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Summary

Three tests for the presence of cycles in univariate time series are
proposed. The asymptotic distribution of the tests is derived using
the properties of the integrated periodogram and the small sample
properties are examined using a Monte Carlo experiment. The tests
are applied to U.S. data to detect the existence of significant seasonal
and of other types of periodic fluctuations.
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“His stories were good because he imagined them intensively, so
intensively that he came to believe them . . .” Max Frish

1. Introduction

This paper describes three tests to assess the significance of cycles
in economic time series.

There are several reasons for interest in such tests. Time series
analysts often identify cycles with peaks in the spectral density of
a time series (e.g. seasonal cycles in Sims, 1974). However, the
question of the significance of these peaks has seldom been ad-
dressed. Business cycle practitioners are concerned with cyclical
fluctuations in GNP and other variables, where cyclical fluctuations
are measured as deviations from the trend of the process. Recent
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literature on unit roots in macroeconomics has suggested that
these types of cycles may not even exist (see, for example, Nelson
& Plosser, 1982). In general, there is no insurance that deviations
from the trend are not just contaminated noise and that no in-
teresting cyclical fluctuations really exist. Similarly, recent lit-
erature on Bayesian learning (Nyarko, 1992) and on noisy traders
in financial markets (Campbell & Kyle, 1993) propose models
which generate irregularly spaced but significant cycles in economic
activity and asset prices. Further, the recent political economy
literature has argued that there are electoral cycles in government
variables, for example, a periodicity of 4 years in the growth rate
of government expenditure (Alesina & Roubini, 1992). Finally, a
branch of the financial economics literature has examined the
predictability of asset returns using particular speculative strat-
egies in the short and in the long run (see, for example, Lo &
MacKinley, 1988). The maintained hypothesis here is that efficiency
implies martingale difference behaviour for these variables. There-
fore, this literature is also interested in uncovering the presence
of meaningful cycles in the data. Statistical tests which allow us
to formally assess whether significant cycles exist are therefore
useful to validate all these theories.

This paper presents a unified framework which can be used to
assess the existence of cycles of any finite length in economic time
series which are periodic or quasi-periodic with finite mean period.
The tests are concerned with univariate time series, do not require
a priori knowledge about which autocorrelations are important (as
would be the case with time domain tests), are designed in the
frequency domain and use the properties of the periodogram to
derive the asymptotic distribution of the statistics of interest.
The principle employed is general and the proposed procedures
encompass tests for the existence of seasonal and cyclical fluc-
tuations and of cycles of long but finite length as particular cases.
The basic idea of the testing approach is that when cycles of mean
duration r exist in the data, then their contribution to the total
variance of the process is non-negligible. The three tests proposed
here are alternative ways to measure how significant the con-
tribution of these components to the variance of the process is. In
the first case, the contribution of cycles of length r and of all its
harmonics are considered. In the other two, the significance only
of cycles of mean length r are considered.

The paper is organized as follows: Section 2 presents the defin-
ition of cycles employed and discusses the relationship of our
concept with that of “hidden periodicity” recently employed by
Hansen and Sargent (1993) and with the concept of cycles currently
used in the macro literature (see Kydland & Prescott, 1990). Section
3 describes the three test statistics, their asymptotic properties
and highlights the relationships among them. In Section 4 a Monte
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Carlo study is performed to compute the small sample properties
of the tests. I show that all three tests have reasonable size and
power properties in small samples and that the only major source
of misspecification occurs with the first test when there are peaks
(or large masses) at harmonics of the frequency we care about. In
Section 5, the methodology is applied to a number of post-Second
World War U.S. macro series to detect the existence of seasonal,
business and other interesting cyclical fluctuations. Section 6 pro-
vides some conclusions and discusses extensions to multivariate
frameworks.

2. A definition of cycles

Let Xt be a general linear stochastic process with MA representation
Xt=g(l)et+l, where g(l)=g0+g1l+g2l

2, . . . , is one-sided in non-
negative powers of the lag operator l, l is the linearly deterministic
component (possibly, a vector of initial conditions composed of sine
and cosine functions) and et is an independently distributed white
noise. It is typical to say that Xt exhibits cycles of mean period
r<∞ if the (non-normalized) spectral density of Xt, denoted by hx(k),
has a peak or a large mass at k1=(2p/r) and, possibly, one or more
of its harmonics kp=(2pp/r), p=2, . . . , [r/2], where [r/2] is the
maximum integer less than or equal to (r/2). This definition has
been suggested by, for example, Granger and Newbold (1986),
Sargent (1986), and has been used by Sims (1974) and Granger
(1979) to identify the seasonal cycle in univariate time series.

One way to formalize the above notion of cycles is the following.
Let the linearly deterministic (possibly purely periodic) component
of Xt be modelled as an atom in the spectral measure. Then cycles
of mean length r<∞ exist if:

0<P
p

−p

Q(k)hx(k)dk<P
p

−p

hx(k)dk (1)

where Q(k) is the transfer function of a linear filter q(l) with the
property that it has low power at some or all kp, p=1, . . . , [r/2].

To intuitively understand why equation (1) captures the above
notion of cycles suppose that the spectral density of Xt has a peak
at k1=(2p/r), for example, Xt is a cosine function with period r plus
white noise. Then if Q(k) has low power at k1, the contribution of
the periodic component of length r to the total variance of Xt is
removed and the “filtered variance” /p

−p Q(k)hx(k)dk is smaller than
the variance of the original series /p

−p hx(k)dk. The idea of the tests
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is to determine whether the filtered variance is statistically dif-
ferent from the original one. One Q(k) function which can easily
be used to illustrate the point we are interested in making is:

Q(k)=|1−e−ikr|2=2−2 cos(kr) (2)

in which case equation (1) reduces

0<P
p

−p

hx(k)dk<2 P
p

−p

cos(kr)hx(k)dk (3)

To gain further intuition on the meaning of equation (3) note that
since cos(kr) changes sign over [−p, p], the expression on the right-
hand side of equation (3) will be small (or even negative) unless
the power of hx(k) is concentrated in the region where cos(kr) is
large and positive. Hence, Xt has cycles of length r if hx(k) has a
sharp peak (or wide mass) in the neighbourhood of some or all kp.
Note, however, that, because cos(kr) is periodic mod(2p/r), equation
(3) does not distinguish between cycles at (2p/r) or at one of its
harmonics. In other words, equation (3) is consistent with Xt having
only one peak (large mass) as well as having several peaks (large
masses) at some or all kp.

