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We analyze the coordination problem of agents deciding to join a group that uses
membership revenues to provide a discrete public good and excludable benefits. The public
good and the benefits are jointly produced, so that benefits are valued only if the group
succeeds in providing the public good. With asymmetric information about the cost of
provision, the static membership game admits a unique equilibrium and we characterize
the optimal membership fee. We show that heterogeneity in valuations for the excludable
benefits is always detrimental to the group. However, in a dynamic contest in which
heterogeneity arises endogenously (returning members receive additional seniority benefits
at the expense of junior members), we show that, in the ex-ante optimal contract, offering
seniority benefits is beneficial for the group, despite the heterogeneity in valuations
created.
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1. Introduction

The National Association Study shows the mean and median membership size of US voluntary associations are 27,575 and
750, respectively, suggesting that, although not many, very large associations exist. Examples are environmentalist groups
like the National Wildlife Federation (NWF), or the World Wildlife Fund (WWF), professional and business groups like
the American Farm Bureau Federation (AFBF), citizens’ groups like the American Association of Retired People (AARP), and
trade unions.1 The main activity of these associations is lobbying for public policy, and their financial resources mostly
derive from due-paying members (Knoke, 1988, and Walker, 1983). Since the benefits of lobbying (environmental legislation,
farm subsidies, tax reliefs, minimum wage laws) are largely non-excludable to non-members, all these groups are able to
overcome a severe free-rider problem.

The existence of large voluntary associations can be explained if the group provides selective incentives: goods and ser-
vices excludable to non-members (Olson, 1965). These benefits can generate utility directly—e.g., publications, information
services, insurance policies, legal advice, advocacy—or they can acquire value through social interaction, as for reputation or
peer pressure.2 Interestingly, the value attached to excludable incentives is often correlated with success of the association
in providing a collective good. For example, as in the case of discounts, the value of selective benefits may be directly related
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to the size of the association: larger groups can negotiate better terms with vendors. At the same time, membership size is
a critical factor in the group’s success in its lobbying efforts. Moreover, success of environmental protection projects—a pub-
lic good—may enhance the quality of organized hiking and animal watching activities by members—a selective incentive
(King and Walker, 1992). As a result, strategic complementarities in joining decisions may arise, i.e., the more people join
the association, the higher the value of being a member, a well-known observation. However, models with strategic com-
plementarities are often associated with multiple “extreme” equilibria (i.e., either nobody joins or everybody joins), which
are not particularly interesting, not responsive to fundamentals, and not suited to analyze questions of optimal design of a
membership contract.

To solve the multiplicity problem, we present a natural application of the global game approach (Carlsson and van
Damme, 1993, and Morris and Shin, 2000) to a membership game with strategic complementarities. We study the decision
of agents to join a group that uses membership revenues to provide a discrete public good and excludable benefits, in the
presence of asymmetric information about the cost of providing the public good. We assume the public good and selective
incentives are jointly produced, so that excludable benefits acquire value only if the group is successful in securing enough
revenue to cover the provision cost of the public good (Cornes and Sandler, 1984, 1986, 1994). This approach captures a
fundamental characteristic of the incentives packages we observe in reality, and uncovers the coordination problem agents
face, since their payoff of joining displays strategic complementarities.

The membership game admits a unique equilibrium, with very intuitive comparative statics. Moreover, despite the pres-
ence of positive externalities in membership and asymmetric information, finding the optimal membership fee reduces to
solving a simple monopoly pricing problem. Our first contribution shows that, in a static context, an increase in heterogene-
ity among prospective members is always detrimental for the group. To demonstrate this, we first characterize the unique
equilibrium of the membership game with two categories of agents: those with high valuation for selective incentives, and
those with low valuation. We then consider a mean-preserving spread of valuations, and show such an increase in het-
erogeneity decreases equilibrium size, the optimal membership fee, and ultimately the probability of success of the group.
This results follows from low-valuation agents responding in larger numbers to the perturbation than high-valuation agents
thus reducing the group’s total revenue, because low-valuation agents face greater strategic uncertainty. They must rely on
a larger proportion of agents joining and they must believe the group more likely to succeed than high-valuation agents
do, to be willing to pay the same cost of membership. Therefore, because benefits are valued only in case of success, low-
valuation members are more affected by the mean preserving spread, coeteris paribus. The negative externality imposed by
low-valuation agents lowers the incentive to join for all potential members.

Our second contribution is to show that in a dynamic context some form of heterogeneity may in fact be beneficial
for the group. For example, a common practice by citizens groups is the preferential assignment of resources to returning
members in the form of seniority benefits.3 This practice is a choice of the organization’s management that endogenously
creates heterogeneity among potential members, and it appears surprising and potentially counterproductive in light of our
previous result and of the received wisdom on the disadvantages of heterogeneity. To investigate the effects of seniority
benefits, we analyze a simple two-period version of the model. The first-period game is our initial membership game
with homogeneous agents. In the second-period, heterogeneity arises endogenously: returning members receive additional
“seniority” benefits at the expense of junior members. This implies the extra-benefit senior members receive decreases in
first-period membership and, as a result, payoffs are not monotonic in membership. In this context, we prove existence
and uniqueness of equilibrium in monotone strategies, that is when more favorable information implies that each agent is
more likely to join. More importantly, when the group maximizes a weighted sum of the probabilities of success in the
two periods, we characterize the ex-ante optimal membership contract, we show that offering seniority benefits is always
optimal, and we prove the optimal level of seniority benefits increases when asymmetries in information among agents
become small.

The sharp difference in the effects of heterogeneity between the static and the dynamic models arises because in the
dynamic model the role played by seniority benefits is twofold. On the one hand, seniority benefits always increase the value
of first-period membership. On the other hand, they introduce heterogeneity between second-period prospective members.
Offering seniority benefits is always optimal because, when the level of seniority benefits is zero, the negative marginal
effect on second-period membership turns out to be zero. In fact, in this case, agents are homogeneous in the second
period, and both junior and senior members face the same strategic uncertainty. Therefore, they respond in the same way
to the introduction of heterogeneity, and the overall marginal effect on second-period membership is zero.

Three strands of literature are related to our work. First, Cornes and Sandler (1984, 1986, 1994) analyze an impure public
good model in which the purchase of an intermediate good makes available, through a joint production function, both a
public good and a private characteristic. Strategic complementarities may arise in this framework. However, the issue of
coordination among agents is not directly addressed.

Second, relevant papers with dynamic applications of global games include Dasgupta (2007), Heidhues and Melissas
(2006), Giannitsaru and Toxvaerd (2004), and Goldstein and Pauzner (2004). Heidhues and Melissas (2006) focus on cohort
effects, while Dasgupta (2007) focuses on social learning. In both papers, contrary to our paper, the decision to contribute

3 A typical seniority benefit is the practice of reserving office positions to returning members (see Moe, 1980). In the case of citizens’ groups like
Common Cause, where about a third of the members report that they have politicial aspirations (see Rothenberg, 1988), the value of seniority benefits is
clearly related to the success of the group in its lobbying effort.
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is once and for all, therefore there is no heterogeneity among agents that can take an action in any one period. Giannitsaru
and Toxvaerd (2004) prove uniqueness of equilibrium under the assumption of strict supermodularity of the payoff of taking
an action at time t + 1 with respect to the number of agents that took the action in t . Since in our model this assumption
is violated, their results do not apply.4 The closest work is Goldstein and Pauzner (2004). Indeed, their proof of uniqueness
of equilibrium with heterogeneous agents applies in our model as well. Their goal is to explain contagion of financial crises
across countries. They investigate a “first-order” perturbation where, following an earlier crisis in one country, one set of
agents becomes poorer and more risk-averse, and hence more likely to run in a second country. On the contrary, in our
analysis of heterogeneity we investigate a “second-order” perturbation, where the rewards to the risky action increases for
one set of agents, and decreases for the others. Moreover, our perturbation changes the utility of joining directly, not its
argument. One may effectively consider agents to be risk-neutral in our analysis of heterogeneity.

