## On the Design of an European Unemployment Insurance Mechanism

Árpád Ábrahám João Brogueira de Sousa Ramon Marimon\* Lukas Mayr

 $\begin{array}{c} {\rm European~University~Institute} \\ * {\rm and~Barcelona~GSE~UPF,~CEPR~\&~NBER} \end{array}$ 

ADEMU Galatina Workshop Policies for Economic Stability: Lessons and the Way Forward August 28, 2017

## Should there be EU Unemployment Insurance?





## Should there be EU Unemployment Insurance?

- High unemployment + low deficit requirements: national UI is costly in recessions, resulting in pro-cyclical fiscal policies.
- Business cycles not perfectly correlated across EU: room for risk-sharing.
- Can strengthen European Labour Market Integration.

## Should there be EU Unemployment Insurance?

- High unemployment + low deficit requirements: national UI is costly in recessions, resulting in pro-cyclical fiscal policies.
- Business cycles not perfectly correlated across EU: room for risk-sharing.
- Can strengthen European Labour Market Integration.
- Differences in U levels and flows: permanent cross-country transfers.
- Labour market differences: no agreement on a common design.
- Can violate the subsidiarity principle.

## Answering the Policy Question

• Multi-region model with heterogenous labour markets: EU countries;

## Answering the Policy Question

• Multi-region model with heterogenous labour markets: EU countries;

• Individual risk: Unemployment insurance;

## Answering the Policy Question

• Multi-region model with heterogenous labour markets: EU countries;

• Individual risk: Unemployment insurance;

• Aggregate risk, not perfectly correlated across countries: Country risk sharing;

First structural model of EU labour markets to evaluate EU-UI policy reform (see Dolls et al. (2015) and Beblacy and Maselli (2014)).

First structural model of EU labour markets to evaluate EU-UI policy reform (see Dolls et al. (2015) and Beblacy and Maselli (2014)).

The model generates worker flows and distributions across three states: Employment, Unemployment, Inactivity, based on Krusell et al. (2011) and (2015).

First structural model of EU labour markets to evaluate EU-UI policy reform (see Dolls et al. (2015) and Beblacy and Maselli (2014)).

The model generates worker flows and distributions across three states: Employment, Unemployment, Inactivity, based on Krusell et al. (2011) and (2015).

- Long run differences between countries (LM institutions, UI systems, technology).
- Short run differences (similar economic fluctuations), in a parsimonious way.

First structural model of EU labour markets to evaluate EU-UI policy reform (see Dolls et al. (2015) and Beblacy and Maselli (2014)).

The model generates worker flows and distributions across three states: Employment, Unemployment, Inactivity, based on Krusell et al. (2011) and (2015).

- Long run differences between countries (LM institutions, UI systems, technology).
- Short run differences (similar economic fluctuations), in a parsimonious way.
- Calibration to EU countries, LM data from Lalé and Tarasonis (2017).
- Map of labour market institutions across Europe.

with policy experiments in dynamic calibrated economies

• Exp. 1 - On UI risk-sharing: Country specific severe shocks

with policy experiments in dynamic calibrated economies

- Exp. 1 On UI risk-sharing: Country specific severe shocks
  - Compute 'upper bound' on EU-UI insurance gains: perfectly negatively correlated shocks, alternative to EU-UI is autarky (no access to debt markets).

with policy experiments in dynamic calibrated economies

- Exp. 1 On UI risk-sharing: Country specific severe shocks
  - Compute 'upper bound' on EU-UI insurance gains: perfectly negatively correlated shocks, alternative to EU-UI is autarky (no access to debt markets).

 $\bullet$  Exp. 3 and 5 - On EU-UI: Steady state fluctuations

with policy experiments in dynamic calibrated economies

- Exp. 1 On UI risk-sharing: Country specific severe shocks
  - Compute 'upper bound' on EU-UI insurance gains: perfectly negatively correlated shocks, alternative to EU-UI is autarky (no access to debt markets).

- Exp. 3 and 5 On EU-UI: Steady state fluctuations
  - Exp. 3 'Average' UI policy resulting in permanent country transfers, that depend on country specific labour markets.

with policy experiments in dynamic calibrated economies

- Exp. 1 On UI risk-sharing: Country specific severe shocks
  - Compute 'upper bound' on EU-UI insurance gains: perfectly negatively correlated shocks, alternative to EU-UI is autarky (no access to debt markets).

- Exp. 3 and 5 On EU-UI: Steady state fluctuations
  - $\circ~$  Exp. 3 'Average' UI policy resulting in permanent country transfers, that depend on country specific labour markets.
  - Exp. 5 'Countries' Pareto improving' UI policy with *zero* permanent country transfers and differential tax rates.

- A Bewley economy:
  - $\circ$  Continuum of agents, live forever: idiosyncratic labour productivity risk, save in a riskless asset with return 1 + r.

- A Bewley economy:
  - $\circ$  Continuum of agents, live forever: idiosyncratic labour productivity risk, save in a riskless asset with return 1 + r.
- Closed competitive labour markets, subject to frictions: job separations, job findings.

- A Bewley economy:
  - Continuum of agents, live forever: idiosyncratic labour productivity risk, save in a riskless asset with return 1 + r.
- Closed competitive labour markets, subject to frictions: job separations, job findings.
- Agents optimize whether to work or actively search for a job: Employed, Unemployed or Inactive.

- A Bewley economy:
  - Continuum of agents, live forever: idiosyncratic labour productivity risk, save in a riskless asset with return 1 + r.
- Closed competitive labour markets, subject to frictions: job separations, job findings.
- Agents optimize whether to work or actively search for a job: Employed, Unemployed or Inactive.
- No labour mobility across countries!

- Employed Labour income, utility cost  $\alpha$  of work:
  - may quit (not eligible for UI);
  - $\circ$  or loose the job with probability  $\sigma$  (eligible for UI).

- Employed Labour income, utility cost  $\alpha$  of work:
  - may quit (not eligible for UI);
  - $\circ$  or loose the job with probability  $\sigma$  (eligible for UI).
- Unemployed Costly search effort  $\gamma$ :
  - $\circ$  receive job offers with probability  $\lambda_{\mathbf{u}}$
  - o may reject offers.
  - $\circ$  if eligible, receive UI benefits. Lose eligibility with probability  $\mu$ .

- Employed Labour income, utility cost  $\alpha$  of work:
  - may quit (not eligible for UI);
  - $\circ$  or loose the job with probability  $\sigma$  (eligible for UI).
- Unemployed Costly search effort  $\gamma$ :
  - $\circ$  receive job offers with probability  $\lambda_{\mathbf{n}}$
  - o may reject offers.
  - $\circ\,$  if eligible, receive UI benefits. Lose eligibility with probability  $\mu.$
- Inactive Do not actively search
  - $\circ$  receive job offers at a lower rate:  $\lambda_{\mathbf{n}}$
  - may reject offers
  - o not eligible for UI benefits

- Employed Labour income, utility cost  $\alpha$  of work:
  - o may quit (not eligible for UI);
  - $\circ$  or loose the job with probability  $\sigma$  (eligible for UI).
- Unemployed Costly search effort  $\gamma$ :
  - $\circ$  receive job offers with probability  $\lambda_{\rm H}$
  - o may reject offers.
  - $\circ$  if eligible, receive UI benefits. Lose eligibility with probability  $\mu$ .
- Inactive Do not actively search
  - $\circ$  receive job offers at a lower rate:  $\lambda_n$
  - may reject offers
  - o not eligible for UI benefits
- UI financed with proportional tax  $\tau$  on labour income: replacement rate  $b_0$  and average duration  $1/\mu$ , conditional on search. Balanced budget.

#### **Model: Value Functions**

Decision with an employment opportunity:

$$V(a, z, \iota^b) = \max_{w \in \{0, 1\}} \left\{ wW(a, z) + (1 - w)J(a, z, \iota^b) \right\}$$

W: value of working and J: value of not working.

#### **Model: Value Functions**

Decision with an employment opportunity:

$$V(a, z, \iota^b) = \max_{w \in \{0, 1\}} \left\{ wW(a, z) + (1 - w)J(a, z, \iota^b) \right\}$$

W: value of working and J: value of not working.

Decision without an employment opportunity:

$$J(a,z,\iota^b) = \max_{s \in \{0,1\}} \left\{ sU(a,z,\iota^b) + (1-s)N(a,z) \right\}$$

U: value of searching (Unemployed) and N: value of not searching (Inactive).

#### **Model: Value Functions**

Decision with an employment opportunity:

$$V(a,z,\iota^b) = \max_{w \in \{0,1\}} \left\{ wW(a,z) + (1-w)J(a,z,\iota^b) \right\}$$

W: value of working and J: value of not working.

Decision without an employment opportunity:

$$J(a, z, \iota^b) = \max_{s \in \{0, 1\}} \left\{ sU(a, z, \iota^b) + (1 - s)N(a, z) \right\}$$

U: value of searching (Unemployed) and N: value of not searching (Inactive).

a: asset level; z: productivity level;  $\iota^b$ : eligibility for benefits;

 $\gamma$ : cost of search, i.i.d. with mean  $\bar{\gamma}$  and variance  $\sigma_{\gamma}^2$ .

## Model: Employed

Bellman equation of employed:

$$W(a, z) = \max_{(c, a') \in \mathcal{B}_t} \left\{ \log c - \alpha + \beta \mathbb{E} \left[ (1 - \sigma) V(a', z', 0) + \sigma \left( (1 - \lambda_u) J(a', z', 1) + \lambda_u V(a', z', 1) \right) | z \right] \right\}.$$

 $\alpha$ : utility cost of working;  $\sigma$ : separation rate;  $\lambda_u$ : job finding rate while searching.

## Model: Employed

Bellman equation of employed:

$$W(a, z) = \max_{(c, a') \in \mathcal{B}_t} \left\{ \log c - \alpha + \beta \mathbb{E} \Big[ (1 - \sigma) V(a', z', 0) + \sigma \Big( (1 - \lambda_u) J(a', z', 1) + \lambda_u V(a', z', 1) \Big) | z \right] \right\}.$$

 $\alpha$ : utility cost of working;  $\sigma$ : separation rate;  $\lambda_u$ : job finding rate while searching.

- Quitters are not entitled for unemployment benefits.
- Entitlement for unemployment benefits in 1st period of unemployment: with prob. 1 if after separation & with prob. 0 if after quitting.
- Budget constraint:  $c + a' = (1 + r)a + (1 \tau)\omega z$ .

## Model: Unemployed

Bellman equation of unemployed (searcher):

$$U(a, z, \iota^b) = \max_{(c, a') \in \mathcal{B}_t} \left\{ \log c - \gamma + \beta \mathbb{E} \left[ \lambda_u V(a', z', \iota^{b'}) + (1 - \lambda_u) J(a', z', \iota^{b'}) | z \right] \right\}$$

## Model: Unemployed

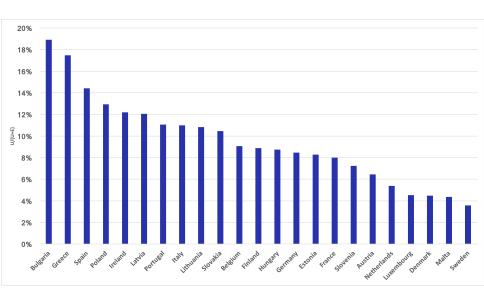
Bellman equation of unemployed (searcher):

$$U(a, z, \iota^b) = \max_{(c, a') \in \mathcal{B}_t} \left\{ \log c - \gamma + \beta \mathbb{E} \left[ \lambda_u V(a', z', \iota^{b'}) + (1 - \lambda_u) J(a', z', \iota^{b'}) | z \right] \right\}$$

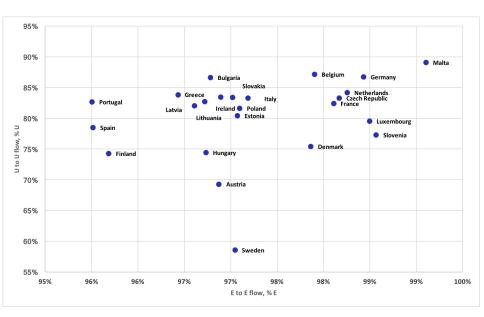
- $\operatorname{Prob}(\iota^{b'}=1|\iota^b=1)=\mu$  and non-eligibility is an absorbing state.
- Budget constraint:  $c + a' = (1 + r)a + \iota^b b(z)$ .
- Unemployment benefits are given by  $b(z) = b_0 \omega z$ .

#### Calibration: Common Parameters

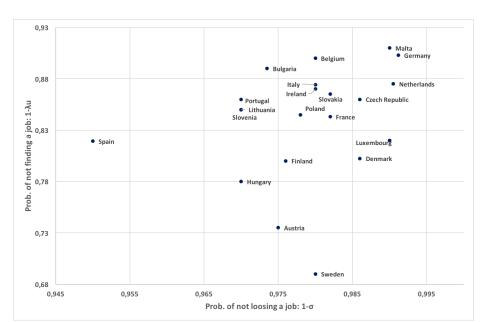
| Parameter  | Definition                        | Value |
|------------|-----------------------------------|-------|
| $\theta$   | Capital share of output           | 0.3   |
| $\beta$    | Discount factor                   | 0.98  |
| $ ho_z$    | Persistence of productivity       | 0.89  |
| $\sigma_z$ | Standard deviation of prod. shock | 0.1   |
| $\alpha$   | Utility cost of labor             | 0.8   |
| $\gamma$   | Utility cost of search            | 0.4   |


• Equilibrium interest rate  $r\to$  clears capital market of 6 largest EU economies: Germany, France, Italy, Spain, Netherlands, Sweden. r=1.7%

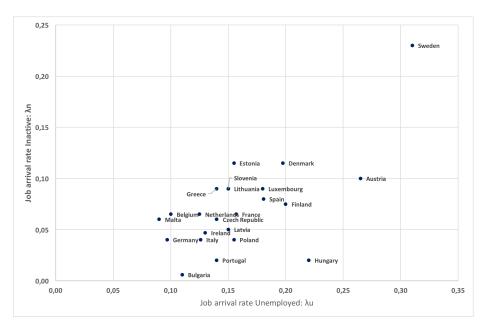
## Calibration: Country-Specific Parameters


| Parameter   | Definition                      | Related Target         |
|-------------|---------------------------------|------------------------|
| A           | Total factor productivity       | Average wage           |
| $\sigma$    | Job separation rate             | Flow $E-U$             |
| $\lambda_u$ | Job arrival rate for searchers  | Flow $U - E$           |
| $\lambda_n$ | Job arrival rate for inactive   | Unemployment $U/(E+U)$ |
| $\mu$       | Prob. of loosing UB eligibility | max duration           |
| $b_0$       | UB replacement rate             | Benefits/GDP           |
| au          | UI payroll tax rate             | Budget clearing        |

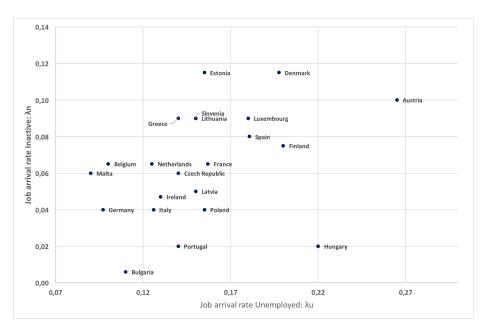
- The first panel of parameters is related to a country's labour market institutions.
- The second panel refers to unemployment policies.


## Unemployment Rates in Europe (2004q1-2013q4)




## Persistence of Empl. & Unempl. (2004q1-2013q4)




#### A new picture of EU labour markets: LM Rigidity



### A new picture of EU labour markets: Job Arrival Rates



### A new picture of EU labour markets: Job Arrival Rates

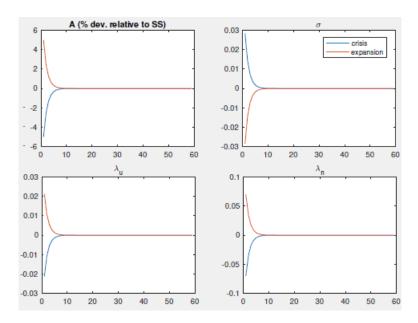


- The UI system insures country aggregate shocks.
- National benefit systems fixed:  $b_0$  and  $\mu$ .

- The UI system insures country aggregate shocks.
- National benefit systems fixed:  $b_0$  and  $\mu$ .
- Autarky: taxes increase in recessions and decrease in expansions (i.e. *pro-cyclical fiscal policy*):
  - fluctuations in consumption of the employed,
  - distortions in labour supply (quits, job acceptance).

- The UI system insures country aggregate shocks.
- National benefit systems fixed:  $b_0$  and  $\mu$ .
- Autarky: taxes increase in recessions and decrease in expansions (i.e. *pro-cyclical fiscal policy*):
  - fluctuations in consumption of the employed,
  - distortions in labour supply (quits, job acceptance).
- UI System: smooths tax rates.

- The UI system insures country aggregate shocks.
- National benefit systems fixed:  $