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seasonal patterns* 

Fabio Canova 
Brown University, Providence, RI 02912, USA 
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This paper proposes a methodology for modelling and forecasting series which possess common 
patterns at seasonal and/or other frequencies. The approach is in the Bayesian autoregression 
tradition originallv developed bv Litterman (1980). Doan. Litterman. and Sims (1984). and Sims 
(19891, and builds common patterns directly into’the prior of the coefficients of the’ model by 
means of a set of uncertain linear restrictions. To gauge the usefulness of the approach, the 
procedure is applied to the problem of forecasting a small vector of national industrial 
production indices. 

1. Introduction 

The observations that many economic time series exhibit pronounced 
trends and seasonals and that some also show common features across time 
both in the short and in the long run were recognized long ago [e.g., Burns 
and Mitchell (194611. However, it is only recently that time series econometri- 
cians have formalized in econometric models the concept of common co- 
movements at particular frequencies and the idea that common factors may 
affect the behavior of several economic aggregates. For example, Engle and 
Granger (1987) and Stock and Watson (1988) have examined common long- 
run patterns in integrated series, Hylleberg, Engle, Granger, and Yoo (1990) 
common patterns at seasonal frequencies for time series which are seasonally 
integrated, Kang (1988) common deterministic factors in trend-stationary 
series, and Gourieroux and Paucelle (1989) common long-run patterns in 
stationary series. 

*This paper was written for the conference on ‘Seasonal&y and Econometric Models’, May 
11-12, 1990, Montreal, and was also presented at the 1990 Meetings of the Society for Economic 
Dynamic and Control, Minneapolis. I would like to thank Tim Erickson for valuable conversa- 
tions, Eric Ghysels (the editor), Adrian Pagan, Chris Sims, Arnold Zellner, and two anonymous 
referees for useful suggestions. The comments and the suggestions of John Geweke were 
instrumental in eliminating errors from an earlier draft and in improving the focus of the paper. 
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This paper incorporates the concept of common patterns at seasonal and 
at other frequencies into a Bayesian forecasting model of the Doan, Litter- 
man, and Sims (DLS) (1984) variety. There are two reasons to do this. First, a 
researcher’s beliefs concerning the existence of common patterns at certain 
frequencies can be embodied quite naturally in a prior for the coefficients of 
the model, and their support in the data is easily summarized in a posterior. 
Second, since DLS-type models are well-known to provide good forecasts in 
the short run [see Litterman (1986) and McNees (1986) for seasonally 
adjusted macro data, Canova (1992) and Raynauld and Simonato (1993) for 
seasonally unadjusted macro data], it is of interest to see whether accounting 
for common patterns at certain frequencies improves the ability of these 
models to forecast at seasonal and long horizons.’ 

Canova (1992) demonstrated that beliefs concerning the existence of peaks 
in the spectral density at seasonal frequencies imply a set of uncertain linear 
restrictions on the coefficients of the AR representation of univariate time 
series. This information was incorporated into the prior for the coefficients of 
the model by means of Theil’s mixed type estimation. This paper extends that 
analysis by characterizing the restrictions implied by beliefs concerning the 
existence of common patterns at seasonal and nonseasonal frequencies on 
the AR representation of a panel of time series and discusses the incorpora- 
tion of these restrictions into the prior for the coefficients of the model 
[Raynauld and Simonato (1993) provide alternative ways to account for 
seasonals in a Bayesian VAR model]. The focus is on a panel of same time 
series because the idea of common factors quite naturally applies to this 
framework of analysis [see Thisted and Wecker (1981) and Zellner and Hong 
(1989) for a similar approach]. However, the methodology is general and 
well-suited to handle ‘random field’ data [of the type employed by Quah 
(1989)] or standard VAR models. 

The modelling approach employed to characterize the presence of com- 
mon patterns at various frequencies is advantageous in several respects. First, 
it does not impose restrictions on the way seasonals and other components of 
a series interact [see Ghysels (1988) and Hansen and Sargent (1990) for 
criticisms of the restrictions imposed by traditional orthogonal decomposi- 
tions of time series from the point of view of dynamic economic theory]. 
Second, it does not constrain the log spectrum of the estimated seasonal 
component to have the same power at each seasonal frequency [see Sims 
(1979) for this feature of ARIMA modelling of seasonality]. In addition, since 
beliefs concerning the existence of common patterns are modelled probabilis- 
tically, the data is left to decide the relative support for each type of 
restriction [see Dreze (1975) for a similar approach in identifying simultane- 

‘Canova (1992) reports, for example, that a model with a simple linear time trend plus 
seasonal dummies outperforms a univariate version of the DLS model in forecasting at 
twelve-quarter horizons over the period 1969.4-1981.4 for housing start, consumer durables, 
tixed investments, business inventories, and final sales in the U.S. 
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ous equation models]. Finally, the methodology is flexible enough to capture 
general forms of common seasonal& and can endogenously account for their 
evolution over time. This avoids the use of judgmental procedures or exten- 
sive model respecification to ‘repair’ relationships which break down from 
time to time. 