Third, regarding the effect of heterogeneity on membership decisions, the closest paper is Alesina and La Ferrara (2000).
In a static model, they show homogeneity within a community leads to higher participation in social activities. In their
model membership is costless, group size has no effect on individual utility, and individuals have an exogenous preference
for homogeneity within a social group.

The remainder of the paper is organized as follows. Section 2 presents the basic structure of the static model and
contains our results on the effect of heterogeneity on the equilibrium group size. Section 3 contains a dynamic version of
the model in which heterogeneity emerges endogenously. Finally, in Section 4 we relate our theoretical results with some
empirical observations and conclude.

2. The model

Consider a continuum of agents of size 1. They decide independently and simultaneously whether or not to join a group.
Let k > 0 be the cost of membership and e ∈ [0,1] be the proportion of agents joining the group.5 The group’s total revenues
ke are used as an input in a binary production function f (ke, θ). If total revenues are above a threshold θ , the production
function jointly generates an amount G of a pure public good, and an amount x of a non-rival club good that agents enjoy
only if they are members. Henceforth, we say that the group is successful when ke � θ . Otherwise, G = x = 0. Formally,

f (ke, θ) =
{

(x, G) if ke � θ ,

(0,0) otherwise.

Let ui(x, G) denote agent i’s value for the club good and the public good. We assume ui increasing in both arguments,
and we normalize ui(0,0) to 0. Finally, we assume money enters linearly in agents’ utility functions. Payoffs can then be
represented in the following table:

Join Not join

“success”, ke � θ ui(x, G) − k ui(0, G)

“failure”, ke < θ −k 0

What determines i’s decision is the expected net utility from joining: bi Pr(ke � θ)−k, where bi is the difference between
the utility of joining and the utility of not joining, conditional on success: bi = ui(x, G) − ui(0, G). We assume success in
providing a public good is a by-product of the operation of selective incentives: it is not the reason for joining but it is a
consequence of members joining. Although one criticism to this argument is that a competing firm, not burdened by the
cost of producing the public good, can offer just the private benefit at a lower price, we believe that establishing a brand
name through success in providing the public good gives the association some monopoly power over the private good.6

Moreover, notice that, for our purposes, excludability of selective benefits does not need to be absolute, just partial. Our
specification of f (ke, θ) above is a convenient way to formalize the idea that the value of selective benefits that are offered
by citizens’ associations is often tied to the success of the association in providing the public good, through the standard
notion of joint-production.7

Consider first the case where all agents are homogeneous, that is bi = b, and assume b > k to rule out the uninteresting
case where joining the group is a dominated strategy. The value of the threshold θ is not observable, it is drawn from a
uniform distribution on [θ, θ], and each agent i receives a signal θi of the realization of θ . In particular, we assume that

4 A violation of supermodularity appears in Goldstein and Pauzner (2005) as well.
5 In assuming a continuum of agents we follow the literature, and ignore the technical issues discussed in Judd (1985) and Feldman and Gilles (1985).
6 For example, many groups offer free advertising space on the group’s magazine to members, see Moe (1980). A survey in Walker (1983) shows virtually

every group in a sample of 206 citizen associations offers some kind of publication, which is considered one of the most important benefit by members.
7 Another relevant specification for the success of a groups is simply group size: lobbying activity may be carried out through the coordinated grassroot

efforts of members. Our model can encompass such situation with k = 1. In this case, bi is a normalized benefit to cost ratio of becoming a member. Our
results on heterogeneity are qualitatively unaffected.
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θi = θ + εi , where εi is a noise drawn from a uniform distribution on [−ε, ε] independent across agents, and independent
of θ .8 We also assume that ε is “small” with respect to the support of θ , namely θ < −2ε, and θ > b + 2ε.

The expected net utility from joining conditional on having received signal θi is

b Pr(ke � θ |θi) − k, (1)

where now e represents individual i’s belief about the proportion of agents joining the group, conditional on θi . This game
admits a unique equilibrium in which players follow a cutoff strategy around θb , i.e., they join the group if θi < θb and stay
out otherwise. The uniqueness result derives from iterated deletion of strictly dominated strategies, it follows Morris and
Shin (2000, 2002) and Goldstein and Pauzner (2004), and therefore we omit a proof. Note that for the first round of deletion
we need regions of the signal space where, for sufficiently unfavorable (favorable) signals, staying out (joining) is a strictly
dominant strategy. Indeed, when e = 1, i.e., under the most optimistic belief about the group, (1) is strictly negative for any
θi � θ − ε > b + ε > k. Likewise, under the most pessimistic belief about the group, i.e., for e = 0, (1) is strictly positive for
any θi � θ + ε < −ε < 0. To characterize the equilibrium cutoff θb , we first define the critical state θ∗ as the highest value
of the threshold cost θ for which the group is successful, or

k Pr
(
θi � θb

∣∣θ = θ∗) = θ∗, (2)

and Eq. (2) further implies that θ∗ is the total revenue for the group conditional on state θ∗ (k times membership condi-
tional on θ∗). Using Eq. (1) and the definition of θ∗ , since in equilibrium type θb must be indifferent between joining and
staying out, the equilibrium values of θ∗ and θb must satisfy (2) and

b Pr
(
θ � θ∗∣∣θi = θb) = k, (3)

where Pr(θ � θ∗|θi = θb) is the probability of success perceived by the indifferent type.
The dominance regions described above imply that θb ∈ (θ + ε, θ − ε) and therefore, conditional on θi = θb , the distri-

bution of θ is uniform on [θb − ε, θb + ε]. In turn, θ∗ ∈ [θb − ε, θb + ε], for (3) to admit a solution. Simple algebra then
yields

Pr
(
θi � θb

∣∣θ = θ∗) = 1 − k

b
, (4)

in equilibrium. After substituting (4) in (2), we obtain

θ∗ = k

(
1 − k

b

)
, θb = θ∗ + ε

(
1 − 2k

b

)
. (5)

The equilibrium value of θb − θ∗ is determined by the last term in (5), it may be positive or negative, and it captures the
fact that joiners pay the membership fee k for sure, and receive the benefit b only with some probability. The relationship
between θb − θ∗ and k is rather intuitive. When joining is relatively inexpensive (k → 0), an agent needs a relatively small
probability of success and expected benefit of joining to be indifferent between actions. Indeed, (5) implies that when k is
small, θb is larger than θ∗ and, since the posterior probability distribution of θ conditional on θi = θb is centered around θb ,
the probability of success perceived by θb is smaller than 1/2. The opposite occurs when joining is relatively expensive
(k → b). In light of this, we can interpret the difference between θ∗ and θb as a measure of the strategic uncertainty agents
are willing to bear in equilibrium.