The linear filter whose transfer function is given by equation (2)
is the simple r-differencing operator. This filter is typically used
in ARIMA modelling to take care of stochastic cycles of mean
duration r and has a long history, in particular, when r is a seasonal
period. In the time domain, equation (3) implies that cycles of
mean period r exist if

var[(1−lr)Xt]<var[Xt] (4)

Noticing that var[(1−lr)Xt]=var(Xt)+var(Xt−r)−2 cov(Xt, Xt−r),
equation (4) implies that

br=
cov(Xt, Xt−r)

var(Xt−r)
>

1
2

(5)

Hence, given the above choice of filter, cycles of length r exist if
the regression coefficient of Xt on Xt−r exceeds 0·5, a result which
corresponds to the notion that Xt displays cycles of period r if its
correlogram shows high positive values at lag r [see Granger &
Newbold (1986: p. 66) for a similar definition].

An example may further clarify how equation (5) captures the
idea that there is a peak (or a large mass) in the spectral density
at frequency k. Let Xt=−0·8Xt−1+et with et>(0, 1). It is easy to
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check that b1=−0·8, b2=0·64, b3=−0·48, b4=0·36, etc. Using the
rule that a cycle of length r exists if br>0·5, we find that Xt displays
cycles of order 2, as intuition would suggest.

Given that many economic time series display unit root-like
behaviour and Granger’s (1966) “typical spectral shape”, it is clear
that equation (2) need not be the most obvious choice of Q(k) since
it also removes power at the frequency zero and will therefore
mistakenly give the impression that there are significant cycles of
period r in the data even when only cycles with r=∞ are present.
However, because growth rates of variables are usually calculated
before the spectrum is plotted and all the economic examples cited
in the introduction are concerned with cycles in stationary series,
this argument is of limited empirical importance as most economic
time series have almost no power at the zero frequency after
standard stationary inducing transformations are performed. If
for some reason the time series still exhibits a peak of finite height
at the zero frequency, all the previous arguments go through
substituting the r-differencing operator with q∗(l)=1+
l−l2 . . .+lr−1) in which case equation (3) becomes:

0<P
p

−p K1−]
r−1

j=1

(−1)j+1e−ikj K 2hy(k)dk

<P
p

−p

hy(k)dk (6)

It is important to note that here we do not seek, in principle,
any optimality property for Q(k), i.e. we do not require Q(k) to
approximate any ideal filter. Q(k) is any arbitrary filter which has
low power at some or all kp and makes equation (1) true.

As mentioned above, equation (1) is an appropriate definition of
cycle only if hx(k) exists everywhere on [−p, p]. Thus this paper is
not interested in proposing yet another test for unit roots, in
addressing questions concerning persistence, as in Cochrane
(1988), or meaningful permanent components, as in Quah (1992).
Instead, I focus on the problem of examining the significance of
peaks (or wide masses) in the spectral density at some 0<kp≤p,
where kp is known a priori or provided by economic theory, which
may be generated by, say, second order difference equations with
complex roots. Because I start from the assumption that a re-
searcher has some information regarding the location of interesting
quasi-periodic components in the spectrum, the analysis of this
paper differs from the ones based on Fisher’s (1929) G-test where
a researcher looks for cycles without specifying exactly the band
of frequencies where they may appear.
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A third important point that needs to be stressed is that equation
(1) is a valid definition of cycles even when the data does not
display purely periodic fluctuations. As a referee has pointed out,
the concept of cycles employed in this paper relates to the power
of the process over frequency bands (not to the magnitude of the
peak) and it is sufficiently general to capture cycles which appear
as stochastic with given mean periodicity (such as those present
in crop series) or cycles which smoothly evolve over time (such as
those evident in the electricity consumption series). One advantage
of allowing for this level of generality is that the approach nicely
relates to the Band Spectrum Regression setup initiated by Engle
(1974) and avoids the problem of having to find consistent estimates
of individual frequencies of the spectrum in designing test stat-
istics.

Finally, since there is a large literature dealing with “spurious
cycles” in time series (see Nelson & Kang, 1981; Cogley & Nason,
1995), it is not the purpose of this paper to discuss how incorrect
stationary inducing transformations distort inferences about the
presence of cycles. In the empirical section of the paper I do,
however, briefly discuss how particular conclusions about the pres-
ence of cycles may be altered when alternative stationary inducing
transformations are used.

It is useful to compare the notion of cycle proposed in this section
with two other widely used concepts which have appeared in
macroeconomic and time series literature. Tiao and Grupe (1980)
and Hansen and Sargent (1993) have used the term “processes
with hidden periodicities” to characterize Markov processes whose
transition law is not time invariant but is strictly periodic with
period r. Although there are similarities between their definition
and the formalization of the notion of cycles employed in this
paper, at least two differences should be noted. First, a process
which has cycles according to equation (1) need not have a strictly
periodic representation as an r×1 vector stochastic process. Sec-
ond, because equation (1) is concerned with the variance of Xt,
unless deterministic periodic components are modelled as point
masses in the spectral density, the definition of cycles employed
in this paper does not capture processes which are periodic in the
mean (e.g. processes with seasonal initial conditions). Finally, note
that both definitions are meaningful only when r<∞ and hx(k)
exists everywhere on [−p, p].

In the current macroeconomics literature, it is standard to con-
sider the deviations from the trend of a process as representing
cyclical fluctuations (see, for example, Kydland & Prescott, 1990).
Because this notion does not coincide closely with the concept of
cycle formalized in equation (1), it is useful to highlight the
connection between the two concepts. According to the framework
of this section, the concept of cyclicality used in the business cycle
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literature consists of the following three conditions: (i) /p
−p

F(k)hx(k)dk is large where F(k) is the transfer function of a high
pass filter, i.e. a filter with F(k)=0 for 0<|k|<k̄ and F(k)=1
for k̄<|k|<p and k̄ is some predetermined frequency, (ii) H(k)=
F(k)hx(k) is significantly different from the spectrum of a white
noise and (iii) for any chosen series (say Wt), / CoX,W(k)dk is large,
where CoX,W(k) is the coherence of Wt and Xt at frequency k. Note
if Xt and Wt are two AR(1) processes with roots close to 1, they
may satisfy all three of these conditions while they would not
display cycles according to equation (1). In general, there is only
a weak relationship between equation (1) and the above three
conditions. I will come back to the relationship between the two
concepts of cycle in the conclusions where I discuss how to extend
equation (1) to multivariate frameworks. When a multivariate
point of view is taken, the range of overlap between the two types
of definitions becomes substantial.

