
Chapter 10: Bayesian VARs

We have seen in chapter 4 that VAR models can be used to characterize any vector of
time series under a minimal set of conditions. We have also seen that since VARs are re-
duced form models, identification restrictions, motivated by economic theory, are needed
to conduct meaningful policy analysis. Reduced form VARs are also typically unsuitable
for forecasting out-of-sample. To reasonably approximate the Wold representation it is
in fact necessary to have a VAR with long lags. A generous parametrization means that
unrestricted VARs are not operational alternatives to either standard macroeconometric
models, where insignificant coefficients are purged out of the specification, or to parsimo-
nious time series models since, with a limited number of degrees of freedom, estimates of
VAR coefficients are imprecise and forecasts have large standard errors.

It is useful to think of the construction of an empirical model as the process of combining
historical and a-priori information, both of statistical and of economic nature. Alternative
modeling techniques provide different a-priori information or different relative weights to
sample and prior information. Unrestricted VARs employ a-priori information very sparsely
- in choosing the variables of the VAR; in selecting the lag length of the model; in imposing
identification restrictions. Because of this choice, overfitting may obtain when the data
set is short, sample information is weak or the number of parameters is large. In-sample
overfitting typically translates into poor forecasting performance, both in unconditional and
conditional sense. Bayesian methods can solve these problems: they can make in-sample
fitting less dramatic and improve out-of-sample performance. While Bayesian VAR (BVAR)
were originally devised to improve macroeconomic forecasts, they have evolved dramatically
and they are used now for a variety of purposes.

This chapter describes Bayesian methods for a variety of VAR models. First, we present
the decomposition of the likelihood function of a VAR and the construction of the pos-
terior distribution for a number of prior specifications. We also show the link between
posterior mean estimates and classical estimates obtained when the coefficients of the VAR
model are subject to stochastic linear constraints. The third section describes Bayesian
structural VARs and block recursive structures which arise e.g., in models with some ex-
ogenous variables or in two country models with (overidentifying) linear restrictions on the
contemporaneous impact of the shocks. The fourth section, discusses time varying BVAR
models. These models have a state space representation and this helps in constructing both
empirical Bayes and fully hierarchical posterior estimates of the VAR coefficients and of
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the covariance matrix. We show that these structures generate a variety of distributional
patterns and can be used to model series with thick tails, with smoothly evolving pattern,
or displaying coefficients switching over a finite number of states.

The fifth section deals with multiple BVAR models: these structures are becoming pop-
ular in empirical practice, for example, when comparing the effects of monetary policy
shocks in different countries or the growth behavior in different regions, and present inter-
esting complications relative to single unit BVAR models. We show how to obtain posterior
estimates of the coefficients of the model for each unit and how to obtain estimates of the
mean effect across units, which often is the center of interest for applied investigators. We
also describe a procedure to endogenously group units with similar characteristics. This is
useful when one wants to distinguish the impact of certain shocks on e.g. small or large
firms, or when policy advice requires some particular endogenous classifications (e.g. income
per-capita, education level, indebtness, etc.). The last part of the section studies Bayesian
Panel VAR models with cross unit interdependencies. These models are suited to study e.g.,
the transmission of shocks across countries or the effects of increased interdependencies in
various world economies. Because of the large number of parameters, it is impossible to
estimate them with classical methods and suitable (prior) restrictions need to be imposed
for estimation. With such a respecification, these models are easily estimable with Monte
Carlo Markov Chain methods.

Since the chapter deals with models of increasing complexity, increasingly complex meth-
ods will be used to compute posteriors. The techniques described in chapter 9 are handy
here: conjugate priors allow the derivation of analytic forms for the conditional posteri-
ors; Markov Chain Monte Carlo methods are used to draw sequences from the posterior
distributions.

10.1 The Likelihood function of an m variable VAR(q)

Throughout this chapter we assume that the VAR has the form yt = A(L)yt−1 + Cȳt +
et, et ∼ (0,Σe), where yt includes m variables, each of which has q lags, while the constant
and other deterministic variables (trends, seasonal dummies) are collected into the mc × 1
vector ȳt. Hence, the number of regressors in each equation is k = mq +mc and there are
mk coefficients in the VAR.

Following the steps described in chapter 4, we can rewrite the VAR in two alternative
formats, both of which will be used in this chapter:

Y = XA+E (10.1)

y = (Im ⊗X)α+ e e ∼ (0,Σe ⊗ IT ) (10.2)

where Y and E are T ×m matrices and X is a T × k matrix, Xt = [y
0
t−1, . . . , y0t−q, ȳ0t]; y

and e are mT × 1 vectors, Im is the identify matrix of dimension m, and α = vec(A) is a
mk × 1 vector. Using (10.2) the likelihood function is
L(α,Σe) ∝ |Σe ⊗ IT |−0.5 exp{−0.5(y − (Im ⊗X)α)0(Σ−1e ⊗ IT )(y − (Im ⊗X)α)} (10.3)
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To derive a useful decomposition of (10.3) note that

(y − (Im ⊗X)α)0(Σ−1e ⊗ IT )(y − (Im ⊗X)α) =

(Σ−0.5e ⊗ IT )(y − (Im ⊗X)α)0(Σ−0.5e ⊗ IT )(y − (Im ⊗X)α) =

[(Σ−0.5e ⊗ IT )y − (Σ−0.5e ⊗X)α)]0[(Σ−0.5e ⊗ IT )y − (Σ−0.5e ⊗X)α)]

Also (Σ−0.5e ⊗IT )y−(Σ−0.5e ⊗X)α = (Σ−0.5e ⊗IT )y−(Σ−0.5e ⊗X)αols+(Σ
−0.5
e ⊗X)(αols−α)

where αols = (Σ
−1
e ⊗X0X)−1(Σ−1e ⊗X)0y. Therefore:

(y − (Im ⊗X)α)0(Σ−1e ⊗ IT )(y − (Im ⊗X)α) =

((Σ−0.5e ⊗ IT )y − (Σ−0.5e ⊗X)αols)
0((Σ−0.5e ⊗ IT )y − (Σ−0.5e ⊗X)αols) + (10.4)

(αols − α)0(Σ−1e ⊗X0X)(αols − α) (10.5)

The term in (10.4) is independent of α and looks like a sum of squared errors. The one in
(10.5) looks like the scaled square error of αols. Putting the pieces back together we have:

L(α,Σe) ∝ |Σe ⊗ IT |−0.5 exp{−0.5(α− αols)0(Σ−1e ⊗X0X)(α− αols)
− 0.5[(Σ−0.5e ⊗ IT )y − (Σ−0.5e ⊗X)αols)

0[(Σ−0.5e ⊗ IT )y − (Σ−0.5e ⊗X)αols)]}
= |Σe|−0.5k exp{−0.5(α− αols)0(Σ−1e ⊗X0X)(α− αols)}
× |Σe|−0.5(T−k) exp{−0.5tr[(Σ−0.5e ⊗ IT )y
− (Σ−0.5e ⊗X)αols)

0(Σ−0.5e ⊗ IT )y − (Σ−0.5e ⊗X)αols)]}
∝ N(α|αols,Σe,X, y)×W(Σ−1e |y,X,αols, T − k −m− 1) (10.6)

where tr is the trace of a matrix. The likelihood function of a VAR(q) can therefore be
decomposed into the product of a Normal density for α, conditional on the OLS estimate
αols and on Σe, and a Wishart density for Σ

−1
e , conditional on αols, with scale matrix

[(y− (Im⊗X)αols)
0(y− (Im⊗X)αols)]

−1, and (T − k−m− 1) degrees of freedom (see the
Appendix for the form of various distributions).

Hence, under appropriate conjugate prior restrictions, we can analytically derive the
conditional posterior distribution for the VAR coefficients and the covariance matrix of the
reduced form shocks. As we have seen in chapter 9, a Normal-Wishart prior conjugates the
two blocks of the likelihood. Therefore, under these assumptions, the conditional posterior
for α will be Normal and the conditional posterior of Σ−1e will be Wishart. Other prior
assumptions on α and Σe also allow analytical computation of conditional posteriors. We
examine them in the next section.

10.2 Priors for VARs

In this section we consider four alternative types of prior specification:

1. A Normal prior for α with Σe fixed.
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2. A non-informative prior for both α and Σe.

3. A Normal prior for α, and a non-informative prior for Σe.

4. A Conditionally conjugate prior, i.e. a Normal for α, and a Wishart for Σ−1e .

We examine in details the derivation of the posterior distribution for the VAR coefficients
for case 1. Let the prior be α = ᾱ+ va, va ∼ N(0, Σ̄a), with Σ̄a fixed. Then

g(α) ∝ |Σ̄a|−0.5exp[−0.5(α− ᾱ)0Σ̄−1a (α− ᾱ)]
∝ |Σ̄a|−0.5exp[−0.5(Σ̄−0.5a (α− ᾱ))0Σ̄−0.5a (α− ᾱ)] (10.7)

Let Y = [Σ̄−0.5a ᾱ, (Σ−0.5e ⊗ IT )y]0; X = [Σ̄−0.5a , (Σ−0.5e ⊗X)]0. Then:

g(α|y) ∝ |Σ̄a|−0.5 exp{−0.5(Σ̄−0.5a (α− ᾱ))0Σ̄−0.5a (α− ᾱ)} × |Σe ⊗ IT |−0.5
× exp {(Σ−0.5e ⊗ IT )y − (Σ−0.5e ⊗X)α)0(Σ−0.5e ⊗ IT )y − (Σ−0.5e ⊗X)α)}
∝ exp {−0.5(Y −Xα)0(Y −Xα)}
∝ exp {−0.5(α− α̃)0X 0X (α− α̃) + (Y −X α̃)0(Y −X α̃)} (10.8)

where

α̃ = (X 0X )−1(X 0Y) = [Σ̄−1a + (Σ−1e ⊗X0X)]−1[Σ̄−1a ᾱ+ (Σ
−1
e ⊗X)0y] (10.9)

Since Σe and Σ̄a are fixed, the second term in (10.8) is a constant independent of α and

g(α|y) ∝ exp[−0.5(α− α̃)0X 0X (α− α̃)] ∝ exp[−0.5(α− α̃)0Σ̃−1a (α− α̃)] (10.10)

Hence, the posterior density of α is Normal with mean α̃ and variance Σ̃a = [Σ̄
−1
a +(Σ−1e ⊗

X0X)]−1. For (10.10) to be operational we need Σ̄a and Σe. Typically, Σ̄a is arbitrarily
chosen (e.g. to have a loose prior) and one uses e.g., Σe,ols =

1
T−1

PT
t=1 e

0
t,olset,ols, et,ols =

yt − (Im ⊗X)αols, in the formulas.

10.2.1 Least square under uncertain restrictions

The posterior mean for α displayed in (10.9) has the same format as a classical estimator
obtained with Theil’s mixed type approach when coefficients are stochastically restricted.
To illustrate this point consider a univariate AR(q) with no constant:

Y = XA+E E ∼ (0,Σe)
A = Ā+ va va ∼ (0, Σ̄a) (10.11)

where A = [A1, . . . Aq]
0,Xt = [yt−1, . . . yt−q]. Set Yt = [Yt, Ā

0]0, Xt = [Xt, I]
0, Et = [Et, v0a]0.

Then Yt = XtA + Et, where Et ∼ (0,ΣE), and ΣE is assumed known. The (generalized)
least square estimator is AGLS = (X 0Σ−1E X )−1(X 0Σ−1E Y), which is identical to Ã, the mean
of the posterior of A obtained with fixed Σe, fixed Σ̄a and a Normal prior for A. There
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is a simple but useful interpretation of this result. Prior restrictions on VAR coefficients
can be treated as dummy observations which are added to the system of VAR equations.
The posterior estimator will efficiently combine sample and prior information using their
precisions as weights. Additional restrictions can be tagged on to the system in exactly
the same fashion and posterior estimates can be obtained by combining the vector of prior
restrictions with the data. We will exploit this feature later on, when we design restrictions
intended to capture the existence of trends, seasonal fluctuations, etc.

Exercise 10.1 (Hoerl and Kennard) Suppose that Ā = 0 in (10.11). Show that the pos-
terior mean of A is Ã = (Σ̄−1a + X0Σ−1e X)−1(X0Σ−1e Y). Show that if Σe = σ2e × IT ,
Σ̄a = σ

2
v × Iq, Ã = (Iq + σ2

e
σ2
v
(X0X)−1)−1Aols, where Aols is the OLS estimator of A.

There are two important features of exercise 10.1. First, since the restriction Ā = 0
imposes the belief that all the coefficients are small, it is appropriate if yt is the growth
rate of financial variables like exchange rates or stock prices. Second, the last part of the
exercise indicates that the posterior estimator increases the smallest eigenvalues of the data

matrix by the factor σ
2
e
σ2
v
. Hence, it is useful when the (X0X) matrix is ill-conditioned (e.g.

when near multi-collinearity is present).

Exercise 10.2 Treating α̃ in (10.9) as a classical estimator, show what conditions insure
its consistency and its asymptotic normality.

There is an alternative representation of the prior for case 1. Set Rα = r + va, va ∼
N(0, I), where R is a square matrix. Then g(α) is N(R−1r,R−1R−10) and α̃ = [R0R+(Σ−1e ⊗
X0X)]−1[R0r + (Σ−1e ⊗X)0y]. This last expression has two advantages over (10.9). First,
it does not require the inversion of the mk ×mk matrix Σ̄a, which could be complicated
in large scale VARs. Second, zero restrictions on some coefficients are easy to impose - in
(10.9) this must be done setting some diagonal elements of Σ̄a to infinity.

Exercise 10.3 Using Rα = r + va, va ∼ N(0, I) as a prior, show that
√
T (α̃− αols) P→ 0

as T →∞.

The intuition for the result of exercise 10.3 is clear: since as T grows, the importance of
the data increases relative to the prior, α̃ coincides with the unrestricted OLS estimator.

10.2.2 The Minnesota prior

The so-called Minnesota (Litterman) prior is a special case of Case 1 prior when ᾱ and Σα
are functions of a small number of hyperparameters. In particular (see, for example, RATS
(2000)) this prior assumes that ᾱ = 0 except for ᾱi1 = 1, i = 1, . . . ,m; that Σa is diagonal
and that the σij,` element corresponding to lag ` of variable j in equation i has the form:

σij,` =
φ0
h(`)

if i = j, ∀`
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= φ0 × φ1
h(`)

× (σj
σi
)2 otherwise when i 6= j, j endogenous,∀`

= φ0 × φ2 for j exogenous (10.12)

Here φi, i = 0, 1, 2 are hyperparameters, (
σj
σi
)2 is a scaling factor and h(`) a determin-

istic function of `. The prior (10.12) captures features of interest to the investigator: φ0
represents the tightness on the variance of the first lag; φ1 the relative tightness of other
variables; φ2 the relative tightness of the exogenous variables and h(`) the relative tight-
ness of the variance of lags other than the first one. Typically, one assumes an harmonic
decay h(`) = `φ3(a special case of which is h(`) = `, a linear decay) or a geometric decay
h(`) = φ−`+13 ,φ3 > 0. Since σi, i = 1, . . . ,m are unknown, consistent estimates of the
standard errors of the variables i, j are used in (10.12).