I judge the usefulness of common pattern restrictions using out-of-sample 
forecasting criteria. For this purpose I will be interested in making posterior 
probability statements concerning functions of the parameters of the model. 
For any function f(O) of the parameters 8, such statements require the 
construction of objects of the form 

where & is a subset of the parameter space 0, P(Olx, y) is the posterior of 
the 0 given data on x, and yl, where x, are the observables at t and yt are 
past values of the observables. For the model of this paper the posterior of 8 
has the form 

a-f(elx,, Y,)~(q, (2) 
where _/a J&(x,ly,, p,)Y(p,l O)dp, is the marginalized likelihood of 8 
given data on x and y and 52(O) is the prior density on the parameters of the 
model. 9 is the statistical model linking the observables to a vector of 
time-varying coefficients (the p’s) and to past values of the observables. Prior 
information about the relationship between the vector of time-varying /?, and 
a set of unknown but time-invariant parameters 0 is expressed via the 
conditional density F(p,I 0). Although I employ a hierarchical structure with 
only one intermediate layer of uncertainty, specifications which include 
several dimensions of uncertainty are possible [see Monahan (1983)l. 

In the particular framework used here little is known about the properties 
of the O’s except, perhaps, the range of the support. Therefore the analysis 
will proceed by assuming that S(f3) is flat in some hypercube. In this 
situation the posterior density of the parameters is proportional to the 
marginalized likelihood function [Zellner (1971)] and inference can proceed 
by directly integrating over the region of interest of the likelihood function. 
Also, the marginalized likelihood function can be used as a diagnostic 
measure of fit between the remaining component of the prior F(/3,I 0) and 
the data [see Doan, Litterman, and Sims (1984)]. 
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The analysis is thus conducted in two steps: first, several parameter 
vectors, all having equal prior probability, are passed through a given data set 
and the coefficients of the model are updated recursively using the Kalman 
filter. For each parameter vector the predictions generated with recursively 
updated coefficients are compared with the actual data, and the magnitude of 
the resulting forecast error is used to gauge the relative support for the 
choice of parameters [the ‘fit’ of s”(p,lO) to the data]. As part of this 
routine, a sensitivity analysis is employed to assess how the measure of fit 
changes when certain parameters are fixed at. their default values rather than 
at their optimal levels or when the functional specification of the prior is 
altered [see Carlin, Dempster, and Jonas (1985) for related procedure]. As a 
by-product of the analysis, a numerical approximation of the marginal poste- 
rior density of the parameters is obtained. Second, choosing & to be the 
region of the parameter space in a specified neighborhood of the peak of the 
likelihood, I construct confidence regions around the mean of out-of-sample 
forecasting statistics using a Monte Carlo approximation to the integral eq. 
(1). 

The rest of the paper is organized as follows: section 2 describes the 
statistical model and the structure of s”(p, 10). Section 3 derives the restric- 
tions implied by the presence of common patterns at seasonal frequencies on 
the AR coefficients of the model and discusses how to combine this source of 
information with other available prior information on the coefficients. A 
sketch of the restrictions implied by beliefs concerning the existence of 
common patterns at other frequencies is also provided. Section 4 discusses 
inference. Section 5 provides an example and assesses the contribution of 
various features of the prior to the forecasting performance of the model. 
Section 6 contains the conclusions. 

2. The statistical model and the DLS-type prior 

The statistical model &‘(x,(y,, p,) is given by 

X,=a,(l)x,-,+c,D,+u,, (3) 

where Pi = [Plr,. . . , &I with P,, = [a,,,,, an12,, . . . , anlKr,. . . , anNlt, 
U nN2t7.. * ) U nNKt, C n,*, . * * , cnStl; yt = I x y with Y, = [~i~-i, x~~-~,. . . , 

Xlt-K,*.., XNr-1, XNt-2,..*, XNr-K, D It,.. ., D,,]; I is a NxN identity ma- 
trix where N is the dimension of the vector of time series, 1 I n IN, 1 is the 
lag operator; K is the maximum number of lags allowed for each n, 
1 I k I K; T is the number of observations, 1 I t I T; and S is the number 
of seasons in the year, 1 IS I S. Here U, = luit, uZt,. . . , uN~] is a vector of 
serially uncorrelated, conditionally Gaussian disturbances with zero mean 
and covariance matrix Z, (typical element a,,> and c, are time-varying 
coefficients on the seasonal dummies D, [see, e.g., Hylleberg (1986) for a 
justification of a time-varying coefficients approach to model seasonalityl. 
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Prior information about the law of motion of the coefficients and their 
relationship with the vector of hyperparameters B given by 

B,=(CtoXf)Bt-1+f(I-Bo)X1)Po+&t, (4) 

where I is a N(NK i- S) x NWK f S) identity matrix and 8, regulates the 
decay of the coefficients. For 8, < 1, the prior law of motion of the coefh- 
cients in each equation shrinks the previous period’s value toward the 
i~fo~ation available at time zero, I assume that #3s N ~(E(~~),v~~~)) and 
that F~ - N{O, 6r x vat@,)>. 8, controls the amount of randomness injected 
in the variance of the coefficients at each t. For 8i = 0 the coefficients are 
constant over time. 

The mean of the coefficients at time zero is characterized by two typical 
etements, E(annlko > and E(c,,,), which are assumed to have the following 
structure: 

F(a nn’k*) = 8, if k = 1, n = n’, 
=#, if k=S, n=n’, 
= 0 otherwise, 

(-?I 

Etc,,,) = 0 vn,.f, 
where 8, and 8, are parameters regulating the prior means on the first own 
lagged and on the first own seasonaf lagged AR coefficients. 