3. The tests

To set up the tests I will use a slightly modified version of equation
(1) with In,x(k)=(1/2pn)|Rn

t=1 Xte−ikt|2, the periodogram of Xt based
on n observations at frequency k (see, for example, Bloomfield,
1974: p. 78), in place of hx(k). The rationale for using In,x(k) in place
of hx(k) is that an estimate of the former is easily obtained using
the Fourier transform of the data. If et is independently and
normally distributed, this substitution is innocuous since the
periodogram is an asymptotically unbiased estimator of the spec-
trum (see Priestley, 1981: p. 425). If hx(k) has bounded first de-
rivatives, the order of magnitude of the bias is O(log(n)/n) which
vanishes as n→∞. In addition, when Q(k) is a fixed bounded
function independent of n, and since var[In,x(k) ]n)x→h2

x(k), for k≠0,
p and var[In,x(k) ]n)x→2h2

x(k), for k=0, p, then / Q(k)In,x(k) is a con-
sistent estimator of / Q(k)hx(k) (e.g. Priestley, 1981: p. 473).

For the rest of this section I make the following two assumptions:

Assumption 1: et is an independent Gaussian process with fixed
variance r2

e.

Assumption 2: Rj|gj| | j| f<∞, f>0.

These two assumptions require some discussion. The first is
somewhat restrictive as it rules out conditionally heteroskedastic
processes. For most applications this is not a strong limitation as
the tests will be naturally applied to monthly and quarterly time
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series which hardly ever display any form of conditional het-
eroskedasticity. The condition imposed on the coefficients of the
MA representation of Xt is stronger than required and ensures
that the decay of the correlogram of Xt is sufficiently rapid (see
Walker, 1965). It implies absolute and square integrability of the
gjs and, therefore, second moment stationarity of Xt. However, it
is more general than stationarity itself since it allows for the
existence of cycles in non-stationary series which possess a smooth
evolutionary spectrum (see Priestley, 1981: p. 828).

In the first two subsections I derive tests using two specific forms
of Q(kr). Although the derivation of the tests for general Q(kr)
functions does not present particular problems, in empirical ap-
plications one is faced with the problem of choosing a particular
Q(kr) and different researchers may choose different functions. By
selecting one particular family of Q(kr) functions, I attempt to
avoid problems connected with a possible non-comparability of the
results and this may be a preferable alternative to seeking a higher
level of generality. In the first subsection Q(kr) is the transfer
function of the r-differencing filter. In the next subsection, Q(kr)
is the transfer function of a band-pass filter.

3.1. A DISTANCE-TYPE TEST

The idea of the test is simple. We want to know whether the
difference between the two quantities in equation (3) is significant
relative to their variances. Taking discrete approximations to the
integrals in equation (3) at kk=(2kp/n), k=0, . . . , [n/2], n≥N, for
some N, using In,x(k) in place of hx(k) and exploiting the symmetry
of In,x(k) around k=0, equation (3) becomes

2]
k

cos(kkr)In,x(kk)>]
k

In,x(kk)>0 (7)

The following lemma characterizes the asymptotic properties of
the quantities in equation (7):

Lemma 1. Let

A1n=
M
n ]

k

W1(k−kk)In,x(kk)

and
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A2n=
M
n ]

k

W2(k−kk)In,x(kk)

where

W1(k−kk)o
4p
M

W2(k−kk)o
4p cos(kkr)

M

and where M=M(n) is a parameter regulating the width of W1 and
W2. Then

lim
n)x

Jm1A1n
D→N(H1, H2

1)

lim
n)x

Jm2A2n
D→N(H2, H2

2)

(8)

where

m1=
n

p Rk h(kk)2

m2=
n

p Rk cos(kkr)2h(kk)2

H1=
4p
n ]

k

hn,x(kk)

H2=
4p
n ]

k

cos(kkr)hn,x(kk)

Lemma 1 follows from the normality of et, the asymptotic in-
dependence of the normalized periodogram estimates and the fact
that v2 variates with a large number of degrees of freedom behave
like normal random variables. The only complication emerges
because linear combinations of v2 variates with unequal weights
are not necessarily v2. Using the trick discussed in Fuller (1981:
pp. 295–296) it is possible to overcome this problem.

From lemma 1 it is clear that A1n and 2A2n are different but not
independent kernel estimators of the same quantity with kernels
given by W1(kk−k) and W2(kk−k). The test I propose is based on
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the idea that the difference between these two ways of estimating
the same quantity is small under the null hypothesis (and large
under the alternative) in the metric given by the variances of A1n

and 2A2n. Let

J1n=
1

Jm1

A1n−EA1n

Jvar(A1n)

and

J2n=
1

Jm2

A2n−EA2n

Jvar(A2n)

and consider the quadratic form:

Bn=(2J2n−J1n)(var(2J2n−J1n) )−1(2J2n−J1n) (9)

Corollary 1. limn)x Bn=B>v2(1).

Corollary 1 follows from the evaluation of the quantities of
interest in the limit. Under the null hypothesis that no cycles of
mean length r exist in the data, Bn will not significantly exceed a
predetermined value Za at a% confidence level.

The implementation of the test is particularly simple since one
needs only to specify a band of frequencies and therefore the mean
duration r of the cycles he wants to detect. Typically, a researcher
has a priori beliefs about a band of interesting frequencies he
wants to investigate (for example, seasonals or business cycles).
At other times, no a priori information is available so that one
may plot the spectrum of the series and observe a peak at frequency
kp. In this case, one may choose the r which corresponds to the
frequency where the peak appears and proceed under the as-
sumption that the peak is due to cycles of mean duration r, but be
aware of the possibility that the observed peak may have been
generated by spillovers due to cycles present at neighbouring
frequencies. In other cases a researcher may spot a large mass in
the periodogram in a band around frequency kp. One choice which
apparently gives good results is to select r corresponding to the
central frequency where the large mass appears. This implies that,
although there are time variations in the length of the cycle over
the years, the mean duration is exactly r. Note that with the current
choice of Q(k) the number of frequencies which are suppressed by
the filter is automatically determined by the resolution of In,x(k)
and the sample size.

One case where the test is very simple to apply is when one
attempts to detect non-exactly periodic but stable seasonal pat-
terns. Seasonality appears if there is a peak (or a large mass) at
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some kp=(2pp/s), p=1, . . ., [s/2], where s is the number of seasons
in the year. In this case, the transfer function of the s-differencing
operator is the appropriate Q(k) function to use and we say that
Xt exhibits (stochastic) seasonal behaviour if var[(1−ls)Xt]<var[Xt].