To understand the logic of this prior note that the m time series are a-priori represented
as random walks. This specification is selected because univariate random walk models are
typically good in forecasting macroeconomic time series. Note also that the random walk
hypothesis is imposed a-priori: a posteriori, each time series may follow a more complicated
process if there is sufficient information in the data to require it.

The variance-covariance matrix is a-priori selected to be diagonal. Hence, there is no
relationship among the coefficients of various VAR equations. Moreover, the most recent
lags of a variable are expected to contain more information about the variable’s current
value than do earlier lags. Hence, the variance of lag `2 is smaller than the variance of
lag `1 if `2 > `1 for every endogenous variable of the model. Furthermore, since lags of
other variables typically have less information than lags of own variables, φ1 ≤ 1. Note
that, if φ1 = 0, the VAR is a-priori collapsed into a vector of univariate models. Finally, φ2
regulates the relative importance of the information contained in the exogenous variables
and φ0 controls the relative importance of sample and prior information. From (10.9) if
φ0 is large, prior information becomes diffuse so the posterior distribution mirrors sample
information. If φ0 is small, prior information dominates.

A graphical representation of this prior is in figure 10.1: all coefficients have zero prior
mean (except the first own lag) and prior distributions become more concentrated for co-
efficients on longer lags. Moreover, the prior distributions of the lags of the variables not
appearing on the left hand side of the equation are more concentrated than those of the
own lags.
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Figure 10.1: Minnesota prior.

Example 10.1 To see what the Minnesota prior implies consider a VAR(2) with q =
2, ȳ = 0, h(`) = `. In this case ᾱ = [1, 0, 0, 0, 0, 1, 0, 0], and

Σ̄a =



φ0 0 0 0 0 0 0 0
0 φ0φ1(

σ2
σ1
)2 0 0 0 0 0 0

0 0 φ0

2 0 0 0 0 0

0 0 0 φ0

2 φ1(
σ2
σ1
)2 0 0 0 0

0 0 0 0 φ0φ1(
σ1
σ2
)2 0 0 0

0 0 0 0 0 φ0 0 0

0 0 0 0 0 0 φ0

2 φ1(
σ1
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)2 0

0 0 0 0 0 0 0 φ0

2


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There are considerable advantages in specifying Σ̄a to be diagonal. Since the same
variables appear on the right hand side of each equations, a diagonal Σ̄a implies a diagonal
Σ̃a so that α̃ is the same as the vector of α̃i computed equation by equation. This property
is lost with other prior specifications, regardless of the assumption made on Σ̄a.

Exercise 10.4 Using the logic of seemingly unrelated regressions show that when g(α) is
of Minnesota type, estimating the VAR jointly gives the same posterior estimator for the
coefficients of equation i as estimating each VAR equation separately.

The dimension of α for moderate VARs is typically large: for example, if there are 5
endogenous variables, 5 lags and a constant, k = 26 and a mk = 130. With standard
macro data (say, forty years of quarterly data (T=160)), maximum likelihood estimates
are unlikely to have reasonable properties. The Minnesota type makes this large number
of coefficients depend on a smaller vector of hyperparameters. If these are the objects
estimated from the data, a better precision is expected because of the sheer dimensionality
reduction (the noise to signal ratio is smaller; the number of data points per parameter
increased), and out-of-sample forecasts can be improved. Note that even when the prior is
false, in the sense that it does not reflect well sample information, this approach may reduce
the MSE of the estimates. A number of authors have shown that VARs with a Minnesota
prior produce superior forecasts to those of, say, univariate ARIMA models or traditional
multivariate simultaneous equations (see e.g. Robertson and Tallman (1999) for a recent
assessment). Therefore, it is not surprising that BVARs are routinely used for short-term
macroeconomic forecasting in Central Banks and international institutions.

It is useful to contrast the Minnesota approach and other methods used to deal with
the ”curse of dimensionality”. In classical approaches, ”unimportant” lags are purged from
the specification using t-test or similar procedures (see e.g. Favero (2001)). This approach
therefore imposes strong a-priori restrictions on what variables and which lags should be in
the VAR. However, dogmatic restrictions are unpalatable because they are hard to justify
on both economic and statistical grounds. The Minnesota prior introduces restrictions in
a flexible way: it imposes probability distributions on the coefficients of the VAR which
reduce the dimensionality of the problem and, at the same time, give a reasonable account
of the uncertainty faced by an investigator.

The choice of φ = (φ0, φ1, φ2, φ3) is important since if the prior is too loose, overfitting
is hard to avoid; while if it is too tight, the data is not allowed to speak. There are three
approaches one can use. In the first two, one obtains estimates of φ and plug-in these
estimates into the expression for ᾱ and Σ̄a. Then the posterior distribution of α can be
obtained from (10.9) in an Empirical Bayes fashion, conditional on the φ estimates. In the
third approach, one treats φ as random, assumes a prior distribution and computes fully
hierarchical posterior estimates of α. To do this we need MCMC methods. For now we
focus on the first two methods.

One way to choose φ is to use simple rules of thumb or experience. The RATS manual
(2000), for example, suggests as default values φ0 = 0.2, φ1 = 0.5,φ2 = 10

5, an harmonic
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specification for h(`) with φ3 = 1 or 2, implying a relatively loose prior on the VAR coeffi-
cients and an uninformative prior for the exogenous variables. These values work reasonably
well in forecasting a number of macroeconomic and financial variables and should be used
as a benchmark or as starting points for further investigations.

The alternative is to estimate φ using the information contained in the data. In partic-
ular, the predictive density f(φ|y) = R L(α|y,φ)g(α|φ)dα, constructed on a training sample
(−τ, . . . , 0), could be used. The next example shows how to do this in a simple model.

Example 10.2 Suppose yt = Axt+et, where A is a random scalar,et ∼ N(0,σ2e); σ2e known
and let A = Ā+ va; va ∼ N(0, σ̄2a), Ā is fixed and σ̄2a = h(φ)2 where φ is a vector of hyper-
parameters. Then yt = Āxt + ²t where ²t = et + vaxt and the posterior kernel is:

ğ(α, θ|y) = 1√
2πσeh(φ)

exp{−0.5(y −Ax)
2

σ2e
− 0.5(A− Ā)

2

h(φ)2
} (10.13)

where y = [y1, . . . yt]
0, x = [x1, . . . xt]0.Integrating (10.13) with respect to A we obtain

f(φ|y) = 1p
2πh(φ)2tr|x0x|+ σ2e

exp{−0.5 (y − Āx)2
σ2e + h(φ)

2tr|x0x|} (10.14)

which can be constructed and maximized, e.g., using the prediction error decomposition
generated by the Kalman filter.

While in example 10.2 A is a scalar, the same logic applies when α is a vector.

Exercise 10.5 Let yt = A(`)yt−1 + et, et ∼ N(0,Σe), Σe known, let α = vec(A1, . . . , Aq)0
= ᾱ+ va, ᾱ known and Σ̄a = h(φ)

2. Show f(φ|y) and its prediction error decomposition.

Exercise 10.6 Suppose that Ā = h1(φ) and Σ̄a = h2(φ) in example 10.2. Derive the first
order conditions for the optimal φ. Describe how to numerically find ML-II estimates of φ.

We summarize the features of the posterior distribution of α and Σe obtained with the
other three prior specifications in the next exercises (see Kadiyala and Karlsson (1997)).

Exercise 10.7 Suppose that g(α,Σ−1e ) ∝ |Σ−1e |0.5(m+1). Show that the joint posterior has
a Normal-Wishart shape with (α|Σe, y) ∼ N(αols, (Σ−1e ⊗X0X)−1) ; (Σ−1e |y) ∼ W([(y −
(I⊗X)αols)

0(y− (I⊗X)αols)]
−1, T −k) and that (α|y) has a t-distribution with parameters

((y − (I ⊗ X)αols)
0(y − (I ⊗ X)αols),αols, T − k), where αols is the OLS estimator of α.

Conclude that, a-posteriori, the elements of α are dependent (Hint: Stare at the variance
of α).

Exercise 10.8 Suppose that the joint prior for (α,Σ−1e ) is Normal-diffuse, i.e. g(α) ∼
N(ᾱ, Σ̄a) where both ᾱ and Σ̄a are known and g(Σe) ∝ |Σ−1e |0.5(m+1). Show that g(α|y) ∝
exp{0.5(α− ᾱ)0Σ̄−1a (α− ᾱ)} × |(y − (I ⊗X)αols)

0(y− (I ⊗X)αols) + (α− αols)0(X0X)(α−
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αols)|−0.5T . Conclude that g(α|y) is the product of the normal prior and the same t-
distribution found in exercise 10.7. Argue that there is posterior dependence among equa-
tions, even when Σ̄a is diagonal.

Exercise 10.9 Let g(α|Σe) ∼ N(ᾱ,Σe⊗Ω̄) and g(Σ−1e ) ∼W(Σ̄−1, ν̄). Show that g(α|Σe, y) ∼
N(α̃,Σe⊗ Ω̃), g(Σ−1e |y) ∼W(Σ̃−1, T + ν̄). Give the form of α̃, Ω̃, Σ̃−1. Show that (α|y) has
a t-distribution with parameters (Ω̃−1, Σ̃, α̃, T + ν̄). Assume that Ω̄ = diag{ω̄ii} where ω̄ii
is parametrized as in the Minnesota prior (except that φ1 = 1); suppose that ν̄ = m+2 and
that σ̄ii = diag(Σ̄) = (ν̄ −m − 1)s2i , where s2i is the estimated variance of ei. Show that
there is posterior dependence among the equations.

10.2.3 Adding other prior restrictions

We can add a number of other statistical restrictions to the standard Minnesota prior
without altering the form of the posterior moments. For example, an investigator may be
interested in studying the dynamics at seasonal frequencies and therefore want to use the
seasonal information to set up prior restrictions. The simplest way to deal with seasonality
is to include a set of dummies in the VAR and treat their coefficients in the same way as
the coefficients on the constant.

Example 10.3 In quarterly data, a prior for a bivariate VAR(2) with four seasonal dum-
mies has mean equal to ᾱ = [1, 0, 0, 0, 0, 0, 0, 0|0, 1, 0, 0, 0, 0, 0, 0] and the block of Σa corre-
sponding to the seasonal dummies has diagonal elements, σdd = φ0φs. Here φs represents
the tightness of the seasonal information (and a large φs implies little prior information).

Seasonality, however, is hardly deterministic (in that case, it would be easy to eliminate
it if we did not want it) and seasonal dummies only roughly account for seasonal variations.
As an alternative, note that seasonal series display a peak (or a wide mass) in the spectrum
at some or all seasonal frequencies. When a series has a peak at frequency ω0 it must be the
case that in the model yt = D(`)et, |D(ω0)|2 is large. A large |D(ω0)|2 implies that |A(ω0)|2
should be small, where A(`) = D(`)−1, which in turns implies

P∞
j=1Ajcos(ω0j) ≈ −1.

Example 10.4 In quarterly data, ω0 =
π
2 ,π (cycles corresponding to 4 and 2 quarters) and

a peak at, say, π2 implies that −A2 +A4 −A6 +A8 + . . . must be close to −1.
The same idea applies to multivariate models. Omitting constants, the MA repre-

sentation is yt = D(`)et and the spectral density of yt is Sy(ω) = |D(ω)|2Σe2π . Since
D(ω) =

P
j Dj(cos(ωj) + isin(ωj)), a peak in Sy at ω0 implies that

P
j Djcos(ω0j) is

large and
P∞
j=1Ajcos(ω0j) ≈ −1.

We can cast these restrictions in the form Rα = r + va, where r = [−1, . . . ,−1]0, R is
a m1 ×mk matrix and m1 is the number of seasonal frequencies. In quarterly data, if the
first variable of the VAR displays seasonality at both π

2 ,π then:

R =

·
0 −1 0 1 0 −1 . . . 0
−1 1 −1 1 −1 1 . . . 0

¸
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These restrictions can be added to those of the original (Minnesota) prior and combined
with the data using the logic of Theil’s mixed type estimation, once Σva is selected. The
same approach can also be used to account for the presence of peaks in other parts of the
spectrum, as it is shown in the next exercise.

Exercise 10.10 (Canova)
(i) Show that a peak in the spectral density at frequency zero in variable i implies

P∞
j=1Aji ≈

−1. Cast this constraint in the form of an uncertain linear restriction.
(ii) Show that a large mass in the band (2πj ± ε), some j, ε small, in variable i impliesP∞
j=1Ajicos(jω0) ≈ −1, for all ω0 in the band. Cast these constraints in the form of un-

certain linear restrictions.
(iii) Show that a high coherence at ω0 =

π
2 in series i and i

0 of a VAR implies thatP∞
j=1(−1)jAi0i0(2j)+

P∞
j=1(−1)jAii(2j) ≈ −2. Cast this constraint in the form of an uncer-

tain linear restriction.

Other types of probabilistic constraints can be imposed in a similar way. As long as
r, R and var(va) are fixed, combining prior and sample information presents no conceptual
difficulty: the dimensionality of R and of r changes, but the form of the posterior moments
of α is unchanged.

10.2.4 Some Applied tips

There are few practical issues a researcher faces in setting-up a Minnesota prior for a VAR.
First, in simple applications it is typical to use default values for the hyperparameters φ.
While this is a good starting point, it is not clear that this choice is appropriate in all
forecasting situations or when structural inference is required. In these cases, sensitiv-
ity analysis may give information about interesting local derivatives, e.g. how much the
MSE of the forecasts change when φ varies within a small range of the default value. If
differences are large, should hyperparameters be chosen to get the best out-of-sample per-
formance? Since hyperparameters describe features of the prior they should be chosen using
the predictive density. Using ex-post MSE statistics poses few operational problems. Which
forecasting horizon should be chosen to select the hyperparameters? If different horizons
require different parameters, how should one proceed? The use of the predictive density
provides a natural answer to these questions. Since predictive densities can be decomposed
into the product of one-step ahead prediction errors, hyperparameters chosen optimizing
the predictive density minimize the one-step ahead prediction error in the training sample.

Second, in certain applications the defaults values of the Minnesota prior are clearly
inappropriate: for example, a mean of one on the first lag for growth rates is unlikely to be
useful. In others, one may want to have additional parameters controlling, e.g., the relative
importance of certain variables in one equation or across equations. For example, one would
expect lags of other variables to be less important when the left hand side of an equation
there is a financial variable, but very important when there is a macroeconomic variable.
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Alterations of the Minnesota prior in this direction do not change the form of the posterior
so long as Σ̄a is diagonal and Σe fixed.

Although the emphasis of this section has been on type 1 priors, all the arguments
made remain valid when a general Normal-Wishart prior are used. Conditional on Σe the
posterior for α is still normal. However, equation-by-equation computations are no longer
efficient since the posterior covariance matrix obtained using the whole system is different
from the covariance matrix obtained using each equation separately. For VARs with 5 or
6 variables and 4 or 5 lags, system wide calculations are not computationally demanding,
given existing computer technology. For larger scale models such as the one of Leeper, Sims
and Zha (1996), intelligent choices for the prior may dramatically simplify the computations.

