linear approximation is:

�m;t"m;t ' ut(b�m;tjt�1; 0) + bu�;t(�m;t � b�m;tjt�1) + bu"m;t"m;t = b�m;tjt�1"m;t
because:

� ut(b�m;tjt�1; 0) = b�m;tjt�1 � 0 = 0
� bu�;t = @ut(�m;t;"m;t)

@�m;t

���
(�m;t=b�m;tjt�1;"m;t=0) = "m;tj(�m;t=b�m;tjt�1;"m;t=0) = 0

� bu"m;t = @ut(�m;t;"m;t)

@"m;t

���
(�m;t=b�m;tjt�1;"m;t=0) = �m;tj(�m;t=b�m;tjt�1;"m;t=0) = b�m;tjt�1

The transition equation (50) can be written as:

�2m;t � ft (�m;t) = ht(�m;t�1)+kt(�m;t�1; �m;t) �
�
1� � + ��2m;t�1 + �

�
y��m;t�1

�2�
+�m;t

Linearizing the two sides of the equation we have:

ft(�m;t) ' ft(b�m;tjt�1) + bft(b�m;t�1jt�1)(�m;t�1 � b�m;t�1jt�1)
ht(�m;t�1) ' ht(b�m;t�1jt�1) + bht(b�m;t�1jt�1)(�m;t�1 � b�m;t�1jt�1)

where bft(b�m;tjt�1; 0) = 2�m;tj(b�m;tjt�1;0) and bht(b�m;t�1jt�1; 0) = 2��m;t�1j(b�m;tjt�1;0).
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F: Long-run restrictions

Long run restrictions are non-linear in the SVAR coe¢ cients, but linear in the
impulse responses. For the sake of presentation we omit the intercept B0;t. Let

yt = B1;tyt�1 + : : :+Bp;tyt�p + [A (�t)]
�1�t"t

Then, we only need to modify how draws for the Bt block are made. In particular,

1. At iteration i, given A (�t)
i�1 ;�i�1t sample fBi

tgTt=1 using Carter and Kohn�s
routine or one of the other routines described in section 6. With the sampled
vector, compute the companion matrix

Bit =

26664
Bi
1;t � � � Bi

p�1;t Bi
p;t

IM � � � 0M�M 0M�M
...

. . .
...

...
0M�M � � � IM 0M�M

37775
where Bi

t =
h
vec

�
Bi
1;t

�0
; : : : ; vec

�
Bi
p;t

�0i0
.

2. Given Bi
t, A (�t)

i�1 ;�i�1t compute the long run matrix for each t

Di
t = J

�
IMp �Bit

��1
J0
h
A (�t)

i�1
i�1

�i�1t (51)

=
�
IM �Bi

1t � : : :�Bi
p;t

��1 h
A (�t)

i�1
i�1

�i�1t

where J =
�
IM 0M�M � � � 0M�M

�
is a selection matrix.

3. Impose long run restrictions i.e. construct eDi
t = RDi

t where R is matrix
restricting the entries of Di

t.

4. Given eDi
t, A (�t)

i�1, �i�1t and Bi
j;t; j = 1; : : : ; p� 1, solve for eBi

p;t using (51),
so that

eBi
p;t = IM �Bi

1;t � : : :�Bi
p�1;t �

h
A (�t)

i�1
i�1

�i�1t

heDi
t

i�1
and with this construct the restricted draw eBi

t =

�
vec

�
Bi
1;t

�0
; : : : ; vec

� eBi
p;t

�0�0
.
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5. Evaluate whether

eBit =
26664

Bi
1;t � � � Bi

p�1;t
eBi
p;t

IM � � � 0M�M 0M�M
...

. . .
...

...
0M�M � � � IM 0M�M

37775
has all its eigenvalues inside the unit circle. If so, we accept eBi

t; otherwise
discard it.

Given a draw for eBt, the sampling of the remaining blocks (A (�t) ;�t; s;V) is
unchanged.
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