3.2. A TEST BASED ON BAND-PASS SERIES

The second test is also based on the implication that if a peak (or
a large mass) at kp is significant, then the contribution of cycles of
mean length (r/p) to the total variance of the process should be
non-negligible. The major differences between the test presented
in this subsection and the previous one are in the Q(k) function
used and, consequently, in the null hypothesis being tested, and
in the asymptotic distribution used to detect deviations from the
null.

Let X̃t=Xt−f (Xt) where

f (Xt)=PX′
eiktdZx(k)

X′=C2pk
r
−e,

2pk
r
+eD

Zx(k) is the spectral measure of Xt and the integral is of the
Fourier–Stieltjes variety. X̃t is the filtered series and f ( · ) a band-
pass filter which wipes out the power of Xt on X′. Let M be a
parameter controlling the number of periodogram ordinates in a
2e neighbourhood of kk and let

W3(kk)≡
hx(kk)
hx̃(kk)

Under H0, W3≈1. Define

Kn=]
k

In,x(kk)
hx(kk)

and

K̃n=]
k

In,x(kk)
hx̃(kk)

Lemma 2. Under H0,
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lim
n)x

2 JK̃n→NAJ4ACn2D−1, 1B
Under H1,

lim
n)x

2 JK̃n→N(J2m4−1, 1)

where

m4=
2n

M Rk W2
3(kk)2

Lemma 2 follows from the fact that under H0, 28(K̃n) has the same
asymptotic v2 distribution as 2 8(Kn), while under the alternative
the parameter of central tendency of the distribution is shifted to
the right. Therefore, if cycles of mean length (r/k) give an important
contribution to the total variance of the process, the tail of the dis-
tribution will contain a mass larger than expected. It is worth em-
phasizing that while the r-differencing filter used in Section 3.1
eliminates power at each kk, k=1, . . ., [r/2], while introducing ex-
traneous power at frequencies in between, the filter used here sets
to zero the power at one kk only and leaves unchanged the power
outside a 2e band centred around this frequency.

To implement this test we need two inputs: the mean duration
(r/k) of the cycles we are interested in testing for and a band-pass
filter which wipes out the power of Xt on X′. One such filter could
be a standard MA or ARMA filter.

3.3. A TEST BASED ON BAND SPECTRUM VARIANCES

The final test described in this section also examines the behaviour
of the spectrum in the band around some kk. But contrary to the
two previous tests, I compare the magnitude of the average mass
appearing inside a band of frequencies and outside of it. This test
may be useful to detect the presence of cycles with slow time
varying characteristics since they seldom generate peaks, although
they tend to produce wide masses in a frequency band. To set up
the test, consider the following two quantities:

C1n=
RkkvC In,x(kk)

2 ∀C ∀

C2n=
RkkvX−C In,x(kk)

2 ∀X−C ∀

(10)
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where X=[−p, p], and ∀ · ∀ represents the number of periodogram
ordinates in the interval. C1n and C2n measure the average power
of Xt inside the band C centred around the frequency kk, for some
k, and outside the band C, respectively. If cycles of mean length
(r/k) are the only ones existing in Xt, then the null hypothesis of
the test is C1n=C2n, i.e. the average amount of power inside the
band C is identical to the average amount outside of it. Notice that
when Xt is a white noise, C1n=C2n. However, there are other
processes which do not have a flat spectrum and may still satisfy
the null hypothesis. For example, a process whose spectrum decays
linearly with the frequency will have the required property. How-
ever, because these processes generate cycles of infinite duration
(if any), they do not satisfy the conditions we imposed on equation
(1) to be a meaningful definition of cycle. Under the alternative
C1n>C2n, i.e. cycles of mean length (r/k) exist in the data.

Next I derive the distribution of the statistic Dn=(C1n/C2n) under
the null hypothesis and under the alternative.

Lemma 3. Under H0 and as n)x,

G=2 ∀X−C ∀Dn→v2(2 ∀C ∀ )

Under H1 and as n)x,

G→
v2(m3)E(G)

m3

where

m3=
32n ∀C ∀

Rk h2
n,x(kk)

Lemma 3 employs the fact that under the null C1n and C2n are
weighted averages of v2 random variables with equal weights while
under the alternative the weights are frequency dependent. I
normalize Dn by 2 ∀X−C ∀ because the non-normalized quantity
has a degenerate distribution as n→∞. Note that, in general, it is
hard to predict the direction of the shift of the distribution under
the alternative. However, for n large enough, 2∀C ∀<m3.

To implement this test we also need two inputs: the mean
duration (r/k) of the cycles we want to test for and the size of C.

3.4. DISCUSSION

Although all three tests are designed to assess the significance of
cycles of mean length r, they reflect several differences. As already
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noted, the filter used in the distance-type-test knocks out power
in the neighbourhood of each (2pp/r), p=1, . . ., [r/2] and adds
power in the neighbourhood of each (2(p−1)p/r). There are two
implications of this fact. First, if the series truly has cycles of mean
duration r and we specify r1=lr, l=1, . . ., [n/2], the null hypothesis
will be steadily rejected. In other words, because the first test
examines the size of the mass belonging to several frequency bands
(the ones centred around cycles of mean duration r1 and all of its
harmonics), it is unable to distinguish whether it is the contribution
of one frequency band or another which is significant. Second, a
misspecified value for r may result in negative values of A2n. Since
lemma 1 requires 2A2n−A1n to be positive and since A1n is positive
everywhere on k, the sign of A2n provides a pre-test procedure to
detect an inappropriate specification for r. For example, if Xt is a
white noise, A2n is non-positive for all r. Since the other two tests
are concerned with only one particular frequency band, they do
not display the same type of “aliasing” problem faced by the first
test and can be used to clarify which of the harmonics of the basic
frequency significantly contributes to the total variance of the
process.

All three tests may face some problems when multiple peaks (or
masses of similar size) are present in the spectrum. It is convenient
to distinguish between two situations: one where a second peak
(or a second large mass) occurs somewhere in the spectrum. Another
where a second peak (or a second large mass) occurs within the
frequency band we are concerned with. With the first two tests, if
a peak of larger magnitude exists outside the frequency band we
are interested in, we expect the null hypothesis to be rejected very
infrequently since the contribution of cycles of mean duration r to
the total variance of the process will be small. If, by any chance,
this second peak occurs in a frequency band which is intermediate
between kk and its harmonics, the first test will be able to detect
this misspecification since A2n will be negative. In general, if a
researcher suspects that a time series displays multiple peaks of
uneven size, it is advisable to plot the spectrum of the series, locate
the peaks, roughly compare their magnitudes and run the test for
the largest peak. With the third test, this problem is likely to be
minor as the averaging procedure that the test employs will
substantially reduce the effect of a secondary peak (or a secondary
large mass) in the spectrum.