How do one selects the variables to be included in a BVAR? Using the same logic
described in chapter 9, specifications with different variables can be treated as different
models. Therefore, a posterior odds ratio or the Leamer’s version of it can be used to select
the specification that best fit the data in a training sample. Consequently, one chooses
the specification with the smallest one-step ahead prediction error will be preferred. Such
calculations can be performed both in nested and non-nested models.

Example 10.5 (Forecasting inflation) We use a BVAR with a Minnesota prior to forecast
inflation rates in Italy. The features of inflation rates have changed dramatically in the
90’s all over the world and in Italy in particular. In fact, while the autocovariance function
displays remarkable persistence in the 80’s (AR(1) coefficient equals 0.85), it decays pretty
quickly in the 90’s (AR(1) coefficient equals 0.48). In this situation, using 1980’s data to
choose a model or its hyperparameters may severely impair its ability to forecast in the 90’s.
As a benchmark for comparison we use a univariate ARIMA model, chosen using standard
Box-Jenkins methods, and a three variable unrestricted VAR, including the annualized three
month inflation, the unemployment rate and the annualized three month rent inflation, each
with four lags. These variables were chosen among a set of ten candidates using Leamer’s
posterior odds ratio approach. We present results for two alternative specifications: a BVAR
with hyperparameters sets using rules of thumb and one with hyperparameters chosen to
maximize the predictive density using data from 1980:1 to 1995:4. The prior variance is
characterized by a general tightness parameter, a decay parameter and a parameter for lags
of other variables. In the first case they are set to 0.2, 1, 0.5, respectively. In the second,
they are optimally estimated (point estimates 0.14, 2.06, 1.03). The prior variance on the
constant is diffuse. In table 10.1 we report one year ahead Theil-U statistics (the ratio of
the MSE of the model to the MSE of a random walk) for the four specifications. Posterior
standard error for the two BVAR are in parenthesis.

Sample ARIMA VAR BVAR1 BVAR2

1996:1-2000:4 1.04 1.47 1.09 (0.03) 0.97 (0.02)
1990:1-1995:4 0.99 1.24 1.04 (0.04) 0.94 (0.03)

Table 10.1: One year ahead Theil-U statistics.



Methods for Applied Macro Research 10: Bayesian VARs 363

Three features deserve comments. First, forecasting Italian inflation one year ahead is
difficult: all models have a hard time to beat a random walk and three of them do worse.
Second, an unrestricted VAR performs poorly. Third, a BVAR with default choices is better
than a unrestricted VAR but not better than an ARIMA model. Finally, a BVAR with
optimally chosen parameters, outperforms both random walk and ARIMA models at the one
year horizon but the gains are small. The results are robust: repeating the exercise using
data from 1980:1 to 1989:4 to choose the variables, the hyperparameters and estimate the
models and data from 1991:1 to 1995:4 to forecast produces qualitatively similar Theil-Us.

10.2.5 Priors derived from DSGE models

The priors we have considered so far are either statistically motivated or based on rules-
of-thumb useful for forecasting macroeconomic time series. In both cases, economic theory
plays no role, except perhaps in establishing the range of values for the prior distributions.
To be able to use BVARs for purposes other than forecasting, one may want to consider
priors based on economic theory. In addition, one may be interested in knowing if theory
based priors are as good as statistically based priors in forecasting, unconditionally, out-of-
sample.

Here we consider priors which are derived from DSGE models. The nature of the model
and a prior for the structural parameters imply a prior for the reduced form VAR coefficients.
One can dogmatically take these restrictions or simply consider their qualitative content in
constructing posterior distributions. In this setup prior information measures the confidence
a researcher has that the DSGE structure has generated the observed data.

An alternative representation for the log-linearized solution of a DSGE model is:

y2t+1 = A22(θ)y2t +A23(θ)y3t+1 (10.15)

y1t = A12(θ)y2t (10.16)

where y2t is a m2 × 1 vector including the states and the driving forces; y1t is m1 × 1
vecotr including all the endogenous variables and y3t+1 are the shocks. Here Ajj0(θ) are
time invariant functions of θ, the vector of structural (preferences, technologies, policy)
parameters of the model. It is easy to transform (10.15)-(10.16) into a (restricted) VAR(1)
for yt = [y1t, y2t]

0 of the form·
0 0
0 Im2

¸
yt+1 =

· −Im1 A12(θ)
0 A22(θ)

¸
yt +

·
0

A23(θ)
¸
y3t+1 (10.17)

or A0yt+1 = A1(θ)yt+ ²t+1(θ) where ²t+1(θ) =
·

0
A23(θ)

¸
y3t+1. Hence, given a prior for θ,

the model implies a prior for A12(θ),A22(θ),A23(θ). In turn these priors imply restrictions
for the reduced form parameters A(`) = A−10 A1(`) and Σe = A−10 Σ²A−10 . Expressions
for the priors for A12(θ),A22(θ),A23(θ) can be obtained using δ-approximations, i.e. if
θ ∼ N(θ̄, Σ̄θ), vec(A12(θ)) ∼ N(vec(A12(θ̄)), ∂vec(A12(θ))

∂θ Σ̄θ
∂vec(A12(θ))

∂θ

0
), etc.



364

Example 10.6 Consider a VAR(q): yt+1 = A(`)yt + et. From (10.17) the prior for A1 is
Normal with mean AG0 A1(θ̄), where AG0 is the generalized inverse of A0 and variance equal
to Σa = (AG0 ⊗ Im1+m2)Σa1(A

G
0 ⊗ Im1+m2)

0); where Σa1 is the variance of vec(A1(θ)). A
DSGE prior for A2, A3, . . . has a dogmatic form: mean zero and zero variance.

Since the states of a DSGE model typically include unobservable variables (e.g. the
Lagrangian multiplier or the driving forces of the model) or variables measured with error
(e.g. the capital stock), it may be more convenient to set up prior restrictions for a VAR
composed only of the endogenous variables, as the next example shows.

Example 10.7 (Ingram and Whiteman). A RBC model with utility function u(ct, ct−1,Nt,
Nt−1) = ln(ct) + ln(1−Nt) implies a law of motion for the states of the form·

Kt+1
ln ζt+1

¸
=

· Akk(θ) Akζ(θ)
0 ρζ

¸·
Kt
ln ζt

¸
+

·
0

²1t+1

¸
≡ A22(θ)

·
Kt
ln ζt

¸
+ ²t+1 (10.18)

where Kt is the capital stock and ζt is a technological disturbance. The equilibrium mapping

between the endogenous variables and the states is [ct, Nt, gdpt, invt]
0 = A12(θ)

·
Kt
ln ζt

¸
where ct is consumption, Nt hours, gdpt output and invt investments. Here A12(θ) and
A22(θ) are function of η, the share of labor in production, β the discount factor, δ the depre-
ciation rate, ρζ the AR parameter of the technology shock. Let y1t = [ct, Nt, gdpt, invt]

0 and
y2t = [kt, ln ζt]

0, θ = (η,β, δ, ρζ). Then y1t = A(θ)y1t−1 + e1t, where A(θ) = A12(θ)A22(θ)
(A12(θ)0A12(θ))−1A12(θ), e1t = A12(θ)²t and (A12(θ)0A12(θ))−1A12(θ) is the generalized

inverse of A12(θ). If g(θ) is θ ∼ N(


0.58
0.988
0.025
0.95

 ,

0.0006

0.0005
0.0004

0.00015

), the

prior mean of A(θ) is A(θ̄) =


0.19 0.33 0.13 −0.02
0.45 0.67 0.29 −0.10
0.49 1.32 0.40 0.17
1.35 4.00 1.18 0.64

 which implies, e.g., substantial
feedback from consumption, output and hours to investment (see the last row). The prior

variance for A(θ) is ΣA =
∂A(θ)
∂θ0 Σ̄θ

∂A(θ)
∂θ0 , where

∂A(θ)
∂θ0 is a 16×4 vector. Hence, a RBC prior

for y1t implies a normal prior on the first lag with mean A(θ̄) and variance proportional
to ΣA. To relax the dogmatic prior restriction on higher lags, we could assume a Normal
prior with zero mean and variance ∝ ΣA

h(`) where h(`) is a decaying function of `.

Exercise 10.11 (RBC cointegrating prior). In example 10.7 suppose that (ln ζt) has a
unit root. Then all endogenous variables must have a unit root and the stochastic trend is
a common one.
(i) Argue that (I −Akk(θ),−Akζ(θ)) must be a cointegrating vector for kt.
(ii) Argue that (I4,−A12(θ)) must be a cointegrating vector for y1t
(iii) Given a Normal prior on θ, derive a cointegrating prior for the A0s.
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Exercise 10.12 Suppose consumers maximize u(ct, ct−1, Nt) = ln ct − ²2t lnNt subject to
the constraint ct +Bt+1 ≤ yt + (1+ rBt )Bt − Tt where yt = Nt²1t, ²1t is a technology shock
with mean ²̄1 and variance σ

2
²1 and ²2t is a labor supply shock with mean of ²̄2 and vari-

ance σ2²2. Here Tt are lump sum taxes, Bt are real bonds and the government finances a
random stream of expenditure using lump sum taxes and real bonds according to the budget
constraint Gt − Tt = Bt+1 − (1 + rBt )Bt. In this model there are three shocks: two supply
type shocks (²1t, ²2t) and one demand type shock (Gt).
i) Find a log-linearized solution for Nt, yt, ct and labor productivity (npt).
ii) Use the results in i) to construct a prior for a bivariate VAR in hours and output. Derive
the posterior distribution for the VAR parameters and the covariance matrix of the shocks.
Be precise about the assumptions and the choices you make (Careful, there are three shocks
and two variables). Would it make a difference for the answer if you would have used a
trivariate model with consumption or labor productivity?
iii) Describe how to construct impulse responses to Gt shocks using posterior estimates.
iv) Suppose that, for identification purposes, an investigator makes the assumption that de-
mand shocks have zero contemporaneous effect on hours. Is this assumption reasonable in
the logic of the model? Under what conditions the estimated demand shocks you recover
from posterior analysis correctly represent Gt shocks?

Del Negro and Schorfheide (2003) have suggested an alternative way to append priors
derived from DSGE models onto a VAR. The advantage of their approach is that the
posterior distributions for both VAR and DSGE parameters can be simultaneously obtained.
The basic specification they use differs from the one so far described in an important way.
Up to now a DSGE model has provided only the ”form” of the prior restrictions (zero mean
on lags greater than one, etc.). Here the prior is more tightly based on the data produced
by the DSGE model.

The logic of the approach is simple. Since the prior can be thought as an additional
observation tagged on to the VAR, one way to add DSGE information is to augment the VAR
for the actual data with a prior based on data simulated from the model. The proportion
of actual and simulated data points then reflects the relative importance that a researcher
gives to the two types of information.

Let the data be represented by a VAR with parameters (α,Σe). Assume that g(α,Σe)
is of the form α ∼ N(ᾱ(θ), Σ̄(θ)); Σ−1e ∼W(TsΣ̄e(θ), Ts − k) where

ᾱ(θ) = ((Xs)0Xs)−1((Xs)0ys)
Σ̄(θ) = Σe(θ)⊗ ((Xs)0Xs)−1

Σ̄e(θ) = (ys −Xsᾱ(θ))(ys − (Xs)ᾱ(θ))0 (10.19)

Here ys is data simulated from the DSGE model, Xs = (Im ⊗Xs) is a matrix of lags in
the VAR representation of simulated data and θ the structural parameters. In (10.19),
the moments of g(α,Σe) depend on θ through the simulated data (y

s,Xs). If Ts measures
the length of simulated data, κ = Ts

T controls the relative importance of the information
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contained in actual and simulated data. Clearly, if κ → 0, the actual data dominates and
if κ→∞, the simulated data dominates.

The model has a hierarchical structure f(α,Σe|y)g(α|θ)g(Σe|θ)g(θ). Conditional on θ,
the posterior for α,Σe are easily derived. In fact, since the likelihood and the prior are
conjugate (α|θ, y,Σe) ∼ N(α̃(θ), Σ̃(θ)); (Σ−1e |θ, y) ∼W((κ+ T )Σ̃e(θ), T + κ− k) where

α̃(θ) = (κ
(Xs)0Xs

T s
+
X 0X
T
)−1(κ

(Xs)0ys

T s
+
X 0y
T
)

Σ̃(θ) = Σe(θ)⊗ ((Xs)0Xs +X 0X)−1 (10.20)

Σ̃e(θ) =
1

(1+ κ)T
[(ys)0ys + y0y)− ((ys)0Xs + y0X)((Xs)0Xs +X 0X)−1((Xs)0ys +X 0y)]

where X = (I⊗X). The posterior for θ can be computed using the hierarchical structure of
the model. In fact, g(θ|y) ∝ f(α,Σe, y|θ)g(θ) where f(α,Σe, y|θ) ∝ |Σe|−0.5(T−m−1) exp{−0.5
tr[Σ−1e (y−Xα)0(y−Xα)}×|Σ̄e(θ)|−0.5(Ts−m−1) exp{−0.5tr[Σ−1e (ys−Xsᾱ(θ))0(ys−Xsᾱ(θ))}.
We will discuss how to draw from this posterior in chapter 11.

Exercise 10.13 Use the fact that g(α,Σe, θ|y) = g(α,Σe|y, θ)g(θ|y), to suggest an algo-
rithm to draw sequences for (α,Σe). How do you compute impulse responses in the VAR?

Exercise 10.14 Suppose g(Σe) is non-informative. Show the form of (α̃, Σ̃e) in this case.

All posterior moments in (10.20) are conditional on a value of κ. Since this parameter
regulates the relative importance of sample and prior information it is important to appro-
priately select it. As in standard BVAR, there are two ways to proceed. First, we can use a
rule of thumb, e.g. set κ = 1, meaning that T simulated data are added to the actual ones.
Second, we can choose it to maximize the predictive density of the model.

Exercise 10.15 Show the form of f(y|κ). Describe how to find its maximum numerically.

Exercise 10.16 Consider the working capital model described in exercise 1.14 of chapter
2 driven by shocks to technology, government expenditure and the monetary policy rule.
Choose appropriate priors for the parameters (for example, Normal, Gamma or Beta for
parameters that lie in an interval). Simulate data for output, inflation and the nominal
interest rate. Combine this data with actual data for output, inflation and the nominal
interest rate. Explore the predictive density of inflation numerically for different values of
κ. Is there a relationship between the κ which maximizes the predictive density and the one
which minimizes the MSE of the forecasts? How would you compare such a model against
a sticky price, sticky wage model?
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10.2.6 Probability distributions for forecasts: Fan Charts

BVAR models can be used to construct probability distributions for future events and
therefore are well suited to produce e.g. fan charts or probabilities of turning points. To
see how this can be done, set ȳ = 0 and rewrite the VAR model in a companion form

Yt = AYt−1 + Et (10.21)

where Yt and Et are mq × 1 vectors, A is a mq ×mq matrix.
Repeatedly substituting we have Yt = AτYt−τ +

Pτ−1
j=0 AjEt−j or yt = SAτYt−τ +Pτ−1

j=0 Ajet−j where S is such that SYt = yt, SEt = et and S0SEt = Et. A ”point” fore-
cast for yt+τ is obtained plugging-in some location measures of the posterior of A into
yt (τ) = SAτYt. Call this point forecast ŷt(τ). The forecast error is yt+τ − ŷt (τ) =Pτ−1
j=0 Ajet+τ−j + [yt (τ)− ŷt (τ)] and the variance of the forecast error can be computed

once posterior estimates of A are available. This is easy when τ = 1. For τ ≥ 2 only
approximate expressions for the MSE are available (see e.g. Lutkepohl (1991), p. 88).

