Tax Progressivity, Performance Pay, and Search Frictions

Árpád Ábraháam and Susanne Forstner
(EUI) (IIES)

SED, Toronto, June 28, 2014
Introduction

Classic Trade-Off of Progressive Taxation:
Provides some insurance (or redistribution) but distorts incentives.

- A large literature studies this trade-off in frameworks where wages (labor productivities) are exogenous.
- The distortion is typically coming from the (intensive margin) of the labor supply.
 - New and (old) Dynamic Public Finance.
- This paper: wage shocks are partially endogenous due to search and moral hazard frictions.
Introduction

- We use the environment of job-to-job transitions and performance pay developed in Ábrahám, Alvarez and Forstner (2014).

- We show there that this environment is capable to replicate facts regarding wage dynamics within and across job spells.
Introduction

- We use the environment of job-to-job transitions and performance pay developed in Ábrahám, Alvarez and Forstner (2014).

- We show there that this environment is capable to replicate facts regarding wage dynamics within and across job spells.

- The effects of progressivity: The dispersion of gross and net wages differs.
 - It provides insurance for workers against 'job offer' risk.
 - It affects the ability of firms the provide effort incentives.
 - Gross wage differences implementing the same net wage differences increase in the level of wages \rightarrow incentives.
 - Flattening of net wages \rightarrow flattening wealth effects.
Relatively small literature on search friction and taxation and on the interaction between the tax system and firm-provided insurance.

- Tax progressively and optimal labor contracts: Lamadon (2014).
Literature

- Relatively small literature on search friction and taxation and on the interaction between the tax system and firm-provided insurance.
 - Tax progressively and optimal labor contracts: Lamadon (2014).

- Another aspect of endogenous wage processes, which is not in this paper: Human capital.
 - Tax reforms: Keane (2012), Badel and Huggett (2014)
The model
Overview

Key model elements:

- Risk-neutral firms offer long-term employment contracts to risk-averse workers.
- A moral hazard problem arises from the assumption that match output depends stochastically on the worker’s unobservable effort.
- Workers’ and firms’ commitment to contracts is limited.
- When a worker receives an outside offer, the present and the potential future employer compete for him by offering new contracts.
Overview

Key model elements:

- Risk-neutral firms offer long-term employment contracts to risk-averse workers.
- A moral hazard problem arises from the assumption that match output depends stochastically on the worker’s unobservable effort.
- Workers’ and firms’ commitment to contracts is limited.
- When a worker receives an outside offer, the present and the potential future employer compete for him by offering new contracts.

Quantitative analysis:

- Calibration to (micro) labor market data from the U.S.
- Revenue neutral experiments with different levels of tax progressivity.
Firms

- Run by risk-neutral entrepreneurs.

- Operate a linear production technology:

 $$ y = Y(z, A) = zA $$ \hspace{1cm} (1)

 - z Match-specific productivity level
 - A Worker-specific stochastic productivity factor

- $z \in \mathcal{Z} = \{z_1, z_2, \ldots, z_N\}$ is drawn from the distribution $F(z)$ when a firm and a worker meet and remains constant over time.

- The value of A depends stochastically on a worker’s effort level ϵ:

 $$ A = \begin{cases} A^+ & \text{with probability } \pi(\epsilon) \\ A^- & \text{with probability } 1 - \pi(\epsilon) \end{cases} $$ \hspace{1cm} (2)

 - $A^+ > A^-$
Workers

- Ex-ante identical and risk-averse.

- Derive utility $u(c)$ from consumption and suffer disutility $g(\epsilon)$ from exerting effort while working.

- While unemployed:
 - Enjoy consumption level b.
 - Receive a job offer with probability λ_u associated with match type z.

- While employed in a z-type match:
 - Consume period net wage $(1 - T(w))w$ and exert effort ϵ.
 - Receive outside job offer with probability λ_e of match type \tilde{z}.
 - (When their current match is destroyed, workers immediately receive a new offer with probability λ_r.)
Government

- Finances exogenous government expenditure G from the receipts of tax revenue.
Employment contracts

- Firms make take-it-or-leave-it offers in terms of long-term contracts.
- They cannot observe a worker’s effort.
- Firms can commit to wage payments only as long as profits are non-negative.
- Workers can quit to unemployment or report outside job offers.
- In both cases the original contract becomes void.

⇒ Repeated moral hazard and two-sided limited commitment.
Competition for workers

- When a worker reports an outside job offer, the two firms start competing for the worker by offering new contracts.