So far we have assumed that the membership fee k is exogenous, we now analyze the problem of finding the optimal
membership fee. Typically, in standard global games, the threshold for success depends only on the measure of agents taking
the risky action. In our model, θ∗ depends on the total amount of financial resources raised by the group. When k goes to
zero, θ∗ converges to zero because per-capita payments are zero. When k goes to b, θ∗ converges to zero because agents
find it very risky to join, and equilibrium membership conditional on θ = θ∗ in (4) approaches zero. The maximum θ∗
obtains for a level of k that balances out the positive effect on per-capita payment and the negative effect on membership.
A graphical illustration, similar to the textbook analysis of a one-price monopoly with zero marginal cost, is presented in
Fig. 1. The interpretation is that Eq. (4) describes a linear demand curve D , where the fee k is the price, and expected
membership conditional on θ∗ represents the quantity.

Eq. (2) implies that θ∗(k) is the area of the shaded rectangle. Total revenue, conditional on θ = θ∗ , which equals θ∗(k),
is maximized at the midpoint of the demand curve, i.e., for k∗ = b/2, where conditional membership is equal to 1/2. In
equilibrium, the ex-ante expected probability that the group is successful is

V ≡ θ∗(k) − θ

θ − θ
,

and k∗ = b/2 maximizes the probability of success.

8 The assumption of uniform θ allows closed-form solutions, but is not essential for our results, as long as the conditions in Morris and Shin (2000) are
met. Closed-form solutions result also if θ is normally distributed, as in an earlier version of this paper (Barbieri and Mattozzi, 2005). Without asymmetric
information, the game has multiple equilibria with well-known undesirable properties (Goldstein and Pauzner, 2005).
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Fig. 1.

Consider now the ex-ante expected probability of success evaluated at the optimal k∗ , which is

V
(
k∗) ≡

b
4 − θ

θ − θ
= 1

2

b
4 − θ

θ+θ

2 − θ
.

Note that V (k∗) is increasing in b, and it is decreasing in the mean of the cost θ holding its variance constant (i.e., when
the support of θ shifts to the right). By letting Z(k) denote the ex-ante expected size of the group, we have

Z(k) ≡ θb(k) − θ

θ − θ
, (6)

and it is easy to show that k∗∗ = k∗ − ε is the optimal interior membership fee that maximizes Z(k). To see why k∗∗ must
be smaller than k∗ , note that, using (5), Z(k) can be expressed as a linear increasing function of equilibrium conditional
total revenue θ∗(k), and equilibrium conditional membership 1 − k/b. Maximizing Z(k) can then be interpreted as having
a monopoly that maximizes a weighted average of revenue and membership. Therefore, the optimal k will be lower than
the one that maximizes revenue alone. Finally, note that Z(k∗∗), i.e., the ex-ante expected size of the group evaluated at the
optimal k∗∗ , displays analogous comparative statics properties to those of V (k∗).

2.1. Heterogeneous agents

We now consider a population heterogeneous with respect to the benefits from joining. We assume the population
is divided into two classes: for a fraction p ∈ (0,1) of the population, bi is equal to J , while for the remaining (1 − p)

it is equal to S . Moreover, assume that S � b � J > k and, to save notation, let α ≡ pS + (1 − p) J . Our simple form of
heterogeneity describes a situation where an exogenous proportion of agents receives more value from the selective benefit
given the same level of public good. Our objective is to explore the effect of increasing heterogeneity in the population on
the equilibrium probability of providing the public good, the equilibrium size of the group, and the optimal fee.

Similarly to the homogeneous benefit case, we can show that a unique equilibrium exists. Players with benefit J (S)

follow a cutoff strategy around θ J (θ S ), i.e., they join the group if θi < θ J (θi < θ S ) and stay out otherwise. Proposition 1
characterizes the equilibrium cutoffs.

Proposition 1. An equilibrium of the membership game exists and it is unique. In equilibrium

θ∗ = k

(
1 − k

α

J S

)
, θ J = θ∗ − 2ε

(
k

J
− 1

2

)
, θ S = θ∗ − 2ε

(
k

S
− 1

2

)
. (7)

Proof. Existence and uniqueness follow by Proposition 1 in Goldstein and Pauzner (2004). The characterization is simi-
lar to the homogeneous case. The critical state θ∗ is determined as conditional revenue, or k times average conditional
membership:

θ∗ = k
(

p Pr
(
θi � θ J

∣∣θ = θ∗) + (1 − p)Pr
(
θi � θ S

∣∣θ = θ∗)). (8)
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Fig. 2.

Moreover, in such a cutoff equilibrium, the indifferent type in class S , θ S , will satisfy

S Pr
(
θ � θ∗∣∣θi = θ S) = k, (9)

and the indifferent type θ J will satisfy

J Pr
(
θ � θ∗∣∣θi = θ J ) = k. (10)

The existence of strict dominance regions implies all conditional distributions above are uniform. Therefore, (9) and (10)
and a few algebraic passages deliver that the equilibrium average membership conditional on θ∗ in (8) is

p Pr
(
θi � θ J

∣∣θ = θ∗) + (1 − p)Pr
(
θi � θ S

∣∣θ = θ∗) = 1 − kα/( J S). (11)

The expression for θ∗, θ J and θ S in (7) then follow from (8) and recursive substitutions in (9) and (10). �
The analysis of the optimal k is analogous to the homogeneous population case: the level of k that maximizes the

probability of success of the group is k∗
het = J S/2α, while the level of k that maximizes the size of the group is k∗∗

het =
k∗

het − ε.9

We now investigate the equilibrium effects of increasing heterogeneity among agents when k is set at the value that
maximizes the probability of success of the group.10 In particular, we increase the net payoff of the 1 − p agents in class S
by � and we decrease it for the remaining p agents by �(1 − p)/p. This spread holds constant the population mean net
payoff. We obtain the following result:

Proposition 2. Increased heterogeneity in the form of a mean preserving spread in net payoffs decreases the equilibrium probability
of success, the ex-ante size of the group, and the optimal fee charged.

We leave the complete proof to Appendix A and outline the argument here. Fig. 2 provides an illustration of the intuition
behind this result using the same monopoly analogy as before. In Fig. 2 we depict the demand curve in the homogeneous
case, D , derived from Eq. (4), and the demand curve in the heterogeneous case, Dhet , derived from Eq. (11). To provide
meaningful comparisons between the results of homogeneous and heterogeneous cases, we are assuming S = b + � and
J = b − �(1 − p)/p, to maintain the population mean net payoff constant at b.

The important observation is that Dhet is smaller than D for the relevant range k < J , and the larger �, the smaller Dhet .
Since monopoly revenue is maximized at the fee that makes conditional membership equal to 1/2, the optimal fee k∗

het is
lower than k∗ . Moreover, the conditional revenue and the level of θ∗ (see Fig. 1) are smaller on Dhet , and so is the ex-ante
expected membership. To show that Dhet is indeed smaller than D , we have to prove that, for S > J > k, membership
conditional on θ∗ , is smaller after the mean preserving spread. Consider first p = 1/2, so that S increases to S + �, and J

9 With the provision that parameter values are such that the resulting optimal k is indeed smaller than J , so that the group caters to both kind of agents.
A sufficient condition is J > S/2, as the proof of Proposition 2 establishes.
10 The results are similar if we instead consider the fee that maximizes the size of the group.
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Fig. 3.

decreases to J − �. Intuitively, two opposing externalities come into play. Class S ( J ) agents’ net payoff in case of success
increases (decreases), so they should join more (less) often, and by strategic complementarities, all other agents’ should
enter more (less) often. The overall result depends on the relative strength of such externalities. Since we are interested in
membership conditional on θ∗ in (8), what drives the result are the changes in θ J − θ∗ and θ S − θ∗ . The key observation is
that, compared to class-S agents, low-valuation agents face a larger strategic uncertainty: to be willing to pay the same fee,
they must believe the group more likely to succeed. Fig. 3 illustrates this observation using Eqs. (9) and (10). They imply
the areas of the regions ABCD in the top and bottom halves of Fig. 3 must be equal to each other (and to 2εk). Hence, since
S > J , we must have θ∗ − (θ J − ε) > θ∗ − (θ S − ε). Since benefits have value only in case of success, the change in interim
expected payoff for the (formerly) indifferent type θ J is larger than for θ S , i.e., the area of the region EFBC depicted in the
top half of Fig. 3 is strictly larger than the area of the region EFBC depicted in the bottom half. It then follows that class- J
agents react more to the mean preserving spread than class-S agents, that is θ J − θ∗ changes more than θ S − θ∗ in order
to restore (9) and (10), so that Dhet decreases.