Exercise 10.17 Show the MSE of the forecasts when τ = 1.

When a distribution of forecasts is actually needed we can exploit the fact that we can
draw from g(α|y). We describe how ”fan charts” can be obtained for case 1. prior with the
obvious extension if also Σe is a random variable. Let P̃P̃ 0 be any orthogonal factorization
of Σe. Then, at a given t:

Algorithm 10.1

1) Draw vla from a N(0, 1) and set αl = α̃+ P̃−1vla, l = 1, . . . L.
2) Construct point forecasts ylt(τ), τ = 1, 2, , . . . conditioning on α

l.

3) Construct distributions at each τ using kernel methods and extract percentiles.

Exercise 10.18 Consider case 4. prior (i.e. a Normal prior for α and a Wishart prior
for Σ−1e ). Modify algorithm 10.1 to fit this situation.

Algorithm 10.1 can also be used recursively, using estimates of α̃ which are updated
through the sample. The only difference is that α̃ and P̃ now depend on t.

Example 10.8 In certain situations one wants to compute ”average” forecasts at step τ ,
i.e. may want to compute the predictive density f (yt+τ | yt) =

R
f (yt+τ | yt,α) g (α | yt)dα

where f (yt+τ | yt,α) is the conditional density of the future observation vector, given α and
the model, and g (α | yt) is the posterior of α at t. Given draws from algorithm 10.1 and the
model then ŷt(τ) = L

−1PL
l=1 y

l
t(τ) and its numerical variance is L

−1PL
l=1

PJ(L)
j=−J(L)K(j)

ACF lτ (j), where K(j) is a kernel and ACFτ (j) the autocovariance of ŷt(τ) at lag j.
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Turning point probabilities can also be computed from the numerically constructed
predictive density of future observations. For example, given ylt(τ), l = 1, . . . L we only
need to check if e.g. a two quarters rule is satisfied for each draw αl. The fraction of draws
for which the condition is satisfied is an estimate of the probability of the event at t+ τ .

Example 10.9 Continuing with example 10.5, figure 10.2 presents BVAR based 68 and 95
percent bands for inflation forecasts one year ahead where we recursively update posterior
estimates. The forecasting sample is 1996:1-1998:2. The bands are relatively tight reflecting
very precise estimates. This precision can also be seen from the distribution of the forecasts
one year ahead, constructed with data up to 1995:4. We calculate the distribution of the
number of downturns that the annualized inflation rate is expected to experience over the
sample 1996:1-2000:4. Downturns are identified with a two quarters rule. In the actual data
there are four downturns. The median number of forecasted downturns is three. Moreover,
in 90 per cent of the cases the model underpredicts the actual number of downturns and it
never produces more than four downturns.

Recursive forecasts
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Figure 10.2: Forecasts of Italian inflation.

10.3 Structural BVARs

The priors we have specified in section 10.2 are designed for reduced form VAR models.
What kind of priors are reasonable for structural VARs?
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There are two approaches in the literature. A naive one, employed by Canova (1991),
Gordon and Leeper (1994), is to use a Normal-Wishart structure for reduced form pa-
rameters (α,Σe). Then draws for the structural parameters are made conditional on the
identification restrictions. Hence, if Σe = A−10 A−1

0
0 , then Aj = A−10 Aj, where Aj are VAR

coefficients. This approach is appropriate if A0 is just identified since there is a unique
mapping between draws of Σe and draws of A0. When A0 is overidentified this method ne-
glects the (over-identifying) restrictions. In this case, it is better to work with the structural
model, and the prior suggested by Sims and Zha (1998). Consider the following structural
model, where A0 is non singular and ȳ only includes deterministic variables:

A0yt −A(`)yt−1 + Cȳt = ²t ²t ∼ (0, I) (10.22)

where A(`) = A1`+ . . .Aq`q. Staking the t observations we have:
YA0 −XA− = ε (10.23)

where Y is a T ×m, X is a T ×k matrix of lagged and exogenous variables, k = mq+mc; ε
is a T ×m matrix. Let Z = [Y,−X]; A = [A0,A−]0. The likelihood function is:

L(A|y) ∝ |A0|T exp{−0.5tr(ZA)0(ZA)} = |A0|T exp{−0.5b0(Imk ⊗ Z0Z)b}(10.24)
where b = vec(A) is a m(k+m)× 1 vector; b0 = vec(A0) is a m2× 1 vector; b− = vec(A−)
is a mk × 1 vector and Imk is a (mk ×mk) matrix.

Suppose g(b) = g(b0)g(b−|b0) where g(b0) may have singularities (due to zero identifica-
tion restrictions) and let g(b−|b0) ∼ N(h̄(b0), Σ̄(b0)). The posterior is :
g(b|y) ∝ g(b0)|A0|T |Σ(b0)|−0.5 exp{−0.5[b0(Imk⊗Z0Z)b} exp{(b−−h̄(b0))0Σ̄(b0)−1(b−−h̄(b0))}

(10.25)
Since b0(Imk⊗Z0Z)b = b00(Imk⊗Y0Y)b0+b0−(Ink⊗X0X)b−−2b0−(Imk⊗X0Y)b0, conditional
on b0, the quantity in the exponent in (10.25) is quadratic in b− so that g(b−|b0, y) ∼
N(h̃(b0), Σ̃(b0)) where h̃(b0) = Σ̃(b0)((Imk ⊗X0Y)ĥ(b0) + Σ̄(b0)−1h̄(b0)) and Σ̃(b0) = ((I ⊗
X0X) + Σ̄(a0)−1)−1. Furthermore

g(b0|y) ∝ g(b0)|A0|T |(Imk ⊗X0X)Σ̄(b0) + I|−0.5
exp{−0.5[b00(Imk ⊗Y0Y)b0 + h(b0)0Σ̄(b0)−1h(b0)− h̃(b0)Σ̃(b0)h̃(b0)]}

(10.26)

Since dim(b−) = mk, the calculation of g(b−|b0, y) may be time consuming. Equation
by equation computations are possible if the structural model is in SUR format, i.e. if we
can run m separate least square regressions with k parameters each. To do this we need
to choose Σ̄(b0) appropriately. For example, if Σ̄(b0) = Σ̄1 ⊗ Σ̄2 and Σ̄1 ∝ I, then even if
Σ̄2i 6= Σ̄2j , independence across equations is guaranteed since (Imk ⊗X0X) + Σ̄(b0)−1 ∝
(Imk ⊗X0X) + diag{Σ̄21, . . . , Σ̄2m} = diag{Σ̄21 +X0X, . . . , Σ̄2m +X0X}.

Note that if we had started from a reduced form VAR (as we have done in exercise 10.9)
the structure of Σ̃(b0) would have been Σ̃(b0) = [(Σe ⊗ X0X) + Σ̄(b0)−1]−1, where Σe is
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the covariance matrix of the disturbances. This means that to maintain the computations
simple Σ̄(b0) must allow correlation across equations (contrary, for example, to what the
Minnesota prior assumes).

It is interesting to map structural priors into Minnesota priors. Let A0 be given and let
the VAR be yt = A(`)yt−1 + Cȳt + et. Let α = vec[A1, . . . Aq, C]. Since A(`) = [A−A−10 ];
E(α) = [Im, 0, . . . 0] and var(α) = Σ̄α where Σ̄α was defined in (10.12) imply

E(A−|A0) = [A0, 0, . . . , 0] (10.27)

var(A−|A0) = diag(b−(ijl)) =
φ0φ1
h(`)σ2j

i, j = 1, . . .m, ` = 1, . . . , q (10.28)

= φ0φ2 otherwise (10.29)

where i stands for equation, j for variable, ` for lag, φ0 (φ1) controls the tightness of the
prior variance of A0, (A+) and φ2 the tightness of the prior variance of C.

Three features of (10.27)-(10.29) are worth mentioning: (i) there is no distinction be-
tween own and other coefficients since, in simultaneous equation models, no normalization
with one right hand side variable is available; (ii) the scale factors differ from those of re-
duced form BVARs since var(²t) = I; (iii) since α = vec[A+A−10 ] beliefs about α may be
correlated across equations (if beliefs about A0 are).

As in a reduced form BVARs, stochastic linear restrictions can be added to the specifi-
cation and combined with the data using the logic of Theil’s mixed estimation.

Exercise 10.19 (Controlling for trends: sum of coefficients restrictions) Suppose the av-
erage value of lagged yi’s (say, ¯̄yi) is a good predictor of yit for equation i. Write this

information as Y†A0 − X†A− = V where y† = {y†ij} = φ3¯̄yi if i = j and zero oth-

erwise, i, j = 1, . . .m; x† = {x†iτ} = φ3¯̄yi if i = j, for τ < k and zero otherwise,
i = 1, . . .m, τ = 1, . . . k. Construct the posterior for b− under this restriction.

Adding the sum of coefficient restrictions introduces correlation among the coefficients of
a variable in an equation. When φ3 →∞, the restriction implies a model in first difference,
i.e. the model has m unit roots and no cointegration.

Exercise 10.20 (Controlling for seasonality: seasonal sum of coefficients restrictions).
Suppose the average value of yt−j is good predictor of yt for each equation. Setup this
restriction as a dummy observation and construct the posterior for b−.

Exercise 10.21 (Controlling for cointegration: initial dummy restriction) Suppose we set

up an initial dummy observation of the form Y‡A0 − X‡A− = V where y‡ = {y‡j} =
φ4¯̄yj if j = 1, . . .M , x

‡ = {x‡τ} = φ4¯̄yj if τ ≤ k − 1 and X‡ = φ4 if τ = k. Construct the
posterior for b− under this additional restriction.

The prior of exercise 10.21 forces all the variables to be stationary. In fact, if φ4 →∞,
the dummy observation becomes [I −A−10 A(1)]ȳ0+A−10 C = 0. If C = 0, there is a one unit
root, while if C 6= 0 there are no unit roots.



Methods for Applied Macro Research 10: Bayesian VARs 371

To calculate (10.26) we need g(b0). Since for identification purposes, some elements of b0
may be forced to be zero, we make a distinction between hard restrictions (those imposing
identification, possibly of blocks of equations) and soft restrictions (those involving a prior
on non-zero coefficients). Since little is typically known about b0, a non-informative prior
should be preferred i.e. g(b00) ∝ 1 where b00 are the non-zero elements of b0. In some
occasions, a Normal prior may also be appropriate.

Example 10.10 Suppose we have m(m − 1)/2 restrictions so that A0 is just identified.
Assume, for example, that A0 is lower triangular and let b00 be the nonzero elements of
A0. Suppose g(b00) =

Q
i g(b

0
0i), where each g(b

0
0i) is N(0,σ2(b00)) so that the coefficients

of, say, GDP and unemployment in the first equation may be related to each other but
are unrelated with the coefficients of GDP and unemployment in other equations. Set, for
example, σ2(b00ij) = (

φ5

σi
)2 i.e. all the elements of equation i have the same variance. Since

the system is just identified one can also use a Wishart prior for Σ−1e , with ν̄ degrees of
freedom and scale matrix Σ̄ to derive a prior for b00. Since a lower triangular A0 is just the
Choleski factor of Σ−1e , if ν̄ = m+ 1, Σ̄ = diag (

φ5

σi
)2, then a prior for b00 is proportional to

N(0,σ2(b00)), where the factor of proportionality is the Jacobian of the transformation, i.e.
|∂Σ−1

e
∂A0

| = 2mQm
j=1 b

j
jj. Since the likelihood contains a term |A0|T =

QT
j=1 b

T
jj, ignoring the

Jacobian is irrelevant if T >> m.

The posterior g(b0|y) can not be computed analytically. To simulate a sequence we can
use one of the algorithms we described in chapter 9. For example, one could:

Algorithm 10.2

1) Calculated posterior mode b∗0 of g(b0|y) and the Hessian at b∗0.
2) Draw b0 from a normal centered at b∗0 with covariance equal to the Hessian at b∗0 or a

t-distribution with the same mean and covariance and ν = m+ 1 degrees of freedom.

3) Use importance sampling to weight the draws, checking the magnitude of IRl =
g̃(bl0)

gIS(bl0)
,

where gIS(b0) is an importance density, and l = 1, . . . , L.

As alternative one could use a Metropolis-Hastings (MH) algorithm with a Normal or a
t-distribution as the target, or the restricted Gibbs sampler of Waggoner and Zha (2003).

Exercise 10.22 Describe how to use a MH algorithm to draw a sequence from g(b0|y).

It is immediate to extend the framework to the case where non-contemporaneous re-
strictions are used to identify the VAR.

Exercise 10.23 Suppose A0 is just identified using long run restrictions. How would you
modify the prior for A0 to account for this?
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Exercise 10.24 Suppose A0 is overidentified. How should the prior for A0 be changed?

Exercise 10.25 Suppose A0 is identified using sign restrictions. Let Σe = P̃(ω)P̃ 0(ω),
where ω is an angle. How would you modify the prior for A0 to take this into account?
How would you modify the algorithm to draw from the posterior distribution of A0? (Hint:
treat ω as a random variable and select an appropriate prior distribution)

There are a number of extensions one can consider. Here we analyze two:

1. Structural VAR models with exogenous stochastic variables: e.g. oil prices in a struc-
tural VAR for domestic variables.

2. Structural VARmodels with block exogenous variables and overidentifying restrictions
in some block, e.g. a two-country structural model where one is block exogenous.