If two peaks of similar magnitude exist in the spectrum, it may
be convenient to conduct the tests conditional on the removal of
the other peak. That is, as in Bloomfield (1976: pp. 22–23) one could
sequentially remove one of the peaks and test for the significance of
the other. Although theoretically important, the presence of mul-
tiple peaks of similar magnitude in economic time series is a very
rare event. One may object that the lack of detection of multiple



THREE TESTS FOR THE EXISTENCE OF CYCLES 149

peaks is due to the leakage from low order terms. It is well known
in fact that most existing monthly and quarterly time series hardly
ever deviate from Granger’s (1966) “typical spectral shape” unless
seasonals are present. Therefore, when growth rates and seasonally
adjusted data are considered, as is standard in the macro literature,
the relevance of the leakage problem for practical applications is
probably very limited.

If a secondary peak emerges within the frequency band we are
interested in or spills over from frequencies which are very close
to the band, all three tests may have distorted size and power
properties since the spillover effect from the neighbouring fre-
quencies may be large. However, one should keep in mind that
this is not a problem specific to the tests described in this paper
and it is common to all spectral techniques examining the behaviour
of a time series in a band of frequencies. As is well known, this
problem is less important as sample size increases since the
resolution of the spectrum improves and the spillover effect from
neighbouring frequencies is reduced. For fixed sample size and to
minimize distortions, it is recommendable to select the width of
the band as in Andrews (1991) to minimize distortions and examine
the robustness of the results by slightly varying the width of the
band.

Finally, even though the alternative is the same in all three
tests (i.e. the contribution of cycles of mean duration r to the
variance of the process is large), the tests examine different null
hypotheses. In the distance test the null hypothesis is that the
total power appearing in frequency bands corresponding to cycle
of mean duration r and all its harmonics is small. In the band-
pass test the null hypothesis is that the contribution of the fre-
quency band centred around cycle of mean duration r is small. In
the average variance test the null hypothesis is that the average
contributions to the total variance of the process of frequencies
inside and outside a band are identical. Because of these dif-
ferences, one should expect the tests to differ in their size prop-
erties, especially in small samples.

The first and third tests proposed here share features with what
Priestley calls the “Bartlett homogeneity test” (Priestley, 1981:
p. 487). That test was designed to check if independent estimates
of the variance of the same quantity are significantly different.
The statistic used, however, is slightly different from the ones
employed here. The third test has also some relationship with
Fisher (1929) and Whittle (1952) tests for jumps in the integrated
spectrum. The major difference is that while the statistic they use
takes the max periodogram ordinate to the sum of periodogram
ordinates over the entire range of frequencies, here I take the
average periodogram ordinate over a band to an average of period-
ogram ordinates over the remaining range of frequencies. The
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reason for choosing averages as opposed to the maximum is that
there are many interesting situations where peaks may not be
very sharp and yet there is a large mass concentrated around a
particular frequency (e.g. when there are time varying seasonals
or business cycle fluctuations). In this case the Fisher–Whittle test
may fail to find meaningful economic cycles which are irregularly
concentrated around a particular frequency while the averaging
procedure employed here allows the test to detect the presence of
periodic components if the mass appearing in a band is significant.

In independent work Durlauf (1991) designed a spectral-based
test for the martingale hypothesis which is similar to the third
test presented here. His formulation builds on work by Grenander
and Rosenblatt (1957) and is more general than mine since it
allows for non-normal and weakly dependent disturbances and
for a generally specified alternative hypothesis. Durlauf ’s (1991)
procedure has advantages and disadvantages. Because of its level
of generality, his approach is free from data-mining activities which
may affect the distribution of the test statistic under the null
(see Hansen, 1990). However, there are many situations when a
researcher has a priori knowledge about the possible location of
interesting cycles in the data (e.g. seasonal or political cycles). In
this case his tests may be less powerful in testing against a specific
alternative than those described here. In addition, since Durlauf ’s
(1991) tests are designed to assess general deviations from the
white noise assumption, they cannot be used to examine questions
such as: Is the total power at seasonal frequencies significantly
different from a white noise? The distance-type test presented
here, on the other hand, can be used for this purpose. Moreover,
while it is very easy to verify the assumptions underlying the third
test proposed in Section 3, it is much more complicated to examine
whether Durlauf ’s mixing conditions are satisfied and this hampers
the range of applicability of his test. Finally, while Durlauf ’s
procedure is valid also for r=∞, the tests designed here are
appropriate only when r<∞.

The third test presented in this paper is also very close in spirit
to the F-test proposed by Engle (1974) to examine the hypothesis
that band spectrum regression estimates are the same as regression
estimates obtained using all the frequencies in the spectrum. The
major differences between the two testing procedures are in the
assumptions imposed on the disturbance term et and in the generic
setup used (static regression framework in Engle, univariate time
series models here).

4. The small sample power of the tests

This section describes the results of a Monte Carlo study designed
to assess the small sample properties of the three tests described
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in Section 3. I use five different data generating processes (DGP):

DGP(I) xt=5·0+bxt−1+et

DGP(II) xt=5·0+bxt−4+et

DGP(III) xt=5·0+bxt−4+cxt−7+dxt−20+et (11)

DGP(IV) xt=5·0+et+fet−1

DGP(V) xt=et

where et is an i.i.d. N(0, 1) random variable. Initial conditions x−s,
s=0, 1, . . ., 20 and e0 are set equal to zero. In DGP(I) b is equal
to (−0·9, −0·2) while in DGP(II) b is equal to ±0·9, ±0·2). In
DGP(III) the values for the triplet (b, c, d ) are either [−0·68, 0·16,
−0·34] or [0·80, −0·22, 0·30]. In DGP(IV) f=(0·8, 0·2).

The first DGP covers the case of cycles with a periodicity of two
while DGP(II) covers the case of cycles of four and eight periods and
power at all the harmonics. When b=±0·2, both DGPs generate
samples with very small peaks in the spectral density so that
cycles are insignificant. Hence we should expect all three tests to
reject the null approximately 5% of the time, regardless of the
value of r chosen. When b=±0·90, there are sharp peaks in the
spectral density so that the tests will have good power if they
reject frequently when r is correctly specified and have good size
if they reject infrequently when r is misspecified. DGP(III) covers
the case of high order dynamics with significant cycles of 14 and
20 periods, respectively, and power at most of their harmonics.
Once again we expect the tests to reject frequently when r is
correctly specified and to reject infrequently when r is misspecified.
The fourth experiment is designed to examine the size of the tests
when the DGP generates time series with a short memory and not
very significant serial correlation. With this DGP the tests should
reject infrequently, regardless of the value of r chosen. The last ex-
periment similarly examines the size of the tests when the under-
lying DGP is a white noise. Here to implement the tests I search for
the highest peak in the periodogram and test for its significance.