Departing from p = 1/2, when p is very small almost all agents are helped by the introduction of heterogeneity. The
reason why Proposition 2 holds for any p ∈ (0,1), relies on the mean-preserving spread condition (1 − p) · dS + p · d J = 0
and on Eq. (8). Together, the two equations imply the sign of the change in θ∗ only depends on the relative magnitude
of d(θ S − θ∗)/dS and d(θ J − θ∗)/d J , and Fig. 3 shows that the latter dominates for any value of p. Indeed, beyond the
case p = 1/2 in which changes in net payoffs conditional on success are ±�, more generally Fig. 3 shows that, because
θ J < θ S , the same change (not necessarily equal to �) in net payoff in case of success (any height EB) has a larger impact
on (θ J − θ∗) than on (θ S − θ∗): |d(θ J − θ∗)/d J | > |d(θ S − θ∗)/dS|. In other words, while it is true that when p is very
small almost all agents benefit from heterogeneity, the few that are hurt are badly hurt, as the mean-preserving spread
condition implies. Therefore, because revenue conditional on θ = θ∗ is linear in the two memberships, with the same
weights of the mean-preserving spread condition, the value of p is irrelevant for the sign of the comparative statics. What
matters is that class-S agents react less than class- J agents to the same change in net payoffs, because class-S agents start
from a larger benefit in case of success (S > J ).11 Finally, note that our results do not crucially depend on the uniform
distribution of errors assumption. The uniform distribution of errors is very convenient, because it implies that conditional
payoffs and conditional membership are in a linear relationship, reducing calculations of conditional expected payoffs to
areas of rectangles, as in Fig. 3. However, this is by no means essential for our results. In particular, the intuition that
agents who receive less value from the selective incentives are subject to larger strategic uncertainty does not hinge on

11 Moreover, this logic implies that, if class- J membership and class-S membership were to change by the same amount in response to the same change
in selective incentives, the effect of the mean-preserving spread on θ∗ would be zero, regardless of the value of p.



224 S. Barbieri, A. Mattozzi / Games and Economic Behavior 67 (2009) 217–232
uniformity of noise. Hence, the fact that class- J agents are more affected by the mean-preserving spread in terms of their
payoff conditional on success would extend to alternative noise structures.12

In the next section we will show that the conclusion that (exogenous) heterogeneity typically hampers participation to
social activities can be reversed when heterogeneity arises endogenously in a dynamic setting.

3. The dynamic model

We consider a two-period dynamic extension of our model to explore the effect of seniority benefits on membership and
retention decisions. In each period t = {1,2} a threshold level θt is drawn, agents observe a noisy signal of the true threshold
and decide whether to pay a membership fee kt to join the group or not. The first period is similar to the homogeneous case
in Section 2: all members receive b when the group is successful. The second period is similar to the heterogeneous case in
Section 2: in case of success returning (Senior) members receive S while new (Junior) members receive J , with S � b � J .
For simplicity, we model seniority benefits as an endogenous mean-preserving spread, that is we assume S(p;�) = b + p�

and J (p;�) = b − (1 − p)�, where (1 − p) is the endogenous fraction of agents who joins in the first period. The difference
S(p;�)− J(p;�) = � � 0 represents the total utility value of seniority benefits, and we assume that it is distributed among
junior and senior members so that the average utility of selective incentives is unchanged: (1 − p)S(p;�) + p J (p;�) = b.

This assumption facilitates the comparison with our results on the exogenous heterogeneity case.13

We assume k1 and � are chosen optimally by the group at the beginning of the game, in order to maximize a weighted
sum of the probabilities of providing the public good in the first and second period. Further, we assume that, at the begin-
ning of the second period, the membership fee k2 is chosen to maximize the probability of success for any realized (1 − p).
While all our results are qualitatively unaffected under reasonable alternative extensive forms, a critical assumption regards
the credibility of committing to the � chosen at the beginning of the game. It is immediate from our previous results
that with no commitment power, that is when the group can revise � in the second period at no cost, the only credible
� is zero. Clearly, some degree of commitment seems both plausible and realistic. Here, for simplicity, we assume perfect
commitment. With such assumption, one rationale for the use of seniority benefits is to effectively bundle admission for
the two periods. Indeed, it is possible to choose � so large that, at the same time, agents do not join in the first period on
the merits of its fundamentals but just not to be excluded in the second period, and the association does not try to obtain
junior members in the second period but only caters to returning members. To avoid such a radical departure from our
earlier framework, along with perfect commitment we confine our analysis to cases where:

A1. b > k1 > �, so that first-period fundamentals are the deciding factor in first-period membership decisions, and
A2. � � b/2, so that the association optimally caters to both junior and senior members in the second period.

Let θ1i = θ1 + εi1, and θ2i = θ2 + εi2 be the signals in the first and second period, respectively, where θ1 and θ2 are
uniformly distributed on [θ, θ], while εi1 and εi2 are uniformly distributed on [−ε, ε]. All these random variables are
assumed to be mutually independent.14 Finally, we assume that at the beginning of the second period agents observe the
proportion of those who joined in the first period (1 − p).

Note that seniority benefits directly increase the value of retaining membership status conditional on reaching the
production threshold. However, given the result of Proposition 2, heterogeneity among agents reduces the probability of
reaching this threshold in the second period. Since these opposite effects spill over to the first period, payoffs may be non-
monotonic in the signal, hence we cannot apply existing results to show existence and uniqueness of an equilibrium.15 In
the next proposition we fix � and k1 and we show that an equilibrium exists and is unique in the space of monotone
strategies, that is when more favorable information implies that each agent is more likely to join in equilibrium.

Proposition 3. Under assumptions A1 and A2, in any subgame following a choice of k1 > 0 and �, if agents use monotone strategies
a unique equilibrium of the dynamic membership game exists. In equilibrium players follow a cutoff strategy around θb

1 (k1;�) in the
first period, the group sets k2 optimally to k∗

2het(p;�) < J (p;�) and, in the second period, players follow a cutoff strategy around

θ S
2 (p;�) if they joined in the first period, and around θ

J
2 (p;�) otherwise.

12 The transmission of changes in conditional payoffs to changes in membership would be different, with different noise structures. However, the two
relationships |d(Pr(θ � θ∗|θi = θ T ))/dT | = |d(Pr(θi � θ T |θ = θ∗))/dT |, for T = J , S , which we obtain from the uniform distribution assumption, are only
sufficient for our results, not necessary.
13 Note that the extra-benefit senior members receive with respect to the first period, that is S(p;�) − b = p�, is decreasing in first-period membership.