We assume that yt is demeaned so that ȳt is omitted from the model. For the case of
structural models with exogenous variables, let

Ai0yt −Ai(`)yt−1 = ²it ²it ∼ N(0, I) (10.30)

where i = 1, . . . , n refers to the number of blocks; m =
Pn
i=1mi with mi equations in each

block; ²it is mi × 1 for each i, Ai(`) = (Ai1(`), . . . ,Ain(`)) and each Aij(`) is a mi ×mj
matrix for each `. (10.30) is just the block representation of (10.22). Rewrite (10.30) as

yit = Ai(`)yit−1 + eit (10.31)

where Ai(`) = (0i−, Ii, 0i+)−A−1i0 Ai(`); 0i− is a matrix of zeros of dimension mi×mi− , 0i+
is a matrix of zeros of dimension mi ×mi+ , where mi− = 0 for i = 1 and mi− =

Pi−1
j mj

for i = 2, . . . , n; mi+ = 0 for i = n and mi+ =
Pn
j=i+1mj for i = 1, . . . , n − 1 and where

E(ete0t) = diag{Σii} = diag{A−1i0 A−1
0

i0 }. Stacking the T observations to have

Yi = XiAi +Ei (10.32)

where Yi and Ei are T × mi matrices, Xi is a T × ki matrix and ki is the number of
coefficients in each block. The likelihood function is

f(Ai,Σii|yT , . . . , y1, y0 . . .) ∝
nY
i=1

|Ai0|T exp{−0.5tr[(Yi −XiAi)
0(Yi −XiAi)A0i0Ai0]}

∝
nY
i=1

|Ai0|T exp{−0.5tr[(Yi −XiAi,ols)
0(Yi −XiAi,ols)A0i0Ai0

+ (Ai −Ai,ols)
0X0

iXi(Ai −Ai,ols)A0i0Ai0]} (10.33)
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whereAi,ols = (X
0
iXi)

−1(X0
iYi) and tr indicates the trace of the matrix. Suppose g(Ai0,Ai) ∝

|Ai0|ki . Then the posterior for Ai0 and αi = vec(Ai) has the same form as the likelihood
and

g(Ai0|y) ∝ |Ai0|T exp{−0.5tr[(Yi −XiAi,ols)
0(Yi −XiAi,ols)A0i0Ai0]} (10.34)

g(αi|Ai0, y) ∼ N(αi,ols, (A0i0Ai0)−1 ⊗ (X0
iXi)

−1) (10.35)

where αi,ols = vec(Ai,ols). As before, if Ai0 is the Choleski factor of Σ−1ii and g(Σ−1ii ) ∝
|Σ−1ii |0.5ki , then the posterior for Σ−1ii hasWishart form with parameters ([(Yi−XiAi,ols)

0(Yi−
XiAi,ols)]

−1, T −mi − 1). Hence, one could draw from the posterior of Σ−1ii and use the
Choleski restrictions to draw Ai0. When Ai0 is overidentified, we need to draw Ai0 from
the marginal posterior (10.35), which is of unknown form. To do so one could use, e.g., a
version of the importance sampling algorithm 10.2.

Exercise 10.26 Extend algorithm 10.2 to the case where the VAR has different lags in
different blocks.

Exercise 10.27 Suppose g(Ai) ∼ N(Āi, Σ̄A). Show the form of g(αi|Ai0, y) in this case.

For the case of block exogenous variables with overidentifying restrictions, suppose there
are linear restrictions on Aij0, j > i. This case is different from the previous case since
overidentifying restrictions were placed on Aii0. Define A∗i (`) = Ai0 − Ai(`), i = 1, . . . n
and rewrite the system as Ai0yt = A∗i (`)yt + ²it. Stacking the observations we have

YA0i0 = XiA∗i + ²i (10.36)

whereXi is a T×k∗i matrix including all right hand side variables, k∗i = ki−mi+1−. . .−mn;
A∗i is a k∗i × mi companion matrix of A∗i (`); ²i a T × mi matrix; Y = [Y1, . . . , Yn] is a
T ×m matrix ; Ai0 = {Ai10, . . .Ain0; Aij0 = 0, j < i} is a m ×mi matrix. Let A∗

i,ols =

(X0
iXi)

−1X0
iY and let the prior for (Ai(0),A∗

i ) be non-informative. Letting α
∗
i = vec(A

∗
i ),

the posteriors are:

g(Ai0|y) ∝ |Ai0|T exp{−0.5tr[(Yi −XiA
∗
i,ols)

0(Yi −XiA
∗
i,ols)A0i0Ai0]}

g(α∗i |Ai0, y) ∼ N(α∗i,ols, (Ii ⊗ (X0
iXi)

−1)) (10.37)

Exercise 10.28 Describe how to draw posterior sequences for (α∗i ,Ai0) from (10.37).

We conclude with an example illustrating the techniques described in this section.

Example 10.11 We take monthly US data from 1959:1 to 2003:1 for the log of GDP, the
log of CPI, log of M2, the Federal funds rate and log of commodity prices. We are interested
in the dynamic responses of the first four variables to an identified monetary policy shock
and in knowing how much of the variance of output and inflation is explained by monetary
policy shocks. We use contemporaneous restrictions and overidentify the system by assuming
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that the monetary authority only looks at money when manipulating the Federal funds rate.
Hence, the system has a Choleski form (in the order in which the variables are listed) except
for the (3,1) entry which is set to zero. We assume b00 ∼ N(0, I) and use as importance
sampling a Normal centered at the mode and with dispersion equal to the Hessian at the
mode. We monitor the draws using the importance ratio and find that in only 11 out of
1000 draws the weight given to the draw is large.

The median response and the 68% band for each variable are in figure 10.3. Both output
and money persistently decline in response to an interest rate increase. The response of
prices is initially zero but turns positive and significant after a few quarters - a reminiscence
of what is typically called the ”price puzzle”. Monetary shocks explain 4-18 per cent of the
variance of output at the 20 quarters horizon and only 10-17 per cent of the variance of
prices. One may wonder what moves prices then: it turns out that output shocks explain
45-60 per cent of the variability of prices in the sample.
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Figure 10.3: Median and 68% band for the responses to a US monetary policy shock.
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10.4 Time Varying Coefficients BVARs

Economic time series tend to show evolving features. One could think of these changes as
abrupt and model the switch as a structural break (either in the intercept, in the slope
coefficients or in both). Alternatively, one may suspect that changes are related to some
unobservable state, for example, the business cycle, in which case the coefficients or the
covariance matrix or both could be made a function of a finite order Markov Chain (as
we will do in Chapter 11). Since structural changes are rare but the coefficients tend
evolve continuously one may finally prefer a model with smoothly changing coefficients.
Time varying coefficient models have a long history in applied work going back, at least,
to Cooley and Prescott (1973), and classical estimation methods, ranging from generalized
least square (Swaamy (1970)) to Kalman filtering, are available. Here we treat the law of
motion of the coefficients as the first layer of an hierarchical prior and specify, in a second
layer, the distributions for the parameters of this law of motion.

The model we consider is of the form

yt = At(`)yt−1 +Ctȳt + et et ∼ N(0,Σe) (10.38)

αt = D1αt−1 +D0ᾱ+ vt vt ∼ N(0,Σt) (10.39)

where αt = vec[At(`), Ct] and D0,D1 aremk×mk matrices. (10.39) allows for stationary and
non-stationary behavior in αt. For example, the law of motion of the coefficients displays
reversion towards the mean ᾱ if the roots of D1 are all less than one in absolute value. In
principle, Σt depends on time, therefore imparting conditional heteroschedastic movements
to both the coefficients and the variables of a VAR.

The specification in (10.38)-(10.39) is flexible and can generate a variety of non-linearities
in the conditional moment structure. In fact, substituting (10.39) into (10.38) we have

yt = (Im ⊗Xt)(D1αt−1 +D0ᾱ) + (Im ⊗Xt)vt + et = Xtα
†
t + e

†
t (10.40)

where (Im ⊗ Xt) is the matrix of regressors. Depending on the nature of the Xt and
the relationship between Xt and vt, (10.40) encompasses several specifications used in the
literature. We consider three such cases in the next example.

Example 10.12 Suppose m = 1, that Xt and vt are conditionally independent and that
var(vt) = Σv. Then, yt is conditionally heteroschedastic with mean Xtα

†
t and variance

Σe + X
0
tΣvXt. In addition, if Xt includes lagged dependent variables and a constant and

(vt|Xt) ∼ N(0,Σv), then (10.40) generates a conditionally normal ARMA-ARCH structure.
Finally, if Xt includes latent variables or variables which are not perfectly predictable at t,
then yt is non-Gaussian and heteroschedastic (as in Clark’s (1973) mixture model).

Exercise 10.29 i) Suppose m = 1, Xt = (X1t, X2t) and assume X1t is correlated with vt.
Show that (10.40) produces a version of the bilinear model of Granger and Anderson (1978).
ii) Suppose vt = v1t+v2t, where v1t is independent of Xt and v2t and has covariance matrix
Σ1, and v2t is perfectly correlated with Xt. Show that (10.38)- (10.39) can generate a model
with features similar to an ARCH-M model (see Engle, Lilien and Robbins (1987)).
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(10.38)-(10.39) also include, as a special case, Hamilton’s (1989) two-state shift model.

Exercise 10.30 Suppose ∆yt = a0+a1κt+∆yct where κt = (1−p2)+(p1+p2−1)κt−1+ext ,
ext is a binomial random variable and ∆y

c
t = A(`)∆y

c
t−1+ect. Cast such a model into a TVC

framework (Hint: Find its state space format and match coefficients with (10.38)-(10.39)).

The model can also generate non-normalities in yt. Typically, such a feature is produced
when Xt is a latent variable. However, even when Xt includes only observable variables,
et and vt are independently distributed and vt and Xt conditionally independent, (10.38)-
(10.39) can generate non-normalities. To see this set m = 1 and define êt+τ = (Dτ+11 αt−1+
D0ᾱ

Pτ
j=0D1

j)0(Xt+τ−Et−1Xt+τ )+(
Pτ−1
j=0 D1

τ−jvt+j)0Xt+τ−Et−1(
Pτ−1
j=0 D1

τ−jvt+j)0Xt+τ )+
v0t+τXt+τ + et+τ .

Exercise 10.31 Show that, for fixed t and all τ , Et−1yt+τ = (Dτ+11 αt−1 +D0ᾱ
Pτ
j=0D1

j)0

Et−1Xt+τ+Et−1(
Pτ−1
j=0 D1

τ−jvt+j)0Xt+τ ; vart−1yt+τ = Et−1(êt+τ )2; skt−1(yt+τ ) = Et−1(êt+τ )3

(vart−1yt+τ )
3
2
;

ktt−1(yt+τ ) = Et−1(êt+τ )4

(vart−1yt+τ )2
where skt−1 and ktt−1 are the conditional skewness and kurtosis

coefficients. Show that for τ = 0, skt−1(yt) = 0, ktt−1(yt) = 3, i.e. yt is conditionally
normal.

For τ = 1 the conditional mean of yt+1 is nonlinear and equal to Et−1(α0t+1Xt+1) =
(D21αt−1+D0(I+D1)ᾱ)0Et−1Xt+1+Et−1v0tD1Xt+1 whereEt−1Xt+1 = [Et−1yt, yt−1, . . . yt−`+1],
while its conditional variance isEt−1((D12αt−1+D0ᾱ(1+D1))0(Xt+1−Et−1Xt+1)+(v0tD10Xt+1−
Et−1v0tD10Xt+1)+v0t+1Xt+1+et+1)2. Note that (Xt+1−Et−1Xt+1)0 = [e†t , 0, . . . , 0] and that
((v0tD10Xt+1) − Et−1(v0tD10Xt+1)) involves, among other things, terms of the form v0tD10et.
Hence, even when vt and et are normal and independent, yt+1 is conditionally non-normal
because the prediction errors involve the product of normal random variables. The above
argument holds for any τ ≥ 1.

10.4.1 Minnesota style prior

If (10.38) is the model for the data and (10.39) the first layer for the prior, we need to
specify ᾱ, the evolution of Σt and the form of D1 and D0. For example, we could use:

D1 = φ0 I, D0 = I −D1 (10.41)

ᾱij` = 1 if i = j, ` = 1 (10.42)

ᾱij` = 0 otherwise (10.43)

Σt = σtΣ0 (10.44)

Σ0ij` = φ1
h1(i, j)

h2(`)
(
σj
σi
)2 h1(i, i) = 1 (10.45)

Σ0ij` = φ1φ4 if exogenous (10.46)

where σt = φt3+φ2
1−φt−1

3
1−φ3

. As in the basic Minnesota prior we assume that Σe is fixed, but

there is no conceptual difficulty in assuming, e.g., a Wishart prior for Σ−1e .
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With (10.41) the law of motion of the coefficients has a first order autoregressive struc-
ture with decay toward the mean. φ0 controls the speed of the decay: for φ0 = 0 the
coefficients are random around ᾱ and for φ0 = 1 they are random walks. Higher order pro-
cesses can be obtained by substituting the identity matrix in (10.41) with an appropriate
matrix. The prior mean and the prior variance for the time zero coefficients are identical
to those of the basic Minnesota prior except that we allow a general pattern of weights
for different variables in different equations via the function h1(i, j). The variance of the
innovation in the coefficients evolves linearly. The nature of time variations can be clearly
understood using: Σt = V0Σ0+ V1Σt−1, which has the same structure as the law of motion
of the coefficients, and which reduces to the expression in (10.44) if V0 = φ2×I, V1 = φ3×I.
For φ3 = 0 the coefficients are time varying but no heteroschedasticity is allowed, while for
φ2 = 0 the variance of the coefficients is geometrically related to Σ0. Finally, if φ2 = φ3 = 0,
time variations and heteroschedasticity are absent.

Empirical Bayes methods can be employed to estimate the hyperparameters φ on a train-
ing sample of data going from (−τ, 0). As usual, the predictive density can be constructed
and evaluated numerically using the Kalman filter.

Exercise 10.32 Write down the predictive density for the TVC-VAR model. Specify ex-
actly how to use the Kalman filter to numerically maximize the predictive density.

Posterior inference can be conducted conditional on the estimates of φ, i.e., we use
g(α|y, φ̂ML−II) ∝ f(y|α)g(α|φ̂ML−II) in place of g(α|y). Note that while the full posterior
averages over all possible values of φ, the empirical-Bayes posterior uses ML-II estimates.
Clearly, if f(y|φ) is flat in the hyperparameter space, differences will be minor.

Example 10.13 Continuing with example 10.5, we add time variations to the coefficients
of the BVAR and forecast inflation using the same style of Minnesota prior outlined above,
but set φ3 = 0. We use a simplex algorithm to maximize the predictive density with respect
to φ’s. The optimal values are φ0 = 0.98, φ1 = 0.11,φ2 = 0.1e − 8,φ4 = 1000, while
h1(i, j) = 0.4 ∀i, j, h2(`) = `0.4. The Theil-U statistics one year ahead are 0.93 for the
sample 1996:1-2000:4 and 0.89 for the sample 1991:1-1995:4 (the posterior standard error
is 0.03 in both cases). Therefore, time variations in the coefficients appear to be important
in forecasting Italian inflation. However, time variations in the variance hardly matter. In
fact, setting φ2 = 0, the Theil-U are 0.95 and 0.90, respectively.

Exercise 10.33 (Ciccarelli and Rebucci) Suppose y1t = A11(`)y1t−1 + y2tA12 and y2t =
A22(`)y1t−1 + vt and suppose a researcher estimates y1t = A(`)y1t−1 + et.
i) Show that Aols(`) is biased unless A22(`) = 0.
ii) Consider the approximating model y1t = A(`)y1t−1 + Ac(`)y1t−1 + et where Ac(`) =
A22(`)A12 and et = vtA12. Clearly, the estimated model sets A

c(`) = 0, otherwise perfect
collinearity would result. Suppose α = vec(Ac(`), A(`)) ∼ N(ᾱ, Σ̄α) where ᾱ = (0, ᾱ2) and
Σ̄α = diag[Σ̄α1 , Σ̄α2 ]. Show that g(α|y) ∼ N(α̃, Σ̃α). Show the form of α̃, Σ̃α. In particular,
show that, in the formula for the posterior mean, the OLS estimator receives less weight
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than in standard problems. Show that the posterior for Ac(`) is centered away from zero to
correct for the skewness produced by omitting a set of regressors. How would your answer
change if coefficients are functions of time?