- Bidding takes place in the form of Bertrand competition (in terms of expected lifetime utilities U that contracts promise to the worker).

- Firms are willing to bid up to the break-even level of utility $U^*(z)$ that solves $V(U^*(z), z) = 0$.

- Relevant (reported) outside offers lead to an increase in lifetime utility for the worker, either at his current employer or through a job-to-job transition.
The firm’s contract design problem

An optimal contract C^* solves

$$V(U, z) = \max_{\{w, \epsilon, U^+, U^-\}}$$
The firm’s contract design problem

An optimal contract C^\ast solves

$$V(U, z) = \max_{\{w, \epsilon, U^+, U^-, A^+\pi, A^- (1 - \pi)\}} z \left[A^+ \pi + A^- (1 - \pi(\epsilon)) \right] - w$$
The firm’s contract design problem

An optimal contract C^* solves

$$V(U, z) = \max_{\{w, \epsilon, U^+, U^-, \}} z \left[A^+ \pi(\epsilon) + A^- (1 - \pi(\epsilon)) \right] - w$$

$$+ \beta \psi(1 - \delta) \left\{ \right.$$
The firm’s contract design problem

An optimal contract C^* solves

$$
V(U, z) = \max_{\{w, \epsilon, U^+, U^-\}} \left\{ z \left[A^+ \pi(\epsilon) + A^- (1 - \pi(\epsilon)) \right] - w
+ \beta \psi(1 - \delta) \left\{ (1 - \lambda_e) \left[V(U^+, z) \pi(\epsilon) + V(U^-, z) (1 - \pi(\epsilon)) \right] \right\} \right\}
$$

exp. continuation value, no outside offer
The firm’s contract design problem

An optimal contract C^* solves

$$
V(U, z) = \max_{\{w, \epsilon, U^+, U^-\}} z \left[A^+ \pi(\epsilon) + A^- (1 - \pi(\epsilon)) \right] - w
$$

$$
+ \beta \psi(1 - \delta) \left\{ (1 - \lambda_e) \left[V(U^+, z) \pi(\epsilon) + V(U^-, z) (1 - \pi(\epsilon)) \right] \right\}
$$

(exp. continuation value, no outside offer)

$$
+ \lambda_e \sum_{\tilde{z} \in \mathcal{Z}} \left[V_o(U^+, z, \tilde{z}) \pi(\epsilon) + V_o(U^-, z, \tilde{z}) (1 - \pi(\epsilon)) \right] f(\tilde{z}) \right\}
$$

(exp. continuation value, outside offer)
The firm’s contract design problem

An optimal contract C^\ast solves

$$V(U, z) = \max_{\{w, \epsilon, U^+, U^-, \varnothing\}} z \left[A^+ \pi(\epsilon) + A^- (1 - \pi(\epsilon)) \right] - w$$

$$+ \beta \psi (1 - \delta) \left\{ (1 - \lambda_e) \left[V(U^+, z) \pi(\epsilon) + V(U^-, z) (1 - \pi(\epsilon)) \right] \right.$$

\hspace{1cm} \text{exp. continuation value, no outside offer}

$$+ \lambda_e \sum_{\tilde{z} \in Z} \left[V_o(U^+, z, \tilde{z}) \pi(\epsilon) + V_o(U^-, z, \tilde{z}) (1 - \pi(\epsilon)) \right] f(\tilde{z}) \right\}$$

\hspace{1cm} \text{exp. continuation value, outside offer}

subject to: (PKC), (ICC), (WPC), (FPC), $w \geq 0$, and $\epsilon \in [0, \bar{\epsilon}]$.

\hspace{1cm} \text{Policy functions: } w(U, z), \epsilon(U, z), \text{ and } \{U^+, U^-, \varnothing\}$
The firm’s contract design problem

An optimal contract C^* solves

$$V(U, z) = \max_{\{w, \epsilon, U^+, U^-\}} z \left[A^+ \pi(\epsilon) + A^- (1 - \pi(\epsilon)) \right] - w$$

$$+ \beta \psi(1 - \delta) \left\{ (1 - \lambda_e) \left[V(U^+, z) \pi(\epsilon) + V(U^-, z)(1 - \pi(\epsilon)) \right] \right\}$$

exp. continuation value, no outside offer

$$+ \lambda_e \sum_{\tilde{z} \in \tilde{Z}} \left[V_o(U^+, z, \tilde{z}) \pi(\epsilon) + V_o(U^-, z, \tilde{z})(1 - \pi(\epsilon)) \right] f(\tilde{z})$$

exp. continuation value, outside offer

subject to: (PKC), (ICC), (WPC), (FPC), $w \geq 0$, and $\epsilon \in [0, \bar{\epsilon}]$.