This is one way to capture the notion of preferential assignment of limited resources to returning members.
14 If the distributions of the first and second-period states are not independent, the fraction of agents who joins in the first period may convey information

about the realization of the second period state. This information contagion has been already investigated (see, e.g., Dasgupta, 2007).
15 In Giannitsaru and Toxvaerd (2004) uniqueness of an equilibrium is proven in a general class of dynamic global games. However, our problem does not

satisfy their assumption of strict supermodularity of the payoff to joining in the second period with respect to the number of agents that joined in the
first. In our case, we have an inverse relation for senior members.
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The logic of the proof is simple and proceeds by backwards induction. Proposition 1 ensures existence and uniqueness
of an equilibrium in the second period, for any p. The group then chooses the optimal k2 to serve both groups of potential
members, because � � b/2. Moving back to the first period, payoffs to joining have then two components. One is related
to first-period fundamentals, and is identical to the one in the static homogeneous case. The second is related to the ex-
pected difference in equilibrium payoffs between entering as a senior or a junior members in the second period. Restricting
attention to monotone strategies, we show the first effect dominates, so existence and uniqueness of equilibrium (in cutoff
strategies) is preserved.

A natural question to ask is whether offering seniority benefits is ever an optimal strategy and, if this is the case, what
determines the optimal level of �. We let w1 and w2 denote the weights that the group attaches to the probability of
providing the public good in the first and second period, respectively.16 Therefore, the objective function of the group is

W (k1;�) ≡ w1 Pr
(
θ1 < θ∗

1 (k1;�)
) + w2 Eθ1

(
Pr

(
θ2 < θ∗

2 (p,�)
))

, (12)

where θ∗
1 (k1;�) is the threshold below which the group is successful in the first period and θ∗

2 (p,�) is the threshold below
which the group is successful in the second period.17 The number of potential junior members in the second period, p, is
itself a function of the cutoff value θb

1 (k1;�) and of the actual first-period state θ1. Our first result is to establish that not
offering seniority benefits is never optimal for the group. Indeed, denoting the group’s problem as

(M) max
k1,�

W (k1;�)

s.t. A1 and A2

we have the following:

Proposition 4. There exists a unique solution (k∗
1,�

∗) to problem (M). Moreover, �∗ > 0 and k∗
1 > b/2.

Existence and uniqueness follow from continuity and convexity arguments. The proof that �∗ > 0 relies on the following
intuition. The role of seniority benefits is twofold: they directly increase the value of membership in the first period,
and they introduce heterogeneity between prospective members. When � = 0, the marginal effect of seniority benefits
on second-period equilibrium values is zero. Indeed, without seniority benefits, there is no agent that receives a smaller
utility of membership in the second period, i.e., all agents are facing the same strategic uncertainty. Therefore, at � = 0,
the endogenous mean-preserving spread generated by offering some seniority benefits produces marginal effects on junior
and senior members that exactly counterbalance.18 On the contrary, the marginal effect of � on first-period equilibrium
values remains positive at � = 0. Seniority benefits add an extra-term to the payoff of joining in the first period in (1):
the expected value of re-entering as a senior member and receiving S , versus joining as a junior member and receiving J
in the second-period. The difference S − J = � is zero at � = 0, but its derivative remains strictly positive.19 Therefore, at
� = 0 the marginal positive effect of � on first-period equilibrium values dominates the marginal negative effect on the
second-period ones. As for the optimal fee k∗

1, quite intuitively we have that the association charges more than in the static
case of Section 2, that is more than b/2, since membership is more valuable because of seniority benefits. It is worth noting
that the optimal �∗ is non-negative even when membership fees are exogenously fixed. Hence, the result that offering
seniority benefits is optimal obtains as well for the interpretation of our model where success is determined only by the
size of the association.

Assumptions A1 and A2’s main role is to focus attention on the region of the parameter space that is most relevant,
in light of our comparison between the effects of heterogeneity in the exogenous-static and endogenous-dynamic cases. In
particular, our main result in this section (Proposition 4) is the reversal of the implication of Proposition 2 that � = 0 is best
for the group. Our objective is to establish this reversal with as little departure as possible from our previous framework.
Assumptions A1 and A2 are sufficient conditions to implement this “small departure” requirement. Indeed, even without A1
and A2, � = 0 remains not optimal for the group in the two-period model.20

Proposition 4 leaves open the possibility of a corner solution at �∗ = b/2. The following intuitive lemma establishes that
when the weight on the second period is sufficiently large �∗ is interior.

16 If the association was implicitly maximizing some social welfare function, the weight w2 would be a function of the endogenous p. Since senior
members receive larger benefits and because they join more often, we would have w ′

2(p) < 0. However, this formulation does not change our main result
in Proposition 4 (details are available upon request). Hence, we consider w2 constant.
17 Clearly, the value of θ∗

2 is a function of k2 as well. We suppress this argument because the optimal k2 is itself a function of p and �.
18 When � = 0 then (θ S − θ∗) = (θ J − θ∗): all agents face the same strategic uncertainty. An opportunely redrawn Fig. 3 then yields |d(θ J − θ∗)/d J | =
|d(θ S − θ∗)/dS|, when S = J . Hence, in equilibrium, the overall change in the probability of success is zero for any value of p.
19 The difference (S − J ) is received only with some probability. In the proof we show that the extra-term to be added to Eq. (1) is the expected value

of �Pr(θ2 < θ∗
2 (p;�)(1 − ε/α)), where θ∗

2 is the critical second-period state. This probability is always strictly positive because of the existence of lower
dominance regions, so that the marginal effect of � is always positive.
20 To see this, note that without A1 and A2 the constraint set in problem (M) above would just get larger. However, �∗ > 0 determined in Proposition 4

still dominates � = 0. Clearly, in the region of the parameter space where A1 and A2 do not hold, the calculations for the objective function W in
Appendix A would look different.
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Lemma 1. For any w1 > 0 and any ε > 0, there exists w > w1 such that, for w2 > w, we have �∗ < b/2.

When Lemma 1 holds, it is straightforward to establish that �∗ is increasing in b. Moreover, the group reacts to a smaller
asymmetry in information among agents by increasing the level of seniority benefits, as the next proposition shows.

Proposition 5. If w2 > w, the optimal level of seniority benefits �∗ is decreasing in ε.

The intuition relies again on the twofold role of seniority benefits. Consider first the negative effects in the second
period. When ε decreases, it is more likely that agents receive similar signals, therefore it is more likely that they choose
the same action. Indeed, in our model, for all realizations of θ1 not in an ε-neighborhood of the cutoff θb

1 , all agents either
join the group or stay out. Therefore, since � is chosen at the beginning of the first period, the group’s ex-ante expectation
about the degree of heterogeneity induced by any � in the second period decreases along with ε. Therefore, the smaller
ε, the smaller the negative marginal effect of seniority benefits on the second period. On the contrary, the positive effect
of seniority benefits in the first period increases when ε becomes smaller. When ε decreases, it is more likely that agents
choose the correct action, that is entering only when the group is successful. This increases the expected payoff of both
senior and junior members in the second period, but more so for senior members, because they receive an extra �, which
is unaffected by ε.21 In conclusion, and contrary to the one-shot game in Section 2, the precision of agents’ signals does
affect the optimal dynamic membership contract, even when the group is only maximizing the probability of success. In a
model where the precision of information is an endogenous variable, our result in Proposition 5 provides an incentive for
groups to publicize their efforts.