10.4.2 Hierarchical prior

A BVAR with time varying coefficients is a state space model where the coefficients (vari-
ances) play the role of the unobservable states. Full hierarchical estimation of such models
do not present difficulties once it is understood that time-varying and time invariant features
can be jointly estimated. The Gibbs sampling is particularly useful for this purpose.

Here we consider a simple version of the model (10.38)-(10.39) and leave the discussion
of a more complicated setup to a later section. The specification we employ has the form:

yt = Xtαt + et et ∼ N(0,Σe)
αt = D1αt−1 + vt vt ∼ N(0,Σa) (10.47)

where Xt = (Im ⊗ Xt). We assume that D1 is known and discuss in an exercise how to
estimate it, in the case it is not. Posterior draws from the distribution of the unknown
parameters (Σe,Σa) and of the unobserved state {αt}Tt=1 can be obtained with the Gibbs
sampler. Let αt = (α0, . . . ,αt), yt = (y0, . . . , yt). To use the Gibbs sampler we need three
conditional posteriors: (Σa|yt,αt,Σe), (Σe|yt,αt,Σa) and (αt|yt,Σe,Σa).

Suppose that g(Σ−1e ,Σ−1a ) = g(Σ−1e )g(Σ−1a ) and that each is Wishart with ν̄0 and ν̄1
degrees of freedom and scale matrices Σ̄e, Σ̄a, respectively. Then, since et, vt are normal

(Σ−1e |yt,αt,Σ−1a ) ∼W(ν̄0 + T, (Σ̄−1e +
X
t

(yt −Xtαt)(yt −Xtαt)0)−1)

(Σ−1a |yt,αt,Σ−1e ) ∼W(ν̄1 + T, (Σ̄−1a +
X
t

(αt −D1αt−1)(αt −D1αt−1)0)−1)

To obtain the conditional posterior of αt notice that g(αt|yt,Σe,Σa) = g(αt|yt,Σe,Σa)
g(αt−1|yt,αt,Σe,Σa) · · · g(α0|yt,α1,Σ, V ). Therefore, a sequence αt can be obtained draw-
ing each element from the corresponding conditional posterior while αt is drawn from the
marginal g(αt|yt,Σe,Σa). Let αtτ = (ατ , . . . ,αt) and ytτ = (yτ , . . . , yt). Then

g(ατ |yt,αtτ+1,Σe,Σa) ∝ g(ατ |yτ ,Σe,Σa)g(ατ+1|yτ ,ατ ,Σe,Σa)
× f(ytτ+1,α

t
τ+1|yτ ,ατ ,ατ+1,Σe,Σa)

= g(ατ |yτ ,Σe,Σa)g(ατ+1|ατ ,Σe,Σa) (10.48)

The first two terms involve posterior distributions obtained with data up to τ and the last
term the distribution of the data and the coefficients from τ+1 until t. The last line follows
from the fact that ατ is independent of y

t
τ+1,α

t
τ+1, conditional on (y

τ ,Σe,Σa). It is immedi-
ate to recognize that the two densities in (10.48) can be computed from the smoothing and
the predictive equations of the Kalman filter (see chapter 6). Let αt|t ≡ E(αt|yt,Σe,Σa) =
αt|t−1 + Kt(yt − Xtαt|t−1); Σt|t ≡ var(αt|yt,Σa,Σe) = (I − KtXt)Σt|t−1 where αt|t−1 =
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D1αt−1|t−1, Kt = Σt|t−1X 0
t(XtΣt|t−1X 0

t + Σe)
−1, and Σt|t−1 ≡ var(αt|yt−1,Σe,Σa) =

D1Σt−1|t−1D01+Σa. Using the linearity of the model and the Gaussian structure of (10.47),
g(ατ |yτ ,Σe,Σa) is normal with mean ατ |τ and variance Στ |τ , while g(ατ+1|yτ ,ατ ,Σe,Σa)
is normal with mean D1ατ and variance Σa. Therefore, given a prior for α0, all conditional
densities are Gaussian and to keep track of these distributions we only need to update
conditional means and variances. Hence, to draw samples from g(αt|yt,Σ,Σa) we use the
following:

Algorithm 10.3

1) Run the Kalman filter, save αt|t, Σt = Σt|t −MtΣt+1|tM0
t, and Mt = Σt|tΣ−1t+1|t.

2) Draw αlt ∼ N(αt|t,Σt|t), αlt−j ∼ N(αt−j|t−j +Mt−j(αlt−j+1 − αt−j|t−j),Σt−j), j ≥ 1.
3) Repeat l = 1, . . . L times

It is straightforward to allow for an unknown D1 and a time-varying Σa.

Exercise 10.34 Assume that D1 is unknown and assume a normal prior on its nonzero
elements i.e. D01 ∼ N(D̄1, σ̄2D1

). Show that g(D01|αt, yt,Σe,Σa) ∼ N((α0t−1Σ−1a αt−1 + σ−2D1
)−1

(α0t−1Σ−1a αt + σ
−2
D1
D̄1); (α0t−1Σ−1a αt−1 + σ

−2
D1
)−1).

Exercise 10.35 Let Σat = σtΣa. How would you construct the conditional posterior dis-
tribution for Σat? (Hint: treat σt as a parameter and assume a conjugate prior).

The next extension is useful to compute the likelihood of DSGE models which are not
linearized around the steady state.

Exercise 10.36 (Non-linear state space models) Consider the state space model:

yt = f1t(αt) + et et ∼ N(0,Σe)
αt = f2t(αt−1) + vt vt ∼ N(0,Σa) (10.49)

where f1t and f2t are given but perhaps depend on unknown parameters. Show that
(αt|αj 6=t,Σe,Σa, yt) ∝ h1(αt)h2(αt)N(f2t(αt−1),Σa) where h1(αt) = exp{−0.5(αt+1−f2t(αt))0
Σ−1a (αt+1 − f2t(αt))}; h2(αt) = exp{−0.5(yt − f1t(αt))0Σ−1e (yt − f1t(αt))}. Describe how to
use an acceptance sampling algorithm to draw from this posterior distribution.

Finally, we consider the case of non-normal errors. While for macroeconomic data the as-
sumption of normality is, by and large, appropriate, for robustness purposes it may be useful
to allow for non-normalities. As noted, the conditional moments of (10.47) are nonlinear for
τ ≥ 1. To generate non-normalities, when τ = 0, it is sufficient to add a nuisance parameter
φ5 to the variance of the error term, i.e., (αt|αt−1,φ5,Σa) ∼ N(D1αt−1,φ5Σa) where g(φ5)
is chosen to mimic a distribution of interest. For example, suppose that φ5 is exponentially
distributed with mean equal to 2. Since g(αt|αt−1,Σa,φ5) is normal with mean D1αt−1 and
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variance φ5Σa; g(φ5|yt,αt,Σa) ∝
q

1
φ5
exp{−0.5[φ5+(αt−D1αt−1)0φ−15 Σ−1a (αt−D1αt−1)]}

which is the kernel of the generalized inverse Gaussian distribution. A similar approach can
be used to model non-normalities in the measurement equation.

Exercise 10.37 Suppose (yt|αt, xt,φ6,Σe) ∼ N(xtαt,φ6Σe) and that g(φ6) is exp(2). Show
the form of the conditional posterior for φ6. Describe how to draw sequences for φ6.

Exercise 10.38 Let yt = xtαt, t = 1, . . . T where conditional on xt α
0
t = (α1t, . . .αkt)is

iid with mean ᾱ and variance Σ̄α, |Σ̄α| 6= 0. Assume that ᾱ and Σ̄α are known and let
α = (α1, . . . ,αt).
i) Show that the minimum MSE estimator of α is α̃ = (IT ⊗ Σ̄α)x0Ω−1y + (ITk − (IT ⊗
Σ̄α)x

0Ω−1x)(1⊗ ᾱ) where Ω = x(IT ⊗Σα)x0,x = diag(x01, . . . x0t) and 1 = [1, . . . , 1]0.
ii) Show that if ᾱ = α0+va, va ∼ (0,Σā) and Σā is known, the best minimum MSE estimator
of ᾱ equals (x0Ω−1x+ Σ−1ā )−1(x0Ω−1y + Σ

−1
ā α0). Show that as Σā → ∞ the optimal MSE

estimator is the GLS estimator.

Exercise 10.39 (Cooley and Prescott) Let yt = xtαt where xt is a 1×k vector; αt = αPt +
et; α

P
t = α

P
t−1+vt where et ∼ (0, (1−%)σ2Σe), vt ∼ (0, %σ2Σv) and assume Σe, Σv known.

Here % represents the speed of adjustment of αt to structural changes (for %→ 1 permanent
changes are large relative to transitory ones). Let y = [y1, . . . , yT ]

0, x = [x1, . . . , xT ]0 and
αp = (αp1t, . . . ,α

p
kt)

0.
i) Show that the model is equivalent to yt = x

0
tα
P
t + ²t; ²t ∼ (0,σ2Ω(%)). Display Ω(%).

ii) Show that, conditional on %, the minimum MSE estimators for (αp,σ2) are αpML(%) =
(x0Ω(%)−1x)−1 (x0Ω(%)−1y) and σ2ML(%) =

1
T (y−xαpML(%))0Ω(%)−1(y−xαpML(%)). Describe

a way to maximize the concentrated likelihood as a function of %.
iii) Obtain posterior estimators for (α, %,σ2) when g(α, %,σ2) is non-informative. Set up a
Gibbs sampler algorithm to compute the joint posterior of the three parameters.

10.5 Panel VAR models

We have extensively discussed macro panel data in chapter 8. Therefore, the focus of this
section is narrow. Our attention centers on three problems. First, how to specify Bayesian
univariate dynamic panels. Second, how to dynamically group units in the cross section.
Third, how to setup panel VAR models with cross sectional interdependencies. Univariate
dynamic panels emerge, for example, when estimating steady state income per-capita, or
when examining the short and long run effects of oil shocks on output across countries.
Grouping is particularly useful, for example, if one is interested in knowing if there are
countries which react differently than others after e.g. financial crises. Finally, models with
interdependencies are useful to study a variety of transmission issues across countries or
sectors which can not be dealt with the models of chapter 8.
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10.5.1 Univariate dynamic panels

For i = 1, . . . n, the model we consider is:

yit = A1i(`)yit−1 + ȳi +A2i(`)Yt + eit eit ∼ (0,σ2i ) (10.50)

where Aji(`) = Aji1`+ . . .+Ajiqj`
qj j = 1, 2 and ȳi is the unit specific fixed effect. Here Yt

includes variables which account for cross sectional interdependencies. For example, if yit
are regional sales, one element of Yt could be a national business cycle indicator. Because
variables like Yt are included, E(eitejτ ) = 0 ∀i 6= j, all t, τ . We can calculate a number of
statistics from (10.50). For example, long run multipliers to shocks are (1−A1i(1))−1 and
long run multipliers to changes in Yt are (1−A1i(1))−1A2i(1).

Example 10.14 Let yit be output in Latin American country i and let Yt = (x1t, it), where
it is US interest rate. Suppose it = A3(`)²t. Then (1 −A1i(`)−1A2i(`)A3(`) traces out the
effect of unitary US interest rate shock at t on the output of country i from t on.

Stacking the T observations for (yit, Yt, eit) and the fixed effect into the vectors (yi, Y, ei,1),
lettingXi = (yi, Y,1), Σi = σ

2
i×IT , α = [A1, . . . An]0, Ai = (A1i1, . . . , Aiq1 , ȳi, A1i1, . . . , A2iq2)

and setting y = (y1, . . . yn)
0, e = (e1, . . . , en)0:

y = (In ⊗Xi)α+ e e ∼ (0,Σi ⊗ In) (10.51)

Clearly, (10.51) has the same format as a VAR, except that Xi are unit specific and the
covariance matrix of the shocks has a diagonal heteroschedastic structure. The first feature
is due to the fact that we do not allow for interdependencies across units. The latter is easy
to deal with once (10.51) is transformed so that the innovations have spherical disturbances.

If e is normal, the likelihood function of a univariate dynamic panel is therefore the
product of a normal for α, conditional on Σi ⊗ In, and n Gamma densities for Σ−1i . Since
the variance of e is diagonal, αML can be obtained equation by equation.

Exercise 10.40 Show that αML obtained from (10.51) is the same as the estimator ob-
tained by stacking weighted least square estimators obtained from (10.50) for each i.

Conjugate priors for dynamic panels are similar to those described in section 10.2. Since
var(e) is diagonal, we can choose σ−2i ∼ G(a1, a2), each i. Given the panel framework we
can use the exchangeability assumption if, a-priori, we expect the Ai to be similar across
units. An exchangeable prior on Ai takes the form Ai ∼ N(Ā, σ̄2A) where σ̄2A measures the
degree of heterogeneity an investigator expects to find in the cross section.

Exercise 10.41 (Lindlay and Smith) Suppose the model (10.50) has k coefficients in each
equation and that Ai = Ā+ vi, i = 1, . . . n, vi ∼ N(0, σ̄2A), where Ā, σ̄2A are known. Show
the form of the posterior mean for Ai. Assuming that σ

2
i is fixed, show the form of the

posterior variance for Ai. Argue that the posterior mean for the stacked vector of Ai is the
same as the one obtained by calculating the posterior mean for the system (10.51).
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Exercise 10.41 highlights the importance of exchangeable priors in a model like (10.51).
In fact, exchangeability preserves independence across equations and the posterior mean of
the coefficients of a dynamic panel can be computed equation by equation.

Exercise 10.42 (Canova and Marcet) Suppose you want to set up an exchangeable prior
on the difference of the coefficients across equations, i.e. αi − αj ∼ N(0,Σa). This is
advantageous since there is no need to specify the prior mean ᾱ. Show the structure of Σa
which insures that the ordering of the units in the cross section does not matter.

We already mentioned the pooling dilemma in section 4 of Chapter 8. We return to this
problem in the next exercise which gives conditions under which the posterior distribution
for Ai reflects prior, pooled and/or single unit sample information.