Policy functions: $w(U, z)$, $\epsilon(U, z)$, and $\{U^+(U, z), U^-(U, z)\}$
Promise-keeping

Promise-keeping constraint (PKC):

\[U \leq u((1 - T(w))w) - g(\epsilon) \]
Promise-keeping

Promise-keeping constraint (PKC):

\[U \leq u((1 - T(w))w) - g(\epsilon) + \beta \psi \delta U^n \]
Promise-keeping constraint (PKC):

\[U \leq u((1 - T(w))w) - g(\epsilon) + \beta \psi \delta U^n \]

\[+ \beta \psi (1 - \delta) \left\{ \right. \]

\[\text{exp. continuation value, outside offer} \]

\[\text{exp. continuation value, no outside offer} \]
Promise-keeping

Promise-keeping constraint (PKC):

\[U \leq u((1 - T(w))w) - g(\epsilon) + \beta \psi \delta U^n \]

\[+ \beta \psi (1 - \delta) \left\{ (1 - \lambda_e) \left[U^+ \pi(\epsilon) + U^- (1 - \pi(\epsilon)) \right] \right\} \]

\textit{exp.cont.val., no outside offer}
Promise-keeping

Promise-keeping constraint (PKC):

\[U \leq u((1 - T(w))w) - g(\epsilon) + \beta \psi \delta U^n \]

\[+ \beta \psi (1 - \delta) \left\{ (1 - \lambda_e) \left[U^+ \pi(\epsilon) + U^- (1 - \pi(\epsilon)) \right] \right\} \]

\[\text{exp. cont. val., no outside offer} \]

\[+ \lambda_e \sum_{\tilde{z} \in \mathcal{Z}} \left[U_o(U^+, z, \tilde{z}) \pi(\epsilon) + U_o(U^-, z, \tilde{z})(1 - \pi(\epsilon)) \right] f(\tilde{z}) \]

\[\text{exp. continuation value, outside offer} \]
Promise-keeping

Promise-keeping constraint (PKC):

\[
U \leq u((1 - T(w))w) - g(\epsilon) + \beta \psi \delta U^n
\]

\[
+ \beta \psi (1 - \delta) \left\{ (1 - \lambda_e) \left[U^+ \pi(\epsilon) + U^- (1 - \pi(\epsilon)) \right] \right. \\
\left. \text{exp. cont. val., no outside offer} \right\}
\]

\[
+ \lambda_e \sum_{\tilde{z} \in \mathcal{Z}} \left[U_o(U^+, z, \tilde{z}) \pi(\epsilon) + U_o(U^-, z, \tilde{z})(1 - \pi(\epsilon)) \right] f(\tilde{z}) \\
\text{exp. continuation value, outside offer}
\]

where

\[
U_o(U^i, z, \tilde{z}) = \max \left\{ U^i, \min \left[U^*(z), U^*(\tilde{z}) \right] \right\}
\]
Incentive-compatibility

Incentive-compatibility constraint (ICC):

\[g'(\epsilon) = \pi'(\epsilon)\beta\psi(1 - \delta) \left\{ (1 - \lambda_e)\left[U^+ - U^- \right] + \lambda_e \sum_{\tilde{z} \in \tilde{Z}} \left[U_o(U^+, z, \tilde{z}) - U_o(U^-, z, \tilde{z}) \right] f(\tilde{z}) \right\} \]
Participation constraints

Worker’s participation constraint (WPC):

\[U^n \leq U^i(U, z), \quad i \in \{+, -\} \]

where \(U^n := \frac{u(b)}{1-\psi\beta} \).
Participation constraints

Worker’s participation constraint (WPC):

\[U^n \leq U^i(U, z), \quad i \in \{+, -\} \]

where \(U^n := \frac{u(b)}{1 - \psi \beta} \).