4. Concluding remarks

We analyze the coordination problem of agents deciding to join a group that uses membership revenues to jointly
provide a discrete public good and excludable benefits. The joint production implies that benefits are valued only if the
group succeeds in providing the public good. With asymmetric information about the cost of provision, the membership
game admits a unique equilibrium. The model is rather tractable and delivers very intuitive comparative statics, which are
consistent with several anecdotal observations. For example, the existing political science literature on group membership
emphasizes the fact that collective action tends to be more successful if individuals face a threat to their status-quo level
enjoyment of a public good (Walker, 1991, and Hansen, 1985). Although various theories have been proposed to explain such
“loss-averse” behavior (Kahneman and Tversky, 1979), a reasonable reduced-form conjecture to account for this phenomenon
in our framework is to assume that the net benefit b is perceived by agents as being larger when the group is trying to
avoid a loss rather than obtain a gain in the level of public good provided.22 We then see straightforwardly from (5) that
membership is larger when the group is trying to avoid a loss.

Moreover, Walker (1983, 1991), and Hansen (1985) mention the attempts to frustrate antagonist associations by politi-
cians through different means like challenges to their not-for-profit status, or by raising postal rates. If we consider the
latter as an additional expense for the group equal to t ∈ (0,k) per member, it is a matter of simple algebra to check that, at
the optimal fee, an increase in postal rate decreases the expected probability of providing the public good and the expected
size of the group.

Furthermore, the existing empirical evidence demonstrates that heterogeneity typically hampers participation to social
activities. For example, Alesina and La Ferrara (2000) show that, after controlling for individual characteristics, people living
in more heterogeneous communities are less likely to join groups, where heterogeneity is captured by income inequality.
Costa and Kahn (2001) find similar results also when heterogeneity is measured by birthplace fragmentation. Under the
reasonable assumption that preferences for selective benefits are related to income or to the individual socioeconomic
background, our theoretical framework provides a possible interpretation for this empirical regularity.

Finally, with regards to the dynamic version of our model, it is worth noting that dynamic considerations are relevant for
many membership decisions and the use of seniority benefits is particularly common. Indeed, if attracting new members
is very important for many organizations, retaining existing members is regarded with the same if not larger concern.23

Johnson (1987) notes that in the case of groups organized hierarchically, besides the aforementioned common practice of
reserving office positions to returning members, more generally all benefits that acquire value through social interaction (i.e.,
solidary benefits) share some characteristics of our seniority benefit. Furthermore, in the case of trade unions, he argues that
the use of an increasing benefit stream for members is ubiquitous: from the life insurance that unions offer to members of

21 This is the reason why the extra-term seniority benefits add to the expected first-period payoff of joining in Eq. (1) is decreasing in ε (see footnote 19).
22 By denoting the status-quo provision of public good as GSQ , the net utility from joining the group is b = u(x, G + GSQ ) − u(0, G + GSQ ), and, if u12 < 0,

we have that b is larger when avoiding a loss, i.e., G = 0, rather then when obtaining a gain, i.e., for G > 0. The assumption of u12 < 0 can be justified in
the case of benefits like representation before government.
23 Quoting Rothenberg (1988): “For the majority of interest group entrepreneurs, who depend on constituent dues as a prime funding source, [organiza-

tional] maintenance dictates the need to keep members contributing [. . . ] and the loss of long-time contributors is perceived as a threat to the entity’s
survival.”
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sufficient seniority to the grievance procedure, which is one of the most valued service typically offered to their due paying
members.24 Our results provide a possible rationale for these common practices.

Appendix A

Proof of Proposition 2. We first consider the effect of a mean preserving spread on the ex-ante expected probability of
success. If p > (S − 2 J )/2(S − J ), the optimal k, i.e., the level of the fee that maximizes the probability of success, is
interior, that is smaller than J , and it is equal to k∗

het = J S/2α. Since p > 0, a sufficient condition for the group to cater
to both classes of agents is 2 J > S . When k = k∗

het , taking the total differential of (θ∗ − θ)/(θ − θ), and substituting d J =
−dS(1 − p)/p and dS = 1, yields, using Proposition 1,

d

(
θ∗ − θ

θ − θ

)
= dθ∗

θ − θ
= dk∗

2(θ − θ)
= d

(
J S

4α

)
= − (1 − p)(S2 − J 2)

4α2
< 0.

Regarding the effect of increased heterogeneity on the expected size of the group, using Proposition 1, we have pθ J + (1 −
p)θ S = θ∗ , and the result follows as above. The analysis of exogenous heterogeneity when the group caters only to class-S
agents is not interesting here. However, for the endogenous heterogeneity case, it is analyzed in Proposition 3. Finally, all
qualitative predictions are trivially maintained for a group that maximizes expected membership, that is a group that sets k
to k∗∗

het = k∗
het − ε. �

Proof of Proposition 3. We start with the group’s optimal choice of k2 in the second period. Given any proportion 1 − p of
agents joining in the first period, the association may decide not to seek new (junior) members by setting k2 > J (p;�). In
this case, the analysis is similar to the homogeneous case in Section 2: the resulting probability of success is Pr(θ2 < (1 −
p)S(p;�)/4). Alternatively, the association may decide to cater to both junior and senior members by setting k2 � J (p;�).
In this case, from Proposition 1, in equilibrium, senior (junior) members enter if their signal is below θ S

2 (p;�) (θ
J

2 (p;�)),
and the critical state below which the group is successful is θ∗

2 (p;�). The group will then set k2 to its optimal level

k∗
2het = J (p;�)S(p;�)

2α(p;�)
= 1

2

(b − (1 − p)�)(b + p�)

p(b + p�) + (1 − p)(b − (1 − p)�)
.

Note that k∗
2het , θ∗

2 (p;�), θ
J

2 (p;�) and θ S
2 (p;�) are all functions of the proportion of agents joining in the first pe-

riod and of the utility value of seniority benefits (�) through S(p;�) and J (p;�) (and therefore α(p;�) = pS(p;�) +
(1 − p) J (p;�)). Keeping this in mind, we henceforth suppress the argument (p;�) to save notation. Using Proposition 1,
plugging in k∗

2het above, we have

θ∗
2 = J S

4α
, θ

J
2 = θ∗

2 − ε
S

α
+ ε, θ S

2 = θ∗
2 − ε

J

α
+ ε. (13)

Simple algebra shows the condition � � b/2 implies, for any realized p, that k∗
2het � J and J S/4α � (1 − p)S/4. Therefore,

the optimal choice of the association is indeed to serve both classes of potential members, and to set k2 = k∗
2het . To bridge

first and second periods, we now define Q (p,�) as the expected difference in equilibrium payoffs between senior and
junior members in the second period, before θi2 is realized, that is

θ S
2∫

θ−ε

(
S Pr

(
θ2 < θ∗

2

∣∣θ2i
) − k∗

2het

)
dF (θ2i) −

θ
J

2∫
θ−ε

(
J Pr

(
θ2 < θ∗

2

∣∣θ2i
) − k∗

2het

)
dF (θ2i). (14)

Using (13), and

Pr
(
θ2 < θ∗

2

∣∣θ2i
) =

⎧⎪⎨
⎪⎩

0 if θ∗
2 < θ2i − ε,

θ∗
2 −(θ2i−ε)

2ε if θ2i − ε < θ∗
2 < θ2i + ε,

1 if θ∗
2 > θ2i + ε,

(15)

Q (p,�) simplifies as

Q (p,�) = �

θ − θ

(
θ∗

2

(
1 − ε

α

)
− θ

)
. (16)

24 Johnson (1987) argues that: “This led one author to describe the grievance procedure as a semicollective good—one which is in fact treated as a
selective benefit by workers (Pencavel, 1971).” He also notes how this procedure operates in fact as a seniority benefit since with seniority on the job a
worker is more exposed to the consequences of an hold-up problem. Finally, he mentions that: “seniority benefits can be provided out of funds collected
from workers when they are young” (Johnson, 1987).
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Using (13), one may verify that Q (p,�) in (16) is non-monotonic in p so, moving back to the first period, the standard
iterated deletion of strictly dominated strategies does not yield a unique equilibrium. However, it is possible to show that
dominance regions still exist. To see this, let π(θ1i, e) denote the net benefit from joining in the first period for agent
i conditional on receiving signal θ1i , for any strategy followed by all other agents that induces a proportion e of agents
joining in the first period, that is

π(θ1i, e) = E
(
b Pr(k1e > θ1) − k1 + Q (1 − e,�)

∣∣θ1i
)
.