Exercise 10.43 (Zellner and Hong) Let yi = xiαi + ei, i = 1, . . . n where xi may include
lags of yit and for each i, yi is a T × 1 vector, xi a T × k vector and αi a k × 1 vector and
ei ∼ iid N(0,σ2e). Assume that αi = ᾱ+ vi, where vi ∼ iid N(0,κ−1σ2vIk) with 0 < κ ≤∞.
(i) Show that a conditional point estimate for α = (α01, . . . ,α0N )

0 is the Nk × 1 vector
α̃ = (x0x + κInk)−1(x0xαols + κIαp) where x = blockdiag{xi}; αols = (x0x)−1(x0y); y =
(y01, . . . , y0N)

0, αols = (α01,ols, . . .α
0
N,ols)

0, αi,ols = (x0ixi)−1(x0iyi), I = (Ik, . . . Ik), αp =

(
P
i x
0
ixi)

−1 (
P
i x
0
ixiαi,ols). Conclude that α̃ is a weighted average of individual OLS esti-

mates and of the pooled estimate αp. Show that, as κ→∞, α̃ = αp.
(ii) (g-prior) Assume that vi ∼ iid N(0, (x0ixi)−1σ2v). Show that α̃1i = (αi,ols+

σ2
e
σ2
v
ᾱ)/(1+ σ2

e
σ2
v
)

Conclude that α̃1i is a weighted average of the OLS estimate and the prior mean ᾱ.

(iii) Show that if g(ᾱ) is non-informative, α̃2i = (αi,ols+
σ2
e
σ2
v
αp)/(1+

σ2
e
σ2
v
). Conclude that, as

σ2
e
σ2
v
→∞, α̃i = αp and, as σ2

e
σ2
v
→ 0, α̃i = αi,ols.

Next we describe how dynamic univariate panels can be used to estimate the steady state
distribution of income per-capita and of the convergence rates in a panel of EU regions.

Example 10.15 Here A1i(`) has only one non-zero element (the first one), Yt is the aver-
age EU GDP per-capita and A2ij = 1 if j = 0 and zero otherwise. Hence (10.50) is:

ln(
yit
Yt
) = ȳi +Ai ln(

yit−1
Yt−1

) + eit eit ∼ N(0,σ2i ) (10.52)

We let αi = (ȳi, Ai) and assume αi = ᾱ+ vi, where vi ∼ N(0,σ2aI).
We treat σ2i as known (and estimate it from invidual OLS regressions), assume ᾱ known

(estimated averaging individual OLS estimates) and treat σ̄2a as fixed. Let
σ2
i

σ2
aj

, j = 1, 2 mea-

sures the relative importance of prior and sample information: if this ratio goes to infinity
sample information does not matter; viceversa, if it is close to zero, prior information is

irrelevant. We choose a relative loose prior (
σ2
i

σ2
aj

= 0.5, j = 1, 2). Using income per-capita
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Figure 10.4: Cross sectional distributions.

for 144 EU regions from 1980 to 1996 we calculate the relative steady state for unit i using

S̃Si = ˜̄yi
1−ÃTi
1−Ãi + Ã

T+1
i

yi0
Y0
where ˜̄yi, Ãi are posterior mean estimates. The rate of conver-

gence to the steady state is C̃V i = 1 − Ãi (If Ã > 1, we set C̃V = 0). We plot the cross
sectional distribution of C̃V and S̃S in figure 10.4. The mode of the convergence rate is
0.09, implying much faster catch up than the literature has found (see e.g. Barro and Sala
(1995)). The highest 95% credible set is however large (it goes from 0.03 to 0.55). The cross
sectional distribution of relative steady states has at least two modes: one at low relative
levels of income and one just below the EU average.

At times, when the panel is short, one wishes to use cross-sectional information to
get better estimates of the parameters of each unit. In other cases, one is interested in
estimating the average cross sectional effect. In both situations, the tools of Meta analysis
come handy.

Example 10.16 Continuing with example 10.15, suppose g(SSi) ∼ N(S̄S,σ2SS) where
σSS = 0.4 and assume g(S̄S) ∝ 1. Using the logic of hierarchical models, g(S̄S|y) combines
prior and data information and g(SSi|y) combines unit specific and pooled information. The
posterior mean for S̄S is -0.14 indicating that the distribution is highly skewed to the left,
the variance is 0.083 and a credible 95 percent interval is (-0.30, 0.02). Since a credible 95
percent posterior interval for SSi is (-0.51, 0.19), this posterior distribution largely overlaps
with the one in figure 10.4.
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10.5.2 Endogenous grouping

There are many situations when one would like to know whether there are groups in the
cross section of a dynamic panel. For example, one type of growth theory predicts the
existence of convergence clubs, where clubs are defined by similarities in the features of the
various economies or government policies. In monetary economics, one is typically inter-
ested in knowing whether regional economies respond differently to union wide monetary
policy disturbances or whether the behavioral responses of certain groups of agents (credit
constrained vs. credit unconstrained consumers, large vs. small firms, etc.) can be identi-
fied. In general, these classifications are exogenously chosen (see for example, Gertler and
Gilchrist (1991)) and somewhat arbitrary.

In this subsection we describe a procedure which simultaneously allows for endogenous
grouping of cross sectional units and for Bayesian estimation of the parameters of the model.
The basic idea is simple: if units i and i0 belong to a group, the vector of coefficients will
have the same mean and the same dispersion but if the don’t, the vector of coefficients of
the two units will have different moments.

Let n be the size of the cross section, T the size of the time series, and O = 1, 2, . . . n! the
ordering of the units of the cross section (the ordering producing a group is unknown). We
assume there could be ψ = 1, 2, . . . , ψ̄ break points, ψ̄ given. For each group j = 1, . . . ,ψ+1
and each unit i = 1, . . . , nj(O)

yit = ȳi +A1i(`)yit−1 +A2i(`)Yt−1 + eit eit ∼ (0,σ2ei) (10.53)

αji = ᾱj + vji vji ∼ (0, Σ̄j) (10.54)

where αi = [ȳi, A1i1, . . . , A1iq1 , A2i1, . . . , , A2iq2]
0 is the ki × 1 vector of coefficients of unit

i, ki = q1 + q2 + 1, n
j(O) is the number of units in group j, given the O-th ordering,P

j n
j(O) = n, for each O. In (10.54), αi is random but the coefficients of the nj(O)

units belonging to group j have the same mean and same covariance matrix. Since the
exchangeable structure may differ across groups, (10.53)-(10.54) capture the idea that there
may be clustering of units within groups but that groups may drift apart.

The alternative to (10.53)-(10.54) is a model with homogeneous dynamics in the cross
section, that is ψ̄ = 0, and an exchangeable structure for all units of the cross section, i.e.

αi = ᾱ+ vi i = 1, . . . , n vi ∼ (0, Σ̄i) (10.55)

Let Y be a (nTm)× 1 the vector of left hand side variables in (10.53) ordered to have
the n cross sections for each t = 1, . . . T, m times, X be a (nTm) × (nk) matrix of the
regressors, α be a (nk)× 1 vector of coefficients, E a (nTm)× 1 vector of disturbances, ᾱ a
(ψ+ 1)k× 1 vector of means of α, A be a (nk)× (ψ+ 1)k matrix, A = diag{Aj}, where Aj
has the form 1⊗ Ik where Ik is a k× k identity matrix and 1 is a nj(O)× 1 vector of ones.
Given an ordering O, the number of groups ψ, and the location of the break point hj(O),
we can rewrite (10.53)− (10.54) as:

Y = Xα+E E ∼ (0,ΣE) (10.56)

α = Ξᾱ+ V V ∼ (0,ΣV ) (10.57)



Methods for Applied Macro Research 10: Bayesian VARs 385

where ΣE is (nTm)× (nTm) and ΣV = diag{Σi} is a (nk)× (nk) matrix and Ξ is a matrix
of zeros and ones. To complete the specification we need priors for (ᾱ,ΣE,ΣV ) and for
the submodel characteristics M, indexed by (O, ψ, hj(O)). Since the calculation of the
posterior distribution is complicated, we take an Empirical Bayes approach.

The approach to group units proceeds in three steps. Given (ᾱ, ΣE , ΣV ,O), we examine
how many groups are present. Given O and ψ̂, we check for the location of the break points.
Finally we iterate on the first two steps, altering O. The selected submodel is the one that
maximizes the predictive density over orderings O, groups ψ, and break points hj(O).

Let f(Y |H0) be the predictive density of the data under cross sectional homogeneity.
Furthermore, let Iψ be the set of possible break points when there are ψ groups. Let
f(Y j|Hψ, hj(O),O) be the predictive density for group j, under the assumption that there
are ψ break points with location hj(O), using ordering O and let f(Y |Hψ, hj(O),O) =Qψ+1
j=1 f(Y

j |Hψ, hj(O),O). Define the quantities

• f−(Y |Hψ,O) ≡ suphj(O)∈Iψ f(Y |Hψ, hj(O),O),
• f †(Y |Hψ) ≡ supO f−(Y |Hψ,O),
• f0(Y |Hψ,O) ≡

P
hj(O)∈Iψ g

j
i (O)f(Y |Hψ, hj(O),O),

where gji (O) is the prior probability that there is a break at location hj(O) for group j of
ordering O. f− gives the maximized predictive density with respect to the location of break
points, for each ψ and O; f† the maximized predictive density, for each ψ, once the location
of the break point and the ordering of the data are chosen optimally. f0 gives the average
predictive density with ψ breaks where the average is calculated over all possible locations
of the break points, using the prior probability that there is a break point in each location
as weight. We choose gji (O) to be uniform over each (j,O) and set ψ̄ <<p(N/2).

Examining the hypothesis that the dynamics of the cross section are group-based, given
O, is equivalent to verifying the hypothesis that there are ψ breaks against the null of no
breaks. Such an hypothesis can be examined with a Posterior odds ratio:

PO(O) =
g0f(Y |H0)P

ψ gψf
0(Y |Hψ,O)J1(n) (10.58)

where g0 (gψ) is the prior probability that there are 0 (ψ) breaks. Verification of the
hypothesis that there are ψ − 1 vs. ψ breaks in the cross section can be done using:

PO(O,ψ − 1) =
gψ−1f0(ψ−1)(Y |Hψ−1,O)
gψf0(ψ)(Y |Hψ,O)J2(n)

(10.59)

Here Ji(n), i = 1, 2 are penalty functions which account for the fact that a model with ψ
breaks is more densely parametrized than a model with a smaller number of breaks. Once
the number of break points has been found (say, equal to ψ̂), we assign units to groups so
as to provide the highest total predictive density, i.e. compute f−(Y |Hψ̂,O). Since there
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are O possible permutations of the cross section over which to search for groups the optimal
permutation rule of units in the cross section is the one which achieves f†(Y |Hψ̂).

Two interesting questions which emerge are the following. Can we proceed sequentially
to test for breaks? Bai (1997) shows that such a procedure produces consistent estimates
of the number and the locations of the breaks. However, when there are multiple groups,
the estimated break point is consistent for any of the existing break points and its location
depends on the ”strength” of the break. Second, how can we maximize the predictive density
over O when n is large? When no information on the ordering of the units is available and n
is moderately large, the approach is computationally demanding. Geographical, economic
or sociopolitical factors may help to provide a restricted set of ordering worth examining.
But even when economic theory is silent, the maximization does not require n! evaluations,
since many orderings give the same predictive density.

Example 10.17 Suppose n=4, so there are n!=24 possible orderings to examine. Suppose
the initial ordering is 1234 and two groups are found: 1 and 234. Then all permutations
of 234 with unit 1 coming ahead, i.e. 1243, 1342, etc., give the same predictive density.
Similarly permutations which leave unit 1 last need not be examined, i.e. 2341, 2431, etc.
This reduces the number of ordering to be examined to 13. By trying another ordering, say
4213, and finding, for example, two groups: 42 and 13, we can further eliminate all the
orderings which rotate the elements of each group, i.e. 4132, 2341, etc.. It is easy to verify
that once four carefully selected ordering have been tried and, say, two groups found in each
trial, we have exhausted all possible combinations.

Once the submodel characteristics have been determined, we can estimate [ᾱ0, vech(ΣE)0,
vech(ΣV )

0]0 using f†(Y |Hψ). For example, if eit’s and vi are normally distributed,

ˆ̄α
j
=

1

nj(O)
nj(O)X
i=1

αji,ols

Σ̂j =
1

nj(O)− 1
nj(O)X
i=1

(αji,ols − ˆ̄αj)(αji,ols − ˆ̄αj)0 −
1

nj(O)
nj(O)X
i=1

(xix
0
i)
−1σ̂2i

σ̂2i =
1

T − k (y
0
iyi − y0ixiαi,ols) (10.60)

where xi is the matrix of regressors and yi the vector of dependent variables for unit i
and αji,ols is the OLS estimator of α

j obtained using the information for unit i (in group
j = 1, . . . ,ψ + 1). Then an Empirical Bayes posterior point estimate for the α vector is
α̃ = (X 0Σ̂−1E X + Σ̂−1V )

−1(X 0Σ̂−1E Y + Σ̂
−1
V Aˆ̄α). Alternatively, if the eit’s and the vi’s are

normal and g(a0,ΣE ,ΣV ) is diffuse, we can jointly estimate (ᾱ
j ,Σj,σ2i ) and the posterior

mean for α as follows:

ˆ̄α
j
=

1

nj(O)
nj(O)X
i=1

(α∗i )
j
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Σ̂j =
1

nj(O)− k − 1 [δ ∗ I +
nj(O)X
i=1

((α∗i )
j − ˆ̄αj)((α∗i )j − ˆ̄αj)0]

σ̂2i =
1

T + 2
(yi − xiα∗i )0(yi − xiα∗i )

(α∗i )
j = (

1

σ̂2i
x0ixi + Σ̂

−1
j )

−1(
1

σ̂2i
x0ixiαi,ols + Σ̂

−1
j
ˆ̄α
j
) (10.61)

j = 1, . . . ,ψ + 1; i = 1, . . . , nj(O); and δ > 0 but small insures that Σ̂j is positive definite.

Exercise 10.44 Derive (10.60) and (10.61).

Example 10.18 (Convergence clubs). The cross sectional posterior distribution of steady
states in example 10.15 shows a multimodal shape. One may therefore be interested in
knowing whether there are convergence clubs in the data and where the break point is.
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Figure 10.5: Convergence clubs.

We examined several ordering of cross sectional units based on initial income conditions,
growth patterns or geographical characteristics. The one which is optimal orders units using
the initial conditions of relative income per-capita. With this ordering, we set ψ̄ = 4 and
sequentially examine ψ against ψ + 1 breaks starting from ψ = 0. There are up to three
breaks in the data with PO ratios of 0.06. 0.52, 0.66 respectively. Conditioning on one



388

break (ψ = 1) we plot in the first panel of figure 10.5 the marginal predictive density as a
function of the break point, together with the predictive density for ψ = 0. Visual inspection
indicates that the former is always above the latter and that units up to 23 belong to the
first group and from 24 to 144 to the second. The average convergence rates of the two
groups are 0.78 and 0.20, suggesting faster convergence to below- average steady states in
the first group. The second panel of figure 10.5 suggests that the posterior distributions of
the steady states for the two groups are distinct. Not surprisingly, the first 23 units are all
poor, Mediterranean and peripheral regions of the EU.