Firm’s participation constraint (FPC):

\[U^i(U, z) \leq U^*(z), \quad i \in \{+, -\} \]

where \(U^*(z) \) solves \(V(U^*(z), z) = 0 \).
Calibration
Setup of the quantitative analysis

Calibration:

- Calibrated to U.S. micro data (SIPP 2004 panel) on:
 - Labor market transitions (E-U, U-E, E-E).
 - Individual (residual) wage dynamics within and between jobs.
- Use a flexible functional form to approximate the progressivity of the US tax system.
Setup of the quantitative analysis

Calibration:

- Calibrated to U.S. micro data (SIPP 2004 panel) on:
 - Labor market transitions (E-U, U-E, E-E).
 - Individual (residual) wage dynamics within and between jobs.

- Use a flexible functional form to approximate the progressivity of the US tax system.

Tax experiments:

- Compare stationary equilibria for different levels of tax progressivity.
Income tax function

- Specification from Heathcote, Storesletten & Violante (2011):

\[T(w) = t(\tilde{w}) = 1 - \tau_0 \tilde{w}^{-\tau_1}, \quad \tilde{w} = \frac{w}{\bar{w}} \]

- $t(\cdot)$ average tax rate
- w individual labor income
- \bar{w} average labor income

- Parameter estimates for the baseline economy (scenario B) from Guner, Kaygusuz & Ventura (2013):

\[\tau_0 = 0.902, \quad \tau_1 = 0.036 \]

- Based on micro data from the U.S. IRS (all households).

- Counterfactual scenarios:
 - $\tau_1 = 0.0$ flat-rate tax (scenario A)
 - $\tau_1 = 0.1$ increased progressivity (scenario D)
Average tax rates in comparison

Average tax rates for different degrees of progressivity

- tau1=0.000
- tau1=0.036
- tau1=0.100

Average tax rates in comparison.
Simulated vs. empirical statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Model</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor market transitions:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-U flows τ^{eu}</td>
<td>0.025</td>
<td>0.024</td>
</tr>
<tr>
<td>U-E flows τ^{ue}</td>
<td>0.491</td>
<td>0.548</td>
</tr>
<tr>
<td>E-E flows τ^{ee}</td>
<td>0.039</td>
<td>0.039</td>
</tr>
<tr>
<td>Log wage changes between jobs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean $\mu^{bet}(\Delta \ln w)$</td>
<td>0.062</td>
<td>0.029</td>
</tr>
<tr>
<td>Std. $\sigma^{bet}(\Delta \ln w)$</td>
<td>0.444</td>
<td>0.364</td>
</tr>
<tr>
<td>Frac. neg. $\varpi^{bet}(\Delta \ln w)$</td>
<td>0.352</td>
<td>0.384</td>
</tr>
<tr>
<td>Log wage changes within a job:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean $\mu^{win}(\Delta \ln w)$</td>
<td>0.013</td>
<td>0.007</td>
</tr>
<tr>
<td>Std. $\sigma^{win}(\Delta \ln w)$</td>
<td>0.092</td>
<td>0.142</td>
</tr>
<tr>
<td>Frac. neg. $\varpi^{win}(\Delta \ln w)$</td>
<td>0.353</td>
<td>0.335</td>
</tr>
<tr>
<td>Cross-sectional wages:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean $\mu(w)$</td>
<td>1.232</td>
<td>1.146</td>
</tr>
<tr>
<td>Log Std. $\sigma(\ln w)$</td>
<td>0.274</td>
<td>0.505</td>
</tr>
</tbody>
</table>
Results
Policy function for effort

Policy functions for effort, z_6-match

- $e_A(U,z6)$ [tau1=0]
- $e_B(U,z6)$ [tau1=0.036]
- $e_D(U,z6)$ [tau1=0.1]
Effort

- Effort is decreasing in promised utility ← wealth effects.
- Incentive provision is limited at binding participation constraints.
Effort

- Effort is decreasing in promised utility ← wealth effects.
- Incentive provision is limited at binding participation constraints.
- Increased progressivity is leading to lower effort for a given utility level.
- $U^*(z)$ is declining for most z as incentive provision is more costly with progressivity.
 - For high wage levels, the same net wage cost more for the firm so it decides to ask lower effort.
 - For low wage levels, future income prospects become worse → you need to increase period utility → effort is reduced because of wealth effects.
Changes in critical utility levels