Using (16), we have Q (p,�) ∈ [0,�], and since � < k1 < b, the existence of dominance regions for θ1i follows as in
Section 2. Indeed, if θ1i < θ + ε,

π(θ1i, e) > b Pr(k1 · 0 > θ1|θ1i) − k1 + 0 = b − k1 > 0,

and if θ1i > θ − ε,

π(θ1i, e) < b Pr(k1 · 1 > θ1|θ1i) − k1 + � = −k1 + � < 0.

The existence of dominance regions is very useful in establishing existence and uniqueness of an equilibrium in monotone
(cutoff) strategies. Suppose that all agents follow a cutoff strategy around θb

1 . Let θ∗
1 be the value of θ1 below which the

group is successful in providing benefits in the first period, which is determined by

k1 Pr
(
θ1i � θb

1

∣∣θ1 = θ∗
1

) = θ∗
1 . (17)

The net benefit from joining in the first period for agent i conditional on receiving signal θ1i is

π
(
θ1i, θ

b
1

) = b Pr
(
θ1 < θ∗

1

∣∣θ1i
) − k1 + Q

( θ+ε∫
θb

1

f (θ1i′ |θ1i)dθ1i′ ,�

)
, (18)

where the first argument of Q is the proportion of agents who did not join in the first period from the point of view
of an agent with private signal θ1i , a proportion that is non-stochastic because of the continuum of agents assumption.
The existence of dominance regions implies that π(θb

1 , θb
1 ) > 0 for θb

1 < θ + ε, and that π(θb
1 , θb

1 ) < 0 for θb
1 > θ − ε. Since

π(θb
1 , θb

1 ) is continuous in θb
1 , a solution to π(θb

1 , θb
1 ) = 0 exists, with θb

1 ∈ (θ + ε, θ − ε). Uniqueness of a solution to
π(θb

1 , θb
1 ) = 0 follows because dπ(θb

1 , θb
1 )/dθb

1 < 0. To see this, note that given θb
1 ∈ (θ + ε, θ − ε) the distribution of θ1

conditional on θ1i = θb
1 is uniform in [θb

1 − ε, θb
1 + ε], and the distribution of θ1i′ conditional on θ1i = θb

1 is a symmetric

triangular distribution centered on θb
1 , with support [θb

1 − 2ε, θb
1 + 2ε]. Hence,

∫ θ+ε

θb
1

f (θ1i′ |θ1i = θb
1 )dθ1i′ = 1/2 for any θb

1

∈ (θ + ε, θ − ε), so that the expected proportion of agents who do not join in the first period from the point of view of type
θb

1 is constant and equal to 1/2. Therefore,

π
(
θb

1 , θb
1

) = b Pr
(
θ1 < θ∗

1

∣∣θb
1

) − k1 + Q

(
1

2
,�

)
,

so that

dπ(θb
1 , θb

1 )

dθb
1

=
{

b
2ε (

dθ∗
1

dθb
1

− 1) if |θ∗
1 − θb

1 | < ε,

0 otherwise.

However, if |θ∗
1 − θb

1 | � ε, we have that either π(θb
1 , θb

1 ) = (b − k1) + Q ( 1
2 ,�) > b − k1 > 0, or π(θb

1 , θb
1 ) = (0 − k1) +

Q ( 1
2 ,�) < −k1 + � < 0, contradicting π(θb

1 , θb
1 ) = 0. Therefore, it must be |θ∗

1 − θb
1 | < ε, implying

dπ(θb
1 , θb

1 )

dθb
1

= b

2ε

(
dθ∗

1

dθb
1

− 1

)
= b

2ε

(
k1

k1 + 2ε
− 1

)
< 0,

where dθ∗
1 /dθb

1 is calculated using (17). The proof is completed by showing that a cutoff strategy around θb
1 is a best

response to cutoff strategies around θb
1 , i.e., by showing that

dπ(θ1i, θ
b
1 )

dθ1i

∣∣∣∣
θ1i=θ1c

< 0, (19)

where θ1c is any value of the signal θ1i for which π(θ1c, θ
b
1 ) = 0. Note first that, by the definition of θ1c , it must be the case

that |θ∗
1 − θ1c| < ε, and that θ1c ∈ (θ + ε, θ − ε). Therefore,

π
(
θ1i = θ1c, θ

b
1

) =
(

b
θ∗

1 − θ1c + ε

2ε
− k1

)
+ Q

( θ+ε∫
θb

f (θ1i′ |θ1i = θ1c)dθ1i′ ,�

)
,

1
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so that

dπ(θ1i, θ
b
1 )

dθ1i

∣∣∣∣
θ1i=θ1c

= − b

2ε
+ ∂ Q (p,�)

∂ p

d(
∫ θ+ε

θb
1

f (θ1i′ |θ1i)dθ1i′ )

dθ1i

∣∣∣∣
θ1i=θ1c

.

Since d(
∫ θ+ε

θb
1

f (θ1i′ |θ1i)dθ1i′ )/dθ1i � 1/2ε, and ∂ Q (p,�)/∂ p < b, as we will show momentarily, we have

dπ(θ1i, θ
b
1 )

dθ1i

∣∣∣∣
θ1i=θ1c

< − b

2ε
+ b

2ε
< 0.

The proof of ∂ Q (p,�)/∂ p < b follows because, from (16), we have

∂ Q (p,�)

∂ p
= �

θ − θ

(
∂θ∗

2

∂ p

(
1 − ε

α

)
+ ε

θ∗
2

α2

∂α

∂ p

)
, (20)

so that, using ∂α
∂ p = 2� and

∂θ∗
2

∂ p = �
α( J+S)−2 J S

4α2 , we obtain

∂ Q (p,�)

∂ p
= �2

4α(θ − θ)

(
�

pS − (1 − p) J

α
+ ε

2bS − (b + �)

α2

)
,

and a few algebraic passages, involving (θ − θ) > b + 4ε and � < b/2, show

∂ Q (p,�)

∂ p
<

�2

4(b − �)
� b

8
< b.

A similar argument can be used to rule out asymmetric equilibria in cutoff strategies, since the above bound continues to
hold. �
Proof of Proposition 4. We proceed ignoring the strict inequality constraint � < k1 < b, and then verify it is satisfied. Usual
continuity arguments ensure existence of a solution to this relaxed maximization problem. After eliminating constants,
maximizing (12) is equivalent to maximizing

θ∗
1 + ŵ2

θ∫
θ

θ∗
2 (p,�)dθ1, (21)

subject to the equilibrium constraints for the first-period cutoff strategy, namely

b Pr
(
θ1 � θ∗

1

∣∣θ1i = θb
1

) + Q

(
1

2
,�

)
= k1,

θ∗
1 = k1 Pr

(
θ1i � θb

1

∣∣θ1 = θ∗
1

)
, (22)

and where, from (13),

θ∗
2 (p,�) = 1

4

J (p,�)S(p,�)

α(p,�)
. (23)

The function p in the maximand and in (23) describes the agents who do not join in the first period. As a function of the
realized state θ1 and equilibrium cutoff θb

1 , p is

p =

⎧⎪⎪⎨
⎪⎪⎩

0 for θ1 ∈ (θ, θb
1 − ε),

1 − θb
1 −θ1+ε

2ε for θ1 ∈ (θb
1 − ε, θb

1 + ε),

1 for θ1 ∈ (θb
1 + ε, θ).