At this stage of the formulation, I assume that the covariance matrix of the 
coefficients at time zero is diagonal. The next section shows that frequency 
domain considerations provide prior info~ation about the ok-diagon~ 
elements af this matrix. The typicdl elements of var&) are of two types, 
varia nn,kO) and var(c,,& and are assumed to have the following structure: 

82B4B5 @dd 
vaOndkd = ke, x my with @,=l if n=n’, 

n,n @,+l if n=n’, 
and k=hS, (7) 

var( c,,a) = 8, X 8, (8) 

where h = 1 , . . . , [K/S]. Here 13~ is a general tightness parameter regulating 
the concentration of the prior variance of each coefficient around its prior 
median; 8, controls how the prior distribution of each AR coefficient 
becomes concentrated around its median as the fag length k increases; 8, 
controls the concentration of the prior distribution around each median of 
own seasonal AR coefficients in each equation; 8, controls the concentration 
of the prior dist~butio~ around each median of lagged AR coefhcients of 
other variables in each equation; and 6, is the tightness on the prior variance 
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on the coefficients of each seasonal dummy. Note that when e5 = 0, the 
elements of x0 are a prioti restricted to be only contemporaneously related. 
Finally, ~,,,,,,/a,, n is a scaling factor for the variance of the AR coefficients of 
other variables in each question. These scaling factors will be estimated from 
the data to tune up the prior to the particular application. 

Therefore, there are nine parameters regulating the evolution of the 
coefficients of a N X 1 vector of time series. 

Eqs. (5)-(8) build a lot of symmetry into the model. Information about the 
coefficients at time zero is assumed to be the same for each equation (apart 
from a scaling factor in the variance of the AR coefficients). This restriction 
is justified by the observation that for a panel of time series one a priori 

expects the coefficients and their variances to be similar [see Thisted and 
Wecker (1981) for a similar shrinkage approach]. Note also that this formula- 
tion is useful for our purposes because it imposes a common pattern 
restriction on the coefficients of the seasonal dummies in each equation by 
means of an exchangable-type prior [see Lindley and Smith (1972) and 
Zellner and Hong (1989) for a justification of this type of prior]. 

The specification chosen for 9(/3, I f3) differs in three respects from the one 
employed by Doan, Litterman, and Sims (1984) and Sims (1989). First, the 
prior mean on the first own seasonal lag coefficient in each equation is 
allowed to be different from zero and e7 + 8, is not restricted to be equal to 
one. Second, the prior variance on the own seasonal lagged AR coefficients is 
separately parameterized. Third, deterministic seasonal dummies are in- 
cluded in the statistical model and the evolution of their coefficients is 
treated in the same way as the evolution of the AR coefficients. Therefore, 
the DLS prior can be recovered from this framework by setting e7 = 1, 
8, = 0, 8, = 1, Vk, and 8, = 0, Vs # 1. Note also that while the dummies are 
intended to capture deterministic or very slowly evolving seasonals, the 
restrictions considered in the next section are designed to account for 
remaining stochastic forms of seasonality. 

Finally, letting pt = -at, sP = E,[p,p\], R = Z, and A, = (0, X Z)p,_, + 
((1 - e,> x z&, t i is easy to see that (4) can be written as 

which shows that our prior specification on the p’s comes in the form of a set 
of uncertain linear restrictions on the coefficients of the model at each t. 

3. The restrictions implied by the presence of common patterns 
at seasonal frequencies 

Before characterizing the restrictions on the coefficients of model (3) 
implied by the presence of common stochastic patterns at seasonal frequen- 
cies, a definition of common stochastic seasonality is needed. For this 
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purpose let &Jw) and F,,,,,(w) be the (pseudo)spectral densities of x,,~ 
and x,,~ t, , respectively. Let Fn,,,(w) be the (pseudojcross-spectral density of 
X n r and Xd f and let w, be the seasonal frequencies, s = 1,2,. . . , S/2. 
Finally, let Co,, ,Jw) = [F, ,Jw)12/F, ,Jw)F,,Jw) be the coherence between 
x n, and x,rt at’ frequency’ w. Following Granger (1979) and Granger and 
Weiss (1983), we will say that x,* and x,,~ possess common patterns at some 

ws, if F,,.(o) and &,Jw) have a peak (or a large mass> at w, and if 
Co,Jo,) = 1. Therefore, the vector x, possesses common patterns at some 
seasonal frequencies if the real part of the (pseudojspectral density matrix 
has peaks in all its elements at these frequencies. 

Next, I show that the existence of peaks in the (pseudojspectral density 
matrix at seasonal frequencies implies restrictions on the coefficients of the 
AR representation of the vector x,. Let x, = p(I)ut + R be the MA repres- 
entation for x,, where u, is a serially uncorrelated random noise with 
cov(u,, uI,> = 2, if t = t’ and zero otherwise, ~(1) is a N X N matrix polyno- 
mial in the lag operator of order Q I m, and f is the singular component of 
x,. Tedious but straightforward algebra indicates that the (n, n’) elements of 
the (pseudo)spectral density matrix F‘(o) can be written as 

F,,,,,~(~) = ? ? O;l E cL,i@,i~~ + ‘flePimh 
[ i 

Q~h~njq~n’l(q+h) 
;=1 I=1 q=l h=l q=l I 

Q-1 

( 

Q-h 

+ C eioh C ~Lnj(q+h)~dlq 
h=l q=l II 

+ a,,, + E 5 (eioqc7njpn,jq + epimqqn,pnjq). (10) 
j=l q=l 

For the sake of presentation let S = 4 so that r/2 and rr are the seasonal 
frequencies. Using (10) for n’ = n and neglecting nonlinear terms, a peak in 
F,,,(w) at 5~/2 requires that for every II 