10.5.3 Panel VARs with interdependencies

Neither the panel VAR model studied in chapter 8 nor the specification we have considered
so far allow for cross units lagged feedbacks. This may be important e.g. when one is
interested in the transmission of shocks across countries. A panel VAR model with inter-
dependencies has the form:

yit = A1it(`)yt +A2it(`)Yt + eit (10.62)

where i = 1, ..., n; t = 1, ..., T ; yit is a m1 × 1 vector for each i, yt = (y01t, y02t, . . . y0nt)0,
Aj1it are m1 × (nm1) matrices and Aj2it are m1 ×m2 matrices for each j; Yt is a m2 × 1
vector of exogenous variables, common to all i, eit is a m1 × 1 vector of disturbances and,
for convenience, we have omitted constants and other deterministic components. In (10.62)
cross-unit lagged interdependencies appear whenever Aj1it,i0 6= 0, for i0 6= i and some j, that
is, when the matrix of lagged coefficients is not block diagonal at all lags. The presence of
lagged cross unit interdependencies adds flexibility to the specification but it is not costless:
the number of coefficients is greatly increased (there are k = nm1q1 +m2q2 coefficients in
each equation). In (10.62) we allow coefficients to vary over time.

To construct posterior distributions for the unknowns, rewrite (10.62) as:

Yt = Xtαt +Et Et ∼ N (0,ΣE) (10.63)

where Xt = (Inm⊗Xt); Xt=(y
0
t−1, y0t−2, . . . , y0t−q1

, Y 0t , . . . , Y 0t−q2
); αt = (α

0
1t, . . . ,α

0
nt)

0 and
αit = (α

10
it , . . . ,α

m10
it )

0. Here αjit are k × 1 vectors containing the coefficients for equation j
of unit i, while Yt and Et are nm× 1 vectors containing the endogenous variables and the
random disturbances.

Whenever αt varies with cross—sectional units in different time periods, it is impossible
to employ classical methods to estimate it. Two short cuts are typically used: either it is
assumed that the coefficient vector does not depend on the unit (apart from a time invariant
fixed effect), or that there are no interdependencies (see e.g. Holtz Eakin et al. (1988) or
Binder et al (2001)). Neither of these assumptions is appealing in our context. Instead, we
assume that αt can be factored as:

αt = Ξ1θ
1
t + Ξ2θ

2
t +

FX
f=3

Ξfθ
f
t (10.64)
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where Ξ1 is a vector of ones of dimensions nmk × 1; Ξ2 is a matrix of ones and zeros of
dimensions nmk × n, and Ξf are conformable matrices. Here θ2t is an n× 1 vector of unit
specific factors (the fixed effect), θ1t is the common factor and θ

f
t is a set of factors which,

in principle, is indexed by the unit i, the variable j, the lag or combinations of all of the
above.

Example 10.19 In a two variable, two lag, two country model with Yt = 0, (10.64) implies

αi,j,s,`t = θ1t + θ
2i
t + θ

3j
t + θ

4s
t + θ

5`
t (10.65)

where θ1t is a common factor, θ
2
t = (θ

21
t , θ

22
t )

0 is a 2× 1 vector of country specific factors,
θ3t = (θ31t , θ

32
t )

0 is a 2 × 1 vector of equation specific factors, θ4st = (θ41t , θ
42
t )

0 is a 2 × 1
vector of variable specific factors, θ5`t = (θ

51
t , θ

52
t )

0 is a 2× 1 vector of lag specific factors.

All factors in (10.64) are allowed to be time varying; in fact, time invariant structures
can be obtained via restrictions on the law of motion of the θt. Also, while the factorization
in (10.64) is exact, in practice only a few factors will be specified: in that case all the
omitted factors will be aggregated into an error term v1t. Note also that with (10.64) the
over-parametrization of the original model is dramatically reduced because the nmk × 1
vector αt depends on a much lower dimensional vector of factors.

Let θt = [θ1t , (θ
2
t )
0, (θ3t )0, . . . , (θ

f1
t )

0, f1 < F ] and write (10.64) as

αt = Ξθt + v1t v1t ∼ N(0,ΣE ⊗ΣV ) (10.66)

where Ξ = [Ξ1, Ξ2, . . . ,Ξf1 ] and V is a k × k matrix. We assume a hierarchical structure
on θt which allows for time variations and exchangeability:

θt = (I −D1) θ̄ +D1θt−1 + v2t v2t ∼ N (0,Σv2t) (10.67)

θ̄ = D0θ0 + v3 v3 ∼ N(0,Σv3) (10.68)

We set ΣV = σ
2
vIk and, as in section 10.4, we let Σv2t = φ3 ∗ Σv2t−1 + φ2 ∗ Σ0 where Σ0 =

diag(Σ01,Σ02, . . .Σ0,f1). We assume that vit, i = 1, 2, 3 and Et are mutually independent
and that (σ2v ,φ3,φ2,D1,D0) are known. Here D0 a matrix which restricts (part of the)
means of the factors of the coefficients via an exchangeable prior.

To sum up, the prior for αt has a multi-step hierarchical structure: with (10.66) we
make a large number of coefficients depend on a smaller number of factors. The factors are
then allowed to have a general evolving structure (equation (10.67)) and the prior mean of
e.g. unit specific factors is potentially linked across units (equation (10.68)). The variance
of the innovations in θt is allowed to be time varying to account for heteroschedasticity
and other generic volatility clustering that are unit specific or common across units. To
complete the specification we need to provide prior densities for (Σ−1E , θ0, σ

−2
v , Σ

−1
0 , Σ

−1
v3
).

Canova and Ciccarelli (2002) study both informative and uninformative priors. Here we
consider a special case of the non-informative framework they use.
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Since αt is a nmk× 1 vector, the derivation of its posterior distribution with numerical
methods is computationally demanding when m or n are large. To avoid problems rewrite
the model as

yt = XtΞθt + et

θt = (I −D1) θ̄ +D1θt−1 + v2t
θ̄ = D0θ0 + v3t (10.69)

where et = Et +Xtv1t has covariance matrix σtΣE = (1+ σ
2X 0

tXt)ΣE. In (10.69) we have
integrated αt out of the model so that θt becomes the vector of parameters of interest.

We assume Σo1 = φ1, Σ0i = φi ∗ I, i = 2, . . . , f1, where φi controls the tightness of fac-
tor i of the coefficient vector. Furthermore assume that: g(Σ−1E ,σ

−2, θ0,σ−2v ,Σv3 ,φi) =
g(Σ−1E )g(σ

−2)g(σ−2v )g(θ0,Σv3)
Q
i g(φi) where g(Σ

−1
E ) is W(ν̄1, Σ̄

−1
1 ); g(σ

−2 ∝ constant;

g(σ−2v ) ∝ σ−2v ; g(θ0,Σv3) ∝ Σ−(ν̄2+1)/2
v3 where ν̄2 = 1+N+

Pm1
j=1 dim(θ

f
j,t), f > 1 and g(φi) ∝

(φi)
−1; and the hyperparameters Σ̄1, ν̄1 are assumed to be known or estimable from the data.

The assumptions made imply that the prior for et has the form (et|σt) ∼ N (0,σtΣE), and
σ−2t is Gamma distributed so that et is distributed as a multivariate t centered at 0, with
scale matrix which depends on ΣE and degrees of freedom equal to dim(Xt). Since the likeli-

hood of the data is proportional to
³QT

t=1 σi

´−Nm/2 |ΣE |−T/2 exp h−12Pt (yt −XtΞθt)0 (σtΣE)−1 (yt −XtΞθt)
i
,

it is easy to derive the conditional posteriors of the unknowns since the prior is conjugate.
In fact, conditional on the other parameters, Σ−1E is Wishart, σ−2t is a Gamma, θ0 is Normal,
Σ−1v3

is Wishart and φ−1i is Gamma distributed.

Exercise 10.45 Derive the parameters of the posterior of Σ−1E , σ
−1
t , Σ

−1
v3
, φ−1i and θ0.

Finally, the conditional posterior distribution of (θ1, .., θT | yT ,ψ−θt) can be obtained
with the Kalman filter/ smoother as described in section 10.4. With these conditional, the
Gibbs sampler can be used to draw a sequence of parameters from the joint posterior.

10.5.4 Indicators

The panel VAR (10.63) with the hierarchical prior (10.66)- (10.68) provides a framework to
recursively construct coincident/leading indicators. In fact, the first equation in (10.69) is

yt =

f1X
f=1

Xf,tθ
f
t + et (10.70)

where Xft = XtΞf . In (10.70) yt depends on a common time index X1t, on a n×1 vector of
unit specific indices X2t, and of a set of indices which depend on variables, lags, units, etc.
These indices are particular combinations of lags of the VAR variables, while θjt measure the
impact that different linear combinations of the lags of the right hand side variables have
on the current endogenous variables. Hence, it is possible to construct leading indicators



Methods for Applied Macro Research 10: Bayesian VARs 391

directly from the VAR, without any preliminary distinction between leading, coincident
and lagging variables. Also, because the model is recursive, both single-step and multi-step
leading indicators can be obtained from the posterior for θt. Finally, fan charts can be
constructed using the predictive density of future observations and the output of the Gibbs
sampler.

Example 10.20 Suppose we are interested in a model featuring a common, a unit specific
and a variable specific indicator. Given (10.70), a leading indicator for yt based on the
common information available at time t− 1 is CLIt = X1tθ1t|t−1; a vector of leading indica-
tors based on the common and unit specific information is CULIt = X1tθ

1
t|t−1 +X2tθ

2
t|t−1;

a vector of indicators based on the common and variable specific information is CV LIt =
X1tθ

1
t|t−1 +X3tθ

3
t|t−1; and vector of indicators based on the common, unit specific and vari-

able specific information is CUV LIt = X1tθ
1
t|t−1 +X2tθ

2
t|t−1 +X3tθ

3
t|t−1.

While we have derived (10.70) using a prior on the panel VAR, one may want to start the
investigation directly from (10.70). In this case, a researcher may be interested in assessing
how many indices are necessary to capture the heterogeneities in the coefficients across
time, units and variables. We can use Bayes factors to make this choice. A model with i

indices is preferable to a model with i + 1 indices, i = 1, 2, . . . , f1 − 1, if f(yt+τ |Mi)
f(yt+τ |Mi+1)

> 1

where f(yt+τ |Mi) =
R
f(yt+τ |θt,i,Mi)g(θt,i|Mi)dθt,i is the predictive density of a model

with i indices for yt+τ = [yt+1, . . . , yt+τ ], g(θt,i|Mi) is the prior for θ in model i and
f(Y t+τ |θt,i,Mi) the density of future data, given θt,i andMi. The predictive density for
future yt+τ in model i can be computed with the output of the Gibbs sampler. To do so,
draw θlt from the posterior distribution, construct forecast ylt+τ and prediction errors for
each τ and average across draws.

10.5.5 Impulse responses

Impulse responses for the model can be computed as posterior revisions of the forecast errors.
Since the model is non-linear, forecasts for the vector of endogenous variables may change
because the innovations in the model or the innovations in the coefficients are different
from zero. Furthermore, because of time variations, revisions depend on the history and
the point in time where they are computed.

To see this set Yt = 0, rewrite (10.63) as Yt = AtYt−1 + Et and let αt = vec(A1t) where
A1t are the first m1 rows of At. Iterating τ times we have

yt+τ = S(
τ−1Y
s=0

At+τ−s)Yt +
τ−1X
i=0

A∗i,t+τ et+τ−i (10.71)

where S = [I, 0, .., 0] and A∗i,t+τ = S(
Qi−1
s=0At+τ−s)S0; A∗0,t+τ = I . Using (10.67) into (10.66)

and iterating gives

αt+τ = Ξθt+τ + v1t+τ = ΞDτ+11 θt−1 + Ξ
τX
i=1

Di1(I −D1)θ̄ + Ξ
τX
i=1

Di1v2t+τ−i + v1t+τ
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(10.72)

Define responses at step j, given information at t and terminal horizon τ as Revt,j(τ) =
Et+jYt+τ −EtYt+τ , ∀τ ≥ j + 1. Using Etyt+τ = SEt(

Qτ−1
s=0 At+τ−s)Yt, we have that

Revt,j(τ) =

j−1X
s=0

(Et+jA∗τ−j+s,t+τ )et+j−s+S[Et+j(
τ−j−1Y
s=0

At+τ−s)
τ−1Y
s=τ−j

At+τ−s−Et(
τ−1Y
s=0

At+τ−s)]Yt

(10.73)
From (10.73) it is clear that forecast revisions can occur because new information present in
the innovations of the model, et, or of the coefficients, v2t, alter previous forecasts of Yt+τ .

Example 10.21 In equation (10.73) take j = 1, τ = 2. Then Revt,1(2) = Et+1Yt+2 −
EtYt+2 = Et+1

¡
A∗1,t+2

¢
et+1+S [Et+1 (At+2)At+1 −Et (At+2At+1)]Yt. Similarly, j = 2, k =

3, imply Revt,2(3) = Et+2Yt+3−EtYt+3 =
P1
s=0

¡
Et+2A∗1+s,t+3

¢
et+2−s+S[Et+2 (At+3)At+2At+1

−Et (At+3At+2At+1)]Yt where
P1
s=0

¡
Et+2A∗1+s,t+3

¢
et+2−s =

SEt+2 (At+3)S0et+2 + SEt+2 (At+3)At+2S0et+1. Hence, changes in Yt+3 due to innovations
of the model are SEt+2 (At+3)S0et+2+SEt+2 (At+3)At+2S0et+1 and due to innovations in the
coefficients are S[Et+2 (At+3)At+2At+1 −Et (At+3At+2At+1)]Yt. Clearly, responses depend
on the time when they are generated (e.g. t vs. t+ 1) and the history of yt.

The output of the Gibbs sampler can be used to compute the expressions appearing in
(10.73). Conditioning on At, assuming that et 6= 0 and that all future innovations in both
coefficients and variables are integrated out, Revt,j(τ) can be computed as follows:

Algorithm 10.4

1) Draw (et+1, . . . , et+j) and (At+1, . . . ,At+j) from the posterior distribution L+ 1 times.

2) For each draw l = 2, . . . L+ 1, compute Â∗li,j =
Qj
s=0Alt+τ−s. Average it Â∗li,j over l.

3) For each draw l = 2, . . . , L+ 1, compute êt+τ =
PL+1
l=2 e

l
t+τ , τ > 1.

4) Given Yt, (elt+j, Alt+j) from 1), Â∗li,j from 2), êt+τ from 3), compute Revt,j(τ ).

Example 10.22 We use a VAR model for G-7 countries with GDP growth, inflation, em-
ployment growth and the real exchange rate for each country and three indices: a 2 × 1
vector of common factors - one for EU and one for non-EU countries, a 7 × 1 vector of
country specific factors and a 4× 1 vector of variable specific factors.

We assume time variations in the factors, use non-informative priors on the hyperpa-
rameters but do not impose exchangeability. Figure 10.6 presents 68% bands for the CUVLI
indicator for EU GDP growth and inflation, constructed recursively using information avail-
able one year in advance. Actual values of EU GDP growth and inflation are superimposed.
The model predicts the ups and downs of both series reasonably well using one year ahead
information. The Theil-U statistics over the 1996:1-2000:4 and 1991:1-1995:4 sample are
0.87 and 0.66, respectively, much lower than those obtained with a single country VAR
(1.25, 1.06) or with a univariate AR (1.04, 0.97).
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Figure 10.6: One year ahead 68% prediction bands, EU
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