(24)

Remember that Q (p,�) is the expected value of seniority benefits. In (22) it is calculated at p = 1/2 because the indifferent
agent θb

1 always believes the measure of agents joining is 1/2. Using (16),

Q

(
1

2
,�

)
= �

θ − θ

(
(b − ε)(4b2 − �2)

16b2
− θ

)
.

Finally, ŵ2 > 0 in (21) is just a rescaling of w2 by w1, and (θ − θ). The restrictions in (22) uniquely define θ∗
1 and θb

1 as
functions of k1 and �. The derivative of the objective function for k1 is then

∂θ∗
1 (�,k1)

∂k1
+ ŵ2

θ∫
∂θ∗

2 (p,�)

∂ p

∂ p

∂θb
1

∂θb
1

∂k1
dθ1.
θ
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Using (24) to change the variable of integration from θ1 to p, we obtain

∂θ∗
1 (�,k1)

∂k1
+ ŵ2(2ε)

1∫
0

∂θ∗
2 (p,�)

∂ p

(
∂ p

∂θb
1

∂θb
1

∂k1

)
dp,

and, noting that ∂ p
∂θb

1
and

∂θb
1

∂k1
do not depend on p, we have

∂θ∗
1 (�,k1)

∂k1
+ ŵ2(2ε)

(
∂ p

∂θb
1

∂θb
1

∂k1

) 1∫
0

∂θ∗
2 (p,�)

∂ p
dp.

Since θ∗
2 (1,�) = θ∗

2 (0,�) = b/4 from (23), the optimal k1 then solves ∂θ∗
1 (�,k1)/∂k1 = 0, or, using (22),

k∗
1 = b + Q ( 1

2 ,�)

2
. (25)

Note how this level of k1 will be strictly larger than b/2 as soon as �∗ > 0. Moreover, k∗
1 is strictly smaller than b, since

Q ( 1
2 ,�) � �/4, because θ > b, and � � b/2. Therefore, the constraint � < k1 < b is always satisfied, since, as we show

below, �∗ > 0. With a similar procedure, the first derivative of (21) with respect to � yields

∂θ∗
1 (�,k1)

∂�
+ ŵ2

θ∫
θ

(
∂θ∗

2 (p,�)

∂ p

∂ p

∂θb
1

∂θb
1

∂�
+ ∂θ∗

2 (p,�)

∂�

)
dθ1

= ∂θ∗
1 (�,k1)

∂�
+ ŵ22ε

1∫
0

∂θ∗
2 (p,�)

∂�
dp,

and using (22) and (23), we obtain

k1

b

∂ Q ( 1
2 ,�)

∂�
+ ŵ22ε

1∫
0

(
−�

4
p(1 − p)

b + (pS + (1 − p) J )

(pS + (1 − p) J )2

)
dp

= k1

b(θ − θ)

(
(b − ε)

4b2 − 3�2

16b2
− θ

)
− ŵ2ε

(b2 + �2) ln( b+�
b−�

) − 2�b

(4�)2
.

Substituting the optimal level of k1 in (25), we have that the first derivative of the objective function (21) with respect to
� is

Φall(�;ε) ≡ Φone(�;ε) · Φtwo(�;ε) − ŵ2ε · Φthree(�;ε), (26)

where

Φone(�;ε) ≡ 1

2b(θ − θ)

(
b + �

(θ − θ)

(
(b − ε)(4b2 − �2)

16b2
− θ

))
� 0,

Φtwo(�;ε) ≡ (b − ε)
4b2 − 3�2

16b2
− θ � 0,

Φthree(�;ε) ≡ (b2 + �2) ln( b+�
b−�

) − 2�b

(4�)2
� 0. (27)

Note how

lim
�→0

Φone(�;ε) · Φtwo(�;ε) = 1

2(θ − θ)

(
b − ε

4
− θ

)
> 0,

since θ + ε < 0. As for Φthree(�;ε), we have, using de l’Hopital’s rule

lim
�→0

Φthree(�;ε) = lim
�→0

2�(ln( b+�
b−�

) + 2b�

b2−�2 )

32�

= 1
lim

(
ln

(
b + �

)
+ 2b�

2 2

)
= 0.
16 �→0 b − � b − �
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Therefore, for � close to zero, the objective function (21) is strictly increasing in �, so �∗ > 0. Finally, note that to show
uniqueness of �∗ , it is enough to show that at any �̂ such that Φall(�̂;ε) = 0, we have

∂Φall(�;ε)

∂�

∣∣∣∣
�=�̂

< 0.

Indeed, note that

∂Φone(�;ε)

∂�
= 1

�

(
Φone(�;ε) − 1

2(θ − θ)

)
− 1

2b(θ − θ)

2�2(b − ε)

(θ − θ)16b2
<

Φone(�;ε)

�
,

∂Φtwo(�;ε)

∂�
= − (b − ε)6�

16b2
< 0,

and

∂Φthree(�;ε)

∂�
= 1

�

2b2

b2 − �2

2�b − (b2 − �2) ln( b+�
b−�

)

(4�)2
.

Since, letting x = �/b,

∂Φthree(�;ε)/∂�

Φthree(�;ε)/�
= 2

1 − x2

2x − (1 − x2)(ln(1 + x) − ln(1 − x))

2x − (1 + x2)(ln(1 + x) − ln(1 − x))
,

which can be shown to be larger than one for x = �/b ∈ [0,1/2], we have

∂Φthree(�;ε)

∂�
>

Φthree(�;ε)

�
.

Therefore,

∂Φall(�;ε)

∂�
= ∂Φone(�;ε)

∂�
Φtwo(�;ε) + Φone(�;ε)

∂Φtwo(�;ε)

∂�
− ŵ2ε

∂Φthree(�;ε)

∂�

<
Φone(�;ε)

�
Φtwo(�;ε) − ∂Φthree(�;ε)

∂�
ŵ2ε,

which, when evaluated at a �̂ that makes Φall(�̂;ε) = 0, yields

∂Φall(�;ε)

∂�

∣∣∣∣
�=�̂

< ŵ2ε

(
Φthree(�̂;ε)

�̂
− ∂Φthree(�;ε)

∂�

)
< 0,

and therefore the optimal �∗ is unique. �
Proof of Lemma 1. The claim follows from

Φthree(� = b/2;ε) = 1

4

(
5

4
log 3 − 1

)
> 0,

using (27), so that, for ŵ2 large enough, the derivative of the group’s objective function with respect to �, that is Φall(�;ε)

in (26), is negative at � = b/2. �
Proof of Proposition 5. The result follows by applying the implicit function theorem to (26), and noting that ∂Φall(�;ε)

∂ε < 0

since ∂Φone(�;ε)
∂ε and ∂Φtwo(�;ε)

∂ε are negative, while ∂Φthree(�;ε)
∂ε = 0 and Φthree(�∗;ε) > 0. �
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