<table>
<thead>
<tr>
<th></th>
<th>A ($\tau_1 = 0$)</th>
<th>B ($\tau_1 = 0.036$)</th>
<th>D ($\tau_1 = 0.1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$U^*(z)$</td>
<td>$\Delta(B)$</td>
<td>$U^*(z)$</td>
</tr>
<tr>
<td>z_3</td>
<td>-67.154</td>
<td>-0.009</td>
<td>-67.145</td>
</tr>
<tr>
<td>z_4</td>
<td>-64.554</td>
<td>0.071</td>
<td>-64.624</td>
</tr>
<tr>
<td>z_5</td>
<td>-62.516</td>
<td>0.124</td>
<td>-62.640</td>
</tr>
<tr>
<td>z_6</td>
<td>-60.847</td>
<td>0.171</td>
<td>-61.018</td>
</tr>
<tr>
<td>z_7</td>
<td>-59.469</td>
<td>0.200</td>
<td>-59.669</td>
</tr>
<tr>
<td>z_8</td>
<td>-58.311</td>
<td>0.221</td>
<td>-58.532</td>
</tr>
<tr>
<td>z_9</td>
<td>-57.321</td>
<td>0.237</td>
<td>-57.558</td>
</tr>
<tr>
<td>z_{10}</td>
<td>-56.458</td>
<td>0.250</td>
<td>-56.708</td>
</tr>
</tbody>
</table>
Changes in expected match output

<table>
<thead>
<tr>
<th></th>
<th>A ([\tau_1 = 0])</th>
<th>B ([\tau_1 = 0.036])</th>
<th>D ([\tau_1 = 0.1])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate:</td>
<td>(E(y))</td>
<td>(\Delta(B))</td>
<td>(E(y))</td>
</tr>
<tr>
<td></td>
<td>1.6557</td>
<td>0.004</td>
<td>1.6517</td>
</tr>
<tr>
<td>By match type:</td>
<td>(E(y</td>
<td>z))</td>
<td>(\Delta(B))</td>
</tr>
<tr>
<td>(z_3)</td>
<td>1.197</td>
<td>0.002</td>
<td>1.195</td>
</tr>
<tr>
<td>(z_4)</td>
<td>1.389</td>
<td>0.003</td>
<td>1.386</td>
</tr>
<tr>
<td>(z_5)</td>
<td>1.555</td>
<td>0.005</td>
<td>1.550</td>
</tr>
<tr>
<td>(z_6)</td>
<td>1.708</td>
<td>0.005</td>
<td>1.703</td>
</tr>
<tr>
<td>(z_7)</td>
<td>1.863</td>
<td>0.003</td>
<td>1.860</td>
</tr>
<tr>
<td>(z_8)</td>
<td>2.025</td>
<td>0.004</td>
<td>2.020</td>
</tr>
<tr>
<td>(z_9)</td>
<td>2.196</td>
<td>0.005</td>
<td>2.192</td>
</tr>
<tr>
<td>(z_{10})</td>
<td>2.347</td>
<td>0.003</td>
<td>2.344</td>
</tr>
</tbody>
</table>
Firms’ value function

Value functions, z_4-match

- $V_A(U, z_4)$ [tau1=0]
- $V_B(U, z_4)$ [tau1=0.036]
- $V_D(U, z_4)$ [tau1=0.1]
Firms’ profits increase for low wage workers.

Progressivity makes net wages less dispersed (across job offers) → Firms can provide the same utility with lower ’average’ wages.

For low wages, this effect offsets the the reduced capability of giving incentives.

For higher wages, the incentive effect dominates so the profits shrink.

But the distribution of wages (life-time utilities) adjust, and overall profits increase with progressivity.
Changes in firm profits from hiring an unemployed worker

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\tau_1 = 0])</td>
<td>([\tau_1 = 0.036])</td>
<td>([\tau_1 = 0.1])</td>
</tr>
<tr>
<td>(V(U^n, z))</td>
<td>(V(U^n, z))</td>
<td>(V(U^n, z))</td>
</tr>
<tr>
<td>(\Delta(B))</td>
<td>(\Delta(B))</td>
<td>(\Delta(B))</td>
</tr>
<tr>
<td>(z_3)</td>
<td>1.758</td>
<td>1.820</td>
</tr>
<tr>
<td></td>
<td>-0.062</td>
<td>0.125</td>
</tr>
<tr>
<td>(z_4)</td>
<td>4.788</td>
<td>4.837</td>
</tr>
<tr>
<td></td>
<td>-0.049</td>
<td>0.096</td>
</tr>
<tr>
<td>(z_5)</td>
<td>7.802</td>
<td>7.846</td>
</tr>
<tr>
<td></td>
<td>-0.044</td>
<td>0.086</td>
</tr>
<tr>
<td>(z_6)</td>
<td>11.050</td>
<td>11.084</td>
</tr>
<tr>
<td></td>
<td>-0.034</td>
<td>0.072</td>
</tr>
<tr>
<td>(z_7)</td>
<td>14.526</td>
<td>14.554</td>
</tr>
<tr>
<td></td>
<td>-0.027</td>
<td>0.058</td>
</tr>
<tr>
<td>(z_8)</td>
<td>18.170</td>
<td>18.192</td>
</tr>
<tr>
<td></td>
<td>-0.021</td>
<td>0.046</td>
</tr>
<tr>
<td>(z_9)</td>
<td>21.918</td>
<td>21.930</td>
</tr>
<tr>
<td></td>
<td>-0.013</td>
<td>0.030</td>
</tr>
<tr>
<td>(z_{10})</td>
<td>25.721</td>
<td>25.725</td>
</tr>
<tr>
<td></td>
<td>-0.004</td>
<td>0.013</td>
</tr>
</tbody>
</table>
Changes in average firm profits

<table>
<thead>
<tr>
<th></th>
<th>A [τ_1 = 0]</th>
<th>B [τ_1 = 0.036]</th>
<th>D [τ_1 = 0.1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate:</td>
<td>(E[V(U, z)]\</td>
<td>(Δ(B)\</td>
<td>(E[V(U, z)]\</td>
</tr>
<tr>
<td></td>
<td>6.8648</td>
<td>-0.030</td>
<td>6.8948</td>
</tr>
</tbody>
</table>
Conclusion

- Firms provide a (constrained) efficient level of insurance for workers for within job shocks → Tax progressivity can make things only worse.

- However firms are not providing insurance for between job (offer) risk. → Tax progressivity improves insurance.

- Quantitatively the second effect dominates (at least locally around the estimated progressivity of the US tax system).
Conclusion

- Firms provide a (constrained) efficient level of insurance for workers for within job shocks → Tax progressivity can make things only worse.

- However firms are not providing insurance for between job (offer) risk. → Tax progressivity improves insurance.

- Quantitatively the second effect dominates (at least locally around the estimated progressivity of the US tax system).

Future work:

- Improve calibration.

- Allow surplus sharing.

- Unemployment insurance and minimum wages.
Appendix
The SIPP 2004 panel:

- Longitudinal survey of representative households in the U.S.
- Households are interviewed every 4 months.
- At each interview, detailed monthly labor market information for each household member over the preceding 4 months (the wave) is collected.
- In particular, information on up to two wage or salary jobs of an individual (employer i.d., starting and ending dates, earnings, . . .) is recorded for each wave.
- We include observations from January 2004 to December 2006.
- We restrict the sample to male workers aged 20 to 65 years who were employed in at least one month over the panel span in a job that was neither self-employment nor family work without pay.
We classify individuals as *employed*, *unemployed*, or *not in the labor force* based on their labor market status in the second week of each month.

Our measure of *monthly job-to-job transitions* comprises all workers in the sample who (i) were employed in the second week of both months, (ii) were not unemployed in any of the weeks in between, (iii) held main jobs with different employers in the second weeks of each months, and (iv) did not return to a job that was previously recorded as their main job.

For those individuals who do not report an hourly pay rate (around 1/2 of the sample), we impute an individual's *real hourly wage* at his main job from total earnings on this job over the wave, the number of hours typically worked on that job, and the total number of weeks employed in that job over the wave.

Residual wages are estimated through a pooled regression of log real hourly wages on five education groups, a non-white dummy, four regional groups, as well as year dummies.
Functional forms and distributions

- **CRRA utility from consumption:** \(u(c) = \frac{c^{1-\sigma}}{1-\sigma}, \quad \sigma > 0 \)

- **Disutility from effort:** \(g(\epsilon) = \epsilon^\gamma, \quad \gamma > 0 \)

- **Probability of high worker productivity:**
 \(\pi(\epsilon) = 1 - \exp\{-\rho \epsilon\}, \quad \rho > 0 \)

- **Normalization of worker productivity levels:**
 \(A^- = 1, \quad A^+ = 1 + \Delta A \)

- **Weibull sampling distribution for match-specific productivity levels:**
 \(z \sim WB(\zeta_0, \zeta_1, \zeta_2) \)

 - \((\zeta_0, \zeta_1, \zeta_2) \) are the shift, shape, and scale parameters of \(F(\cdot) \).
 - The distribution is discretized with a total of 15 productivity levels.