N [Q/21 

C C ( - ‘)‘Pnj(2q)@nj 2 MI, 
j=l q=l 

(11) 

while a peak at rr requires 

N Q 

C C (-1)qPnjqonj2M29 
j=l q=l 

(14 

where M, and M2 are large constants. If Co,,,,(w,) is close to one, and 
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neglecting nonlinear terms, it must also be the case that 

N [Q/21 

C C ( - ‘I’[ Pnj(*q)Hlj + Pn’j(2q)H2j] = - 37 

j=l q=l 

and/or 

$4 f (-l)‘[CLnjqHlj+CL,‘jqH2j] = -ii, 

j=l q=l 
(13) 

where the first restriction holds at r/2 and the second at T, and where 

If there exists a real valued constant K r 1 such that K-~ X Z I iR[F(o)] I 
K X Z for almost all w, where Z is a N X N identity matrix and where A I B 
means that B -A is positive semidefinite, then an AR representation for x, 
exists [see Rozanov (1967, p. 77)]. Moreover, the presence of common 
patterns at seasonal frequencies in x,,~ and x,,~ implies that 

f 2 ( -1)g?nj(2g)F = OY 
j=l g=O n,n 

; 2 ( - 1)“n,,j(2,,“i- = 0, 
j=l m=O c”‘d 

(14) 

(15) 

ii I 5 (-1)m?7nrj(2m)H2j + E (-1)g?7nj(2g)Hlj 1 = O, (16) 
j=l m=O g=o 

(17) 

(18) 

f, 2 (-l)m~,fjmH2j+ 5 ( -l)gHljTnjg =OT 
[ I 

(19) 
j=l m=O g=o 

where n(Z) = &-1, (14)-(16) hold at w = r/2, and (17)-(19) hold at o = T. 
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To gain some intuitive understanding of the content of these restrictions 
consider the case where p(l) is diagonal so that only contemporaneous 
effects among the components of x, are allowed, and concentrate attention 
on the restrictions emerging at r/2. In this case a peak in the spectral 
density of x,,~ implies 

f wYrlnn(2g)= -13 (20) 
g=l 

while the coherence of x,,~ and x,,,~ being close to one implies 

(21) 

Therefore a peak in the spectral density of x,~ Lx,,,) at 7r/2 requires that a 
particular linear combination of its own lagged AR coefficients is close to 
minus one, while the coherence of x,~ and xnft is close to one if a linear 
combination of the own lagged coefficients of the two variables is close to 
minus tw~.~ To put it in another way, the presence of peaks in the spectral 
density and of high coherence at seasonal frequencies implies that a linear 
combination of the seasonal AR coefficients is small. However, as one of the 
referees pointed out, this intuition does not carry through to the general 
case. When ~(1) is not diagonal and the coherence is high, peaks in the 
spectral density at seasonal frequencies do not imply dips in the Fourier 
transform of the AR operator on own lags at seasonal frequencies. Instead, 
as eq. (13) indicates, peaks in the spectral density at seasonal frequencies 
require that a linear combination of the seasonal AR coefficients on all the 
variables in each equation should be small. 

I treat (14)-(19) as probabilistic constraints for two reasons. First, even for 
series which are known to be seasonal and to move together seasonally, it is 
not known a priori at which frequency the restrictions apply. Second, even 
when the restrictions are applicable to a particular frequency, the size of the 
peaks and the closeness of the coherence to one are series dependent. By 
treating the restrictions as stochastic, we introduce flexibility in the specifica- 
tion and allow the data to depart from (14)-(19) if the information contained 

‘The coherence restriction can be satisfied even though no peaks in the spectral density of x,, 
and x,,,~ appear at that frequency, provided that F,,,(w) and F,,,,(w) are similar. 
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in the restrictions is not pertinent to the pair of time series under considera- 
tion. 

The random term in each constraint is modelled as a mean zero stochastic 
variable whose variance represents the researcher’s prior confidence on the 
exactness of that particular restriction. For example, if one a priori believes 
that common patterns appear at only one seasonal frequency, one can 
capture this idea by imposing a large variance on the restrictions at other 
seasonal frequencies. Also, if one a priori believes that common patterns at 
seasonal frequencies are of an evolutive nature, one expects the real part of 
[F(w)] to display an even distribution of power over seasonal bands. A 
relatively large variance on each of the restrictions may capture this belief. 
Finally, although the modelling approach discussed in this paper is ill-suited 
to handle unit root processes, we can also capture a priori beliefs regarding 
seasonal cointegration [Hylleberg, Engle, Granger, and Yoo (1990)]. Seasonal 
cointegration at o, occurs if a spike of infinite height exists in the real part of 
[F(w,)]. Therefore, the presence of seasonal cointegration at o, can be 
approximately captured here by selecting the variance of all the restrictions 
at o, to be equal to zero. This is because, if a researcher believes that a 
vector of time series is seasonally cointegrated at wS, there will be no 
uncertainty regarding the existence and the size of the peak in the spectral 
density matrix at that frequency. 

3.1. Combining the two sets of prior information 

To combine the information contained in (4)-(9) with the restrictions 
derived in the previous subsection into a new prior specification for the 
coefficients of the model (3) which takes into account the presence of 
common stochastic patterns at seasonal frequencies, note that (14)-(19) can 
be written as 

r=&,+l,, St-Jqo~q), (22) 

where Ss = 13, x diag(aii) and where the parameter e9 represents the gen- 
eral tightness of the restrictions. For quarterly data, r is a 6M x 1 vector and 
Z? is a 6M x N(NK + 4) matrix, with M being the number of pairs to which 
the seasonal restrictions apply, 0 <M < N(N - 1)/2. For example, if com- 
mon patterns are believed to exist at both seasonal frequencies for n = 1 and 
n’=2,thenr isa6xlvectorwithentries[-l,-l,-2,-l,-l,-2]andl? 
is a 6 x N(NK + 4) matrix with entries shown on the next page: 
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where the first two blocks of the matrix have dimensions 6 X (AK + 41, while 
the last block has dimension 6 X (N - 2XNK + 4). 

Letting z = [A,, r], 2’ = [I, 81, e, = [p,, tt], and stacking (9) and (22), we 
obtain 

(23) 

Using the logic of Theil’s mixed type of estimation, it is immediate to see that 
the new 3?j3, It-l) has the form 

where 

The procedure therefore shrinks the original prior mean of the coefficients 
toward the vector r. In addition, the prior covariance matrix of the coeffi- 
cients is modified. The restrictions describing the existence of peaks in F,,, 
and Fnpnl at some o = W, leave the diagonal elements of ,Z, unchanged but 
introduce nonzero and alternating in sign values in the off-diagonal elements 
of the diagonal blocks (n, n) and (IZ’, n’) of Z,,. On the other hand, the 
restriction describing how close to one is the coherence of x,,~ and xntf at w, 
introduces values different than zero in the off-diagonal elements of the 
(n, n’) and Gz’, n) blocks of ZP which span seasonal lags. 

The ratio 8,/t),, i.e., the ratio of the general tightness of ZP to the general 
tightness of Z,, represents the relative confidence of the two types of 
information and determines the extent to which Z,, is modified. For 8,/t?, 
small, the new prior covariance matrix primarily contains information coming 
from (4)-W, while for 02/09 large, the new prior covariance matrix on the 
coefficients is tilted toward the information contained in the frequency 
domain restrictions. 

A few features of the approach to modelling common seasonal patterns 
employed in this paper should be noted. First, the procedure allows both 
common deterministic and common stochastic seasonal patterns in the prior 
of the coefficients. Second, unlike multiplicative ARIMA models or transfer 
function models, this framework does not a priori restrict the frequency 
domain representations of the estimated seasonal patterns to all have the 
same shape or the same height at each frequency [see Sims (197911. Third, 
the approach does not impose restrictions on the way seasonals interact with 
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other time series components of each x,,~. This is an important feature since 
Ghysels (19881, Hansen and Sargent (19901, and others have pointed out that, 
in general, dynamic economic models do not result in time series for the 
endogenous variables where the traditional orthogonal decomposition in 
trend, seasonal, and irregulars apply. Finally, the methodology is flexible 
enough to capture several forms of common patterns at seasonal frequencies 
(almost deterministic patterns, time-varying patterns, very smooth or semi- 
periodic patterns, as well as common patterns which appear at only one 
specific seasonal frequency). 

3.2. Other frequency domain restrictions 

The approach proposed in the previous two subsections can also be used to 
account for other frequency domain features in the prior of the coefficients 
of the model. For example, the presence of common trends (or common 
cyclical components) in x,* and x,,~ can be modelled by requiring that a 
peak in the spectral density appears at frequency zero (or at business cycle 
frequencies) and that the coherence at these frequencies is close to one. 
Following the same steps that led to (14)-(191, a priori beliefs concerning the 
presence of common stochastic trends can be summarized by means of the 
following three restrictions: 

qn’jmH2j + E TnjgHlj z 0. 
g=o I 

(27) 

(28) 

Hence, if in addition to the previous constraints one wants to build beliefs 
concerning the existence of common stochastic trends in the prior of th*e 
coefficients of x,, and x,,,~, one need only add 3M new rows to the matrix R, 
and 3M new columns to r, where M is again the number of pairs to which 
the restriction applies. Once these restrictions are combined with the original 
DLS prior, they shrink the prior mean of the coefficients toward f, rescale 
the elements of the main diagonal of the diagonal blocks (n, n, j) and 
(n’,n’,j), j=l,2 ,... , N, and fill in the diagonal elements of the off-diagonal 
blocks (n, n’, j) and (n’, n, j> of the prior covariance matrix of the coefficients. 
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The restrictions implied by the presence of common patterns at cyclical 
frequencies are entirely analogous and, because of space limitations, will not 
be described here. 

4. Inference 

For given X, and y,, =dOlx,y,) a ~zG,Iv,, P,WCP,I0)dP, is the 
marginalized likelihood function. If we summarize our prior views concerning 
the unknown 0 through a density AYe>, then the posterior for 8 is 5a(8l~, y> 
a _f(O lx, y)_cge). 9(e lx, y> constitutes our source of inference concerning 
values and functions of 8. For the model under consideration very little is 
known about the properties of the 8’s except, perhaps, the bounds of their 
support. Therefore, 1 assume that A?(e) is rectangular on a bounded subset 
of 0. In this case 9(81x, y) a-&Ye Ix, y) and the marginalized likelihood 
function becomes the relevant source of inference of the 8’s and for func- 
tions of them. 

Doan, Litterman, and Sims (1984) showed that for each 8 the marginalized 
likelihood can be computed as 

_.qelx,, yt) = 5 x log + 5 &(5,)-‘4% 
( r=l I 

‘7 (29) 

where fit are the one-step-ahead recursive forecast errors and where $ is the 
geometric mean (over t> of 5, = var,(x,). Note that a choice of 8 which 
induces a J?(x,ly,, 0) with a large mass in a region where the data are 
unlikely to occur, will produce large forecast errors and therefore a low value 
of 1. Also, from (29) it is clear that only those forecast errors which occur 
when the covariance matrix of the coefficients is small significantly contribute 
to the likelihood. This scheme is particularly useful at the beginning of the 
estimation process when one-step-ahead forecast errors are large because 
coefficient uncertainty may be large. In this case the errors will receive less 
weight, leaving 1 relatively insensitive to alternative settings of the 0. 

In evaluating the forecasts of the model, I will be interested in making 
probability statements regarding statistics of the forecasts of the model at 
various horizons. These statistics are functions f(0) of the parameters of the 
model. Therefore the objects of interest are expressions of the form 

(30) 

where tic 0. Integrals like those appearing in (30) cannot be evaluated 
numerically using standard product or spherical rules when the dimension of 
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0 is large. Naylor and Smith (19881, Niederreiter (1988), Geweke (19891, and 
Gelfand and Smith (19901, among others, describe ways of approximating 
them efficiently when simple quadrature rules are unfeasible. Here I will 
approximate (30) using the following procedure. First, I numerically evaluate 
the likelihood to find its maximum. To help to locate the peak of the 
likelihood function I employ the ‘Bayesmth’ algorithm written by Sims (1986) 
(details on the algorithm are provided in the appendix). Second, I choose JX’ 
to be a hypercube of the parameter space which is centered around the 
vector of 0 which maximizes the likelihood. The size and the exact shape of 
LX? will depend on the features of the likelihood funztion. Third, I randomly 
draw with replacement a large number of vectors 8 from ~2. For each of 
them, I evaluate _&l~,,y,) using a Kalman filter algorithm and compute 
recursive forecasts h(P,(13>) for steps 1 to 12 using recursively estimated 
p,(s). Fourth,_for each e, I compute out-of-sample forecasting statistics 
f(s) =g(h(p,(0))). Fifth, I order the statistics and extract a 90% confidence 
band around the mean value of the statistics. 

5. An example 

In this example I employ quarterly data on total industrial production (IP) 
for three European countries: France, West Germany, and Italy. I chose to 
keep N small for computational purposes and hardware limitations. These 
countries were selected for two reasons. First, because their total industrial 
production indices measure comparable aggregates over time.3 Second, be- 
cause of their geographical proximity and close economic links, these aggre- 
gates are likely to form a group with strong common features. 

5.1. The data 

The data is taken from the OECD Main Economic Indicators for the 
period 1960.1-1978.4 and from the OECD Indicators of Industrial Activities 
for the period 1979.1-1989.2 and converted to 1980 = 100 indices. The 
resulting quarterly time series are plotted in fig. 1. The estimated log spectral 
density for each series after deterministic seasonals are extracted using 
seasonal dummies appears in the left panel of fig. 2. The estimated coher- 
ence for each pair of series are presented in the right panel of fig. 2. 

Inspection of fig. 1 reveals some interesting features of the data. First, a 
noticeable break in the growth pattern of all series appears in 1975. Second, 
seasonals are not very regular. For example, the French IP series has a mild 

3Up to 1977.4 none of these indices include construction. Also, contrary to indices for the 
U.S., Japan, and Canada, the quarterly IP indices used here measure at least 75% of the value 
added by total industrial activities in the country. 
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Fig. 1. Industrial production indices. 
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Fig. 2. Estimated log spectra and coherences. 

six-month pattern in the first five years of the data, which disappears up to 
1978 and reappears again with modifications in the 80’s. The Italian IP series 
is the most irregular one. Seasonals seem to change structure every four or 
five years, and during the mid 70’s the pattern is buried in the cyclical 
downturn of the series. These observations suggest that seasonals will show 
up as a large mass, as opposed to a sharp peak, in the spectral density of the 
series. This is confirmed in fig. 2, which also shows that all IP series display 
significant variations at r/2 (one-year cycle) which are not entirely determin- 

J.Ekon- G 
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istic. In addition, fig. 2 indicates that common patterns do exist at frequencies 
0 and a/2 for all pairs but not at 7 (two-quarter cycles). 

I use data from 1960.1-1981.4 to construct the likelihood function of the 
O’S.~ Eight lags of each variable are used in the model. The ‘start-up’ values 
for the coefficients of the model are given by pi N N(&,,(l - 8,)-2 x 

var(&,)). Forecasts are computed recursively from 1982.1 to 1989.2 using 
updated p, vector, for a given 3 vector. The 90% range around the mean of 
each of the forecasting statistics is computed using the procedure described 
in the previous section. 

5.2. The forecasting exercise 

I am primarily interested in evaluating the contribution of various parame- 
ters to the forecasting performance of the model. This exercise is useful since 
the paper adds several features to the standard DLS procedure and it is of 
interest to evaluate which of these new features, if any, produce improve- 
ments in the forecasting performance of the model. 

I conduct the exercise in two ways. First, since the prior of the model is 
formulated very generally and various specifications are nested in it, it is 
possible to trace out the contribution of each additional feature to the 
forecasts of the model by simply conditioning the construction of the poste- 
rior distribution of the parameters over certain dimensions and compute 
the statistics of interest using this conditional posterior distribution. Let 
.9 = [-y1,y2] be a partition of the parameters of the model and let 
L =_.&(yllx,, y,,y, = y2) be the likelihood function of yi conditional on ya 
taking a specific value. Then in each of these exercises I construct a 90% 
confidence range around the mean of each Theil U-statistic using (30) with L 
in place of _/ and choose & to be the hypercube around each 
maxYl _.&(yi(~~, y,, y2 = y2). I also compare the peak of the likelihood for 
various partitions of 8 into y1 and y2 using the Schwarz (1978) criterion. 