For each parameter setting two sample sizes, N=60 and N=
154, are considered. While the first sample size is arbitrary, the
second sample size is typical of those series used in Section 5. The
number of ordinates taken in the discrete Fourier transform is
200 for both sample sizes. The window C is chosen to contain three
periodogram ordinates when N=60 and five periodogram ordinates
when N=154, as suggested by Andrews (1991), and the band over
which the power of the spectral density is wiped out in the second
test contains, depending on the sample size, either three or five
ordinates. The number of replications in each case is equal to 1000.
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The results of the experiment appear in Table 1 where I tabulate
the percentage of rejections of the null hypothesis at the 5% level
over replications. There are two numbers in each cell, the first is
the percentage for N=60, the second the percentage for N=154.
Note that since the samples are short, tests performed choosing
large r should be interpreted with caution.

The results of the table are encouraging. Test 1 performs well
and type I error is around its nominal size of 5% in almost
all cases. The non-negativity constraint on A2n provides a useful
sufficient condition to check for misspecifications of r. As expected,
the test has distorted size properties when the selected b generates
significant cycles at harmonics of the frequency corresponding to
the cycles we are testing for. Note also that the performance of the
test is good, regardless of the sample size used.

The performance of the second test is reasonable. The size of the
test is slightly larger than its nominal sizeeven for the largest sample,
and relative to the other two tests the power is lower. For this test,
both the size and the power properties depend on the sharpness of
the peaks appearing in the periodogram, which in turn depend on the
number of observations and the magnitude of b. Borderline cases of
processes with low correlation at lag r or specifications where the
sample size is small produce a percentage of type II errors sufficiently
large. With low parameter values, increasing the sample size does not
always improve the performance of the test. The reason is that when
aprocesshaslowserialcorrelationthepeaksare“unclean”,regardless
of the sample size, and the power of the test is weakened when the
contribution of these peaks spill over into frequencies which are out-
side the band we are examining.

Test 3 is quite accurate. In general, its performance improves
with the sample size and is best at frequencies away from 0. When
the sample size is small the test has difficulties in correctly
assessing the contribution of low frequencies to the total variance
of the process. Also, the size of the test is distorted when the true
frequency band and the band we test for contain some common
frequencies. For example, if the DGP generates cycles of 20 periods
and we select a frequency band centred around cycles of 24 periods,
large size distortions emerge. However, shrinking the width of the
window C makes most of the problems disappear.

In conclusion, whenever the DGP has parameter values which
induce sharp peaks in the periodogram of Xt, all three tests are
equally accurate: the size of the tests is close to its nominal size
even in small samples and the tests reject frequently when the
null is false. When the sample size is particularly small and the
DGP has parameter values which generate peaks in the period-
ogram of borderline magnitude, the first and the third tests out-
perform the second, with the distance test being subject only to a
misspecification at the harmonics of the basic frequency.
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TABLE 1 Size and power properties of the tests. Percentage of rejections
of the null hypothesis over 1000 replications

(a) Data generating mechanism: Xt=5·0+bXt−1+et

Value of b Value of r Test 1 Test 2 Test 3

−0·90 2 92·8/94·5 89·9/84·7 91·0/93·4
4 87·3/90·4 11·7/7·2 8·0/6·0

−0·20 2 7·9/5·9 12·3/9·9 17·3/13·8
4 8·6/6·2 5·1/5·1 8·4/7·7

(b) Data generating mechanism: Xt=5·0+bXt−4+et

Value of b Value of r Test 1 Test 2 Test 3

−0·90 8 94·5/95·1 92·8/93·9 94·2/94·7
4 85·3/86·5 5·1/5·9 4·8/5·0

+0·90 4 95·1/94·7 59·1/66·6 83·6/92·8
24 65·3/81·2 7·6/6·9 6·2/6·1

−0·20 8 6·6/5·2 14·2/11·7 8·8/7·3
4 5·1/5·1 7·3/7·2 6·1/5·7

+0·20 4 6·8/5·6 7·9/6·6 9·8/8·0
24 5·3/5·1 10·8/9·7 7·0/6·3

(c) Data generating mechanism: Xt=5·0+bXt−1+cXt−7+dXt−20+et

Value of b, c, d Value of r Test 1 Test 2 Test 3

−0·68, 0·16, −0·34 14 92·6/94·5 90·3/92·8 88·6/91·7
7 87·3/81·4 9·6/8·7 6·3/5·8

0·80, −0·22, 0·30 20 94·6/95·2 89·9/93·6 90·4/92·0
8 5·8/5·3 8·1/7·3 6·6/6·1

(d) Data generating mechanism: Xt=et+fet−1

Value of f Value of r Test 1 Test 2 Test 3

0·80 8 5·2/5·1 5·9/5·1 6·3/5·7
8 5·3/5·1 6·5/5·8 6·1/5·5

0·20 4 5·1/5·0 6·3/5·7 6·1/5·4
8 4·8/4·8 6·4/5·8 5·8/5·2

(e) Data generating mechanism: Xt=et

Value of r Test 1 Test 2 Test 3

5·6/4·9 5·8/5·1 7·2/6·1

Note: In each cell the first number refers to N=60, the second to N=154. For
all cases et is i.i.d. N(0, 1).
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5. Some applications

In this section I apply the three tests presented in Section 3 to the
problem of detecting the presence of seasonals, of political cycles
and of certain types of business cycle fluctuations. In this exercise
I use quarterly seasonally non-adjusted U.S. data on the log
of fixed investments (residential, non-residential, structures and
inventories), and seasonally adjusted data for the log GNP, the log
of the monetary base, the log of federal government expenditure
and the log of the consumer price index for the period 46,1–85,4
(59,1–85,4 for the monetary base). The sources of the data appear
in Barsky and Miron (1989).

Table 2 reports the results of testing the following hypotheses.

• Does seasonality exist in investment and inventory data? Is
there still some form of seasonality after we extract de-
terministic seasonal components?

• Do GNP and Inflation exhibit significant business cycle fluc-
tuations?

• Is there a “presidential election” cycle, i.e. is there a tendency
for government expenditure and for the monetary base to
follow a four-year pattern?

With quarterly data, and given the symmetry of the spectrum
around k=0, business cycle frequencies are those with period
between 16 and 24 quarters and seasonals appear at the annual
(four quarters) and semi-annual (two quarters) frequency. There-
fore, the second and the third tests will have two entries for each
investment and inventory series, one for the yearly frequency and
one for the semi-annual frequency. Also, because all of the series
appear to contain a unit root, I log first difference all the data
before the tests are performed (see panel A). Diagnostic testing on
the residuals of an AR(5) regression on the log first difference of
the data indicate that they are well behaved. In particular, I do
not find any evidence of conditional heteroskedasticity in any of
the series examined.

The results indicate that a yearly cycle is very significant for all
investments and for the inventory series examined. All three tests
suggest the presence of cycles at seasonal frequencies although
the significance of the first test is marginal for non-residential
fixed investments and inventories. Also, while for fixed residential
and non-residential investments seasonals are reasonably mod-
elled as purely periodic, investments in structures and inventories
display significant seasonals even after a deterministic seasonal
component is extracted. Note also that for the case of fixed non-
residential investment the distance-type test detects the presence
of significant seasonality after purely periodic patterns are taken
into account while the other two do not. Hence, even though
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TABLE 2 Tests for cycles in U.S. data, sample 1946,1–1985,4

Test 1 Test 2 Test 3
P-value P-value P-value

Panel A: Log first differenced data

Seasonality
Non-residential fixed investments 0·06 0·00/0·08 0·00/0·00

(with dummies) 0·00 0·34/0·56 0·06/0·06
Non-residential structures 0·00 0·00/0·03 0·00/0·00

(with dummies) NA 0·19/0·18 0·00/0·00
Residential fixed investments 0·00 0·00/0·05 0·00/0·00

(with dummies) NA 0·29/0·47 0·19/0·99
Inventories 0·06 0·39/0·66 0·00/0·01

(with dummies) NA 0·59/0·81 0·00/0·31

Business cycles
GNP r=16 NA 0·76 0·35
GNP r=24 NA 0·92 0·40
Inflation r=16 NA 0·83 0·66
Inflation r=24 NA 0·88 0·81

Political cycles
Government expenditure r=16 NA 0·26 0·33
Monetary base r=16 0·58 0·22 0·07

Panel B: Hodrick and Prescott filtered data

Seasonality
Non-residential fixed investments NA 0·00/0·79 0·00/0·98

(with dummies)
Non-residential structures NA 0·00/0·08 0·00/0·05

(with dummies)
Residential fixed investments NA 0·55/0·03 0·00/0·98

(with dummies)
Inventories (with dummies) NA 0·73/0·31 0·00/0·18

Business cycles
GNP r=16 NA 0·18 0·08
GNP r=24 NA 0·12 0·03
Inflation r=16 NA 0·34 0·04
Inflation r=24 NA 0·08 0·00

Political cycles
Government expenditure r=16 0·24 0·33 0·04
Monetary base r=16 0·14 0·08 0·02

Note: In the case of seasonality the cells for the second and the third tests report
the P-value at (p/2) first and the P-value at p second. NA indicates that 2A2n<0.
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none of the peaks at seasonal frequencies is significant after
deterministic patterns are taken into account, the total mass
appearing in bands centred around seasonal frequencies is sig-
nificant relative to the variance of the process.

The table also indicates that GNP does not possess significant
business cycle fluctuations (according to test 1, the total mass
appearing in the band covering cycles of 16–24 quarters and its
harmonics is small), and it does not have a sharp peak or a large
mass anywhere in the region corresponding to cycles of 16–24
quarters (the second and the third test statistics are insignificant).
Similarly, the inflation rate has no significant business cycle fluc-
tuations according to all three tests.

As far as political cycles are concerned, government expenditure
does not display any significant 4-year periodicity even though a
small mass appears in the region of the periodogram centred
around four-year cycles. Note that because in the third test the
band covers frequencies corresponding to cycles ranging from 14 to
18 quarters, it is unlikely that this type of periodicity in government
expenditure is of crucial importance in accounting for fluctuations
in the U.S. economy. For the monetary base the results are different.
There appears to be a peak in the spectral density of the series in
the band centred around 4-year cycles, but it is of insignificant
magnitude. However, the average mass appearing in the region
centred around cycles of 4 years is significantly larger than the
mass appearing outside the band.

Next, I briefly discuss the question of the sensitivity of the
results to alternative ways of rendering the series stationary. As
mentioned in Section 2, the paper is not concerned with the
question of spurious cycles induced by erroneous transformations.
However, it may be interesting to know from an economic point of
view, if any of the results we have just discussed are sensitive to
the preliminary transformation employed to eliminate possible
unit roots from the data.

There are many ways to remove unit roots from time series
which are alternatives to taking the log first order difference of
the data. One transformation, typically used in the business cycle
literature, is the Hodrick and Prescott (1980) filter. The Hodrick
and Prescott (1980) filter decomposes a series into permanent
and transitory components where the permanent component st is
obtained by minimizing RT

t=1(Yt−st)2+k RT
t=3[ (st−st−1)−

(st−1−st−2) ]2, where Yt is the original series and k is a smoothing
parameter which, for quarterly data, is routinely set to 1600. The
transitory component is obtained as Xt=Yt−st. King and Rebelo
(1993) have shown that the Hodrick and Prescott (1980) filter
effectively removes up to four unit roots and is therefore a le-
gitimate candidate to check the sensitivity of the results described
in Table 2, panel A.
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As I have argued elsewhere (Canova, 1993), the transfer function
of the Hodrick and Prescott filter differs from the transfer function
of the first order differencing filter so that we should expect the
results to change with the stationary inducing transformation
employed. Roughly speaking, log first order differencing eliminates
most of the power in a large frequency band which goes from
frequency 0 (infinite cycles) to frequency (p/6) (cycles of about 3
years) while the Hodrick and Prescott filter eliminates most of the
power of cycles belonging to a band that goes from frequency 0 to
frequency (p/14) (cycles of about 7 years). Therefore, while tests
for seasonality should be largely unaffected by the preliminary
transformation used, tests for business cycle or political cycle
periodicity may give different results. To facilitate the comparison
I report in Figure A plots of the log spectrum of log GNP, inflation,
log of government expenditure and log of the monetary base using
each of the two preliminary detrending transformations. Shaded
regions correspond to frequencies in the band covering 16 to 24
quarter cycles. Spectra are computed smoothing the periodograms
using tent windows containing nine periodogram ordinates. Table
2, panel B, where the results of testing the three hypotheses with
Hodrick and Prescott detrending data are reported, confirms our
expectations. For example, while tests 2 and 3 do not detect any
significant 16–24 quarter cycles in inflation when the data is first
order differenced, they do find some evidence of 24 quarter cycles
when the data are made stationary with the Hodrick and Prescott
filter. Also, when the Hodrick and Prescott filter is used, the third
test suggests that the average mass of government expenditure
and of the monetary base in frequency bands centred around cycles
of 16 quarters is significantly larger than the mass outside it,
while the opposite is true when the data is first order differenced.
Finally, note that even for those cases where we do not expect
significant changes in the results, e.g. in testing for significant
seasonality in inventory and investments, we do find that the
magnitude of the seasonal peak at the semi-annual frequency is
somewhat altered when Hodrick and Prescott filtering is used, and
in general, that the size of the mass at seasonal frequencies relative
to the total mass depends on the type of first stage transformation
used.

6. Conclusions

This paper describes three tests to assess the significance of cycles
in univariate time series. The tests are based on the frequency
domain features of the series, do not require parametric as-
sumptions and employ the properties of the integrated spectrum
to derive the asymptotic distribution of the tests. The paper shows
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FIGURE A. Time series plots.

that all three tests are simple to implement, have good small
sample size and power properties, and can be used to assess
the significance of seasonal and various type of business cycle
fluctuations.

Although the tests are designed for univariate time series, they
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can be extended to multivariate frameworks where propositions
concerning the seasonal and cyclical behaviour of a multitude of
time series can be formulated and tested. These extensions are
pretty simple to handle. For example, if h(k) is the spectral density
matrix of a bivariate process, then equation (1) applied to this
vector process means that Xt displays significant cycles of period
r<∞ if each of the two components has a peak or large mass in
the spectral density at some kp and if the coherence between the
two components at frequency kp is high. The three tests can then
be extended in a straightforward way to a vector of conditions
concerning the spectral density of each of the components of Xt

and of the coherence of pairs of components of Xt. Finally, note
that once equation (1) of cycles is extended to multivariate frame-
works, it approximately coincides with the one used by business
cycle macroeconomists.
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Appendix

Proof of Lemma 1: For linear processes satisfying assumptions 1
and 2, In,x(kk)=0·5h(kk) (In,e(kk)/r2

e)+Rn(kk) uniformly in kk, where for
some c>0, E[Rn(kk)2]=O(1/n2c) (Priestley, 1981: p. 424). Therefore,
2(In,x(kk)/h(kk) ) are, asymptotically, independently distributed ran-
dom variables for each kk and have the same distribution of
(In,e(kk)/r2

e). By normality of et we have: (In,x(kk)/hx(kk) )>v2(1) if k=
0, [n/2] and (In,x(kk)/hx(kk) )>0·5v2(2) otherwise. For large enough
n, A1n and A2n are linear combinations of independent variables
each proportional to a v2 distribution. Excluding k=0 and k=
[n/2], the weights in the summations are

2phx(kk)
M

and
2p cos(kkr)hx(kk)

M
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respectively. Because the weights are unequal over the range of
the summation, A1n and A2n are no longer v2 distributed. Following
Fuller (1981: p. 296), we can approximate the distribution of A1n

by E(A1n)v2(m1)/m1 and that of A2n by E(A2n)v2(m2)/m2, where m1 and m2

are equivalent degrees of freedom given by

2n
M Rk q(k/M )2

where q(k/M ) are the weights in each expression. Since as n→∞
both m1 and m2→∞,

J1n=
1

Jm1

A1n−EA1n

Jvar(A1n)
and J2n=

1

Jm2

A2n−EA2n

Jvar(A2n)

have asymptotic normal distributions with zero mean and unit
variance where

E(A1n)=4p/n]
k

hn,x(kk)

E(A2n)=4p/n]
k

cos(kkr)hn,x(kk),

var(A1n)=16p2/n2]h2
n,x(kk) and

var(A)2n=16p2/n2 ] cos2(kkr)h2
n,x(kk)

(see, for example, Anderson, 1971: pp. 539, 545).

Proof of Corollary 1: The corollary follows from the fact that J1n

and J2n are asymptotically N(0, 1) variates.

Proof of Lemma 2: From lemma 1,

E[In,x(kk) ]=hx(kk)+OAlog(n)
n B and

and

var[In,x(kk) ]=hx2(kk)+OA1nB
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Under H0, hx(kk)≈hx̃(kk) at all kk where hx̃ is the spectral density
of X̃t. Therefore, for k≠0 and [n/2], K̃n>0·5v2(2([n/2]−2)). As
n→∞, 2([n/2]−2)→∞ so that asymptotically 28(K̃n) has ap-
proximately the same distribution as N(84([n/2]−1)−1, 1)
(see Hastings & Peacock, 1983: p. 50). Under H1:

limn)x 2JK̃n=limn)x 2JKn hx̃(kk)/hx(kk)=2JRk W3(kk)v2(2)

where W3(k)=1 for k outside (kk±e). K̃n is a weighted average of
v2s with unit weight outside the band centred around kk and
weight given by W3(kk) inside the band. This weighted sum can be
approximated by E(K̃n)(v2(m4)/m4) where m4=(2n/M Rk W3(kk)2) in the
band around (2pk/r). Since m4>2([n/2]−2), if cycles of mean length
(r/k) exist in the data, the value of 28(K̃n) will exceed the Za value
determined by the asymptotically normal approximation computed
under H0.

Proof of Lemma 3: From lemma 1, when xt is a white noise,
In,x(kk)>0·5v2(2)r2

x, for k different from 0 and [n/2]. Therefore, for
all such kk, C1n and C2n are weighted averages of v2 with equal
weights. Hence,

2 ∀C ∀C1n>0·5v2(2 ∀C ∀ )r2
x

and

2 ∀X−C ∀C2n>0·5v2(2 ∀X−C ∀ )r2
x

and

limn)x Dn>F(2 ∀C ∀ , 2 ∀X−C ∀ )

since C1n and C2n are asymptotically independent by construction.
Since ∀X ∀ can be chosen to grow with the sample size, 2 ∀X−C ∀→∞
as n→∞ and Gn=2 ∀X−C ∀Dn

n)x
> v2(2∀C∀.) Under the alternative,

2In,x(kk)
hx(kk)

>v2(2)

for each kk in C so that the distribution of C1n is no longer a v2.
Using the procedure described in lemma 1, C1n can be approximated
with a v2 distribution. Therefore Gn is approximately asymptotically
distributed as (v2(m1)E(G)/m3) where

m3=
32n ∀C ∀

Rk h2
n,x(kk)