Second, since there is evidence that any shrinkage procedure improves the 
forecasts of a model which has a large number of parameters [see, e.g., 
Thisted and Wecker (19811, Garcia-Ferrer, Highfield, Palm, and Zellner 
(198711, it is of interest to know whether or not a model constrained with the 
common pattern restrictions improves upon the forecasts of a model which is 
constrained by arbitrary restrictions. ’ To do this I arbitrarily chose the 
parameters of the DLS-type prior and make no attempt to fine tune them. 

41 chose 1981.4 as the ending date of the estimation because the features of all four series are 
altered after that date, and it is of interest to study how the model performs when faced with a 
possible structural change. 

‘1 would like to thank J. Geweke for suggesting this type of exercise. 
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Then I compare the 90% confidence range around the mean of each Theil 
U-statistic of this rough DLS prior shrunk with the common pattern restric- 
tions to the 90% confidence range around the mean of each Theil U-statistic 
of the same rough DLS prior shrunk with arbitrary restrictions. 

For the first experiment, I examine five different specifications. The most 
restrictive one is a model where seasonal&y is accounted for by seasonal 
dummies, no frequency domain restrictions are used, and the prior on the 
coefficients is made uninformative. This is achieved by setting 13, = 8, = 0, 
8, = 0, = 106, and e4 = e5 = 1, Vn, n’, k. This setup approximates an unre- 
stricted panel-VAR model with constant coefficients and seasonal dummies 
(model I in the tables). The second most restricted specification still accounts 
for seasonals with dummies, imposes no frequency domain restrictions, but 
allows a prior on the coefficients similar to a standard DLS form. Here I 
restrict 0, = 1, 8, = 0, e9 = lo6 (model II), but contrary to the standard DLS 
prior I allow 8, # 1. Since the prior on the coefficients of the dummies in 
each equation is the same, this setup mimics a situation where common 
seasonals are accounted for by an exchangeable prior on the seasonal 
dummies. The third model is similar to the above second specification, but 
allows the prior mean and the prior variance of the AR coefficients to have a 
seasonal structure. In this case I only restrict 8, = lo6 (model III>. The fourth 
specification is similar to the third one, but adds the common stochastic 
seasonal restriction at both seasonal frequencies (model IV in the tables). 
The final specification adds to the fourth one the common stochastic trend 
restrictions (model V). 

For the second experiment, I first compute baseline point forecasts with a 
roughly chosen DLS prior (model VI). Then, adding as a shrinking element 
the batting average of the Minnesota Twins for the 1989-89 season, I 
recompute the forecasts for the model (model VII) and compare them with 
the forecasts obtained by introducing the common stochastic seasonal restric- 
tions into the rough DLS prior (model VIII>. 

Table 1 reports the parameter vector that produces the peak of the 
likelihood function for the various specifications and the upper and lower 
limits of the hypercube U’ for each dimension. Table 2 reports the 90% 
range around the mean Theil U-statistic at one, four, and eight quarters 
ahead, the 90% range for five average Theil U-statistics (one over twelve 
steps, three over variables at one, four, and eight steps, and one overall 
average over steps and variables) for each of the eight specifications and the 
value of the Schwarz information criteria.6 For comparison columns 9 to 11 
of table 2 also report point estimates of the same forecasting statistics 

60n a PC 386, 20MHZ machine with 387 math coprocessor and no extended memory, the 
total computation time for table 2 was about 480 hours. 
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obtained from a multiplicative ARIMA model,’ from a univariate unre- 
stricted AR(8) model, and from a univariate model with a linear time trend 
and deterministic seasonal dummies. 

5.3. The results 

Before examining the results of the forecasting exercise I will briefly 
describe some features of the likelihood function for this problem. First, 
although the likelihood is relatively insensitive to alternative choices of 
parameters in several dimensions, it has very narrow contours in the 8,, 8,, 
8,, and 8, dimensions. The variations in the forecasting statistics reported in 
table 2 are primarily due to variations in these four parameters. Second, the 
likelihood function has a very steep ridge in the region of nonstationary 
values for the prior mean of the fourth lag coefficient of each equation of the 
model. For example, if we restrict 8, to lie in the [O, 11 interval, the value of 
the log likelihood drops by about 400 points. Third, conditioning on e3 = 19’ 
= 0 does not affect the maximized value of the likelihood. Therefore, these 
two parameters can be treated as fixed and eliminated from the maximization 
process. Fourth, the value of e5 which maximizes the likelihood is low, and 
there is a rapid deterioration in the forecasting performance for values of e5 
close to zero or higher than 0.2. Finally, as expected from the discussion of 
figs. 1 and 2, the likelihood function is relatively flat for large values of the 
variance of the common seasonal restrictions and drops sharply as these 
parameters are driven toward zero. 

Several important features emerge from table 2. Considering first the 
overall average Theil U-measure (last row of the table), one can see that a 
finely tuned DLS prior with an exchangable prior on the seasonal dummies is 
inadequate for these three seasonal series. For example, the overall perfor- 
mance of this model is unimpressive when compared to that of ARIMA 
models. A prior mean different from zero on the fourth lag and a prior 
covariance matrix which allows seasonal lags to be substantially larger than 
the others seem necessary to forecast these IP series. Accounting for the 
presence of common stochastic patterns at seasonal frequencies improves the 
forecasting performance of the model as long as the restriction is not too 
tightly imposed. Similarly, taking into account the presence of common 
patterns at the zero frequency produces gains, especially in the long run. The 
gains in the short run, however, are not too significant. Fig. 3 presents the 
actual data and a 90% confidence interval for the forecasts generated by 
model V for the period 1986.3-1989.2 using coefficient estimates obtained 

‘The ARIMA model is the same for each series and is of the form (1 - L4)y, = (1 - (YL)E~. 
Among alternative specifications producing very similar autocovariance function, this was chosen 
because it produced the best forecasting performance as measured by the one-step-ahead Theil 
U-statistic for the period 1982-89. 
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Fig. 3. Forecasts of model V. 
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with information up to 1986.2. It is clear from the figure that the mean 
forecasts of this model track the actual data pretty well. 

When we look at individual series and horizons, the results are more 
mixed. The common seasonal restrictions appear to be very useful in fore- 
casting the Italian IP index at all horizons, but not the West German IP 
index. The loss in forecasting performance for this series is significant 
particularly at the one-step-ahead horizon. On average, the restrictions 
appear to be important in improving the forecasting pe~o~ance at seasonal 
and longer horizons for all series. 

Table 2 also indicates that the improvements obtained by introducing the 
common seasonal restriction are farger on average than those obtained by 
simply shrinking a rough ‘Litterman’ prior with an arbitrary restriction. The 
gains are not astonishingly large however and, on average, they are of the 
order of 4% to 5% points. In addition, since at shorter horizons the model 
shrunk with an arbitrary restriction is as good as the model shrunk with the 
common pattern restriction, no strong conclusions regarding the usefulness 
of the ~mmon seasonal restrictions can be drawn from the experiment. 

Table 2 finally shows that the model under consideration improves upon 
the forecasts of other standard specifications. The gains are particularly 
evident in the long run [see, in particular, the average (over variables) Theil 
U at eight steps ahead]. Using the overall average (over steps and variables) 
Theil U as a term of comparison, I find that the improvement over the 
ARIMA model and the AR@) model is of the order of 20% to 25% points. 
At one step ahead, on the other hand, the performance is series dependent. 
On average at one step ahead the forecasts of the model are not too different 
from those of the ARIMA model and the univariate ARC81 model8 

6. Conciusions 

This paper presents an alternative methodology for modelling and forecast- 
ing series which possess common patterns at seasonal frequencies. The 
approach is in the Bayesian autoregressive tradition pioneered by Doan, 
Litterman, and Sims (1984) and Sims (1989) and builds the presence of 
common deterministic and stochastic patterns directiy into the prior of the 
coefficients of the model. Whilt common deterministic patterns are ac- 
counted for with an exchangable prior on the coefficients of the deterministic 

sin a previous version of the paper f also examined the sensitivity of the forecasting statistics 
to changes in the sample used to construct the posterior of the parameters. The hope is that the 
features of the series represented by the B”s are time-invariant so that tbese parameters need not 
be reestimated very often. For this exercise I used three subsamples (1960-72, 1940-77, 
1960-81~ and computed forecasting statistics over the 1982-1989 period using the optimal 
parameters obtained in each subsample. The results indicated that, although the optimal 
parameters of the model do not change very much over the three subsamples chosen, the 
forecasts of the three specifications differed substantially. 
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variables, a priori beliefs concerning the existence of common stochastic 
features at certain frequencies are captured with a set of uncertain linear 
restrictions on the AR coefficients of a vector of time series. These restric- 
tions are combined with a standard Doan-Litterman-Sims prior to produce 
a revised prior for the coefficients of the model which has the common 
pattern restrictions built in it. 

As an illustration the proposed methodology is used to model common 
patterns at seasonal and zero frequencies for a small panel of industrial 
production indices, and the forecasting performance of various model speci- 
fications is compared with standard univariate specifications. The results 
indicate that the technique is flexible in adapting to situations where the 
underlying economic structure frequently changes and that accounting for 
common patterns in the prior of the coefficients is potentially useful in 
improving the forecasts of the model. 

Appendix 

This appendix briefly describes the features of the ‘Bayesmth’ algorithm 
which is employed to locate the peak of the likelihood function. For more 
details the reader should consult Sims (1986). 

The algorithm takes as input a set of values for the parameter vector 8 and 
for the likelihood function _/ (13~, 4, i = 1,2,. . . , n) and constructs an 
interpolated function _z?, satisfying 2” (13~ =_&e,), Vi) using either a 
third-order cubic spline or a Gaussian kernel. Once the interpolated function 
has been constructed, the algorithm numerically searches for the maximum 
of 2”. 

In the batch version of the program used here (the LOOPSMTH routine), 
the algorithm returns the value of 8 corresponding to the guessed maximum 
value of 1”. Then, treating this value for the vector 0 as the IZ + 1 
observation and the corresponding value of _&‘(e,+ i) as Jn+i, the algorithm 
repeats the interpolation to obtain a function Jn+‘, searches for the 
maximum of _2?+l, and returns the value of 0 corresponding to the guessed 
maximum value of 1” + ‘. 

The searching procedure for the maximum stops when I maze Jn+k(0) - 
maxe _.Y n+k-l(e)J <E, whe re E is a prespecified and appropriately chosen 
constant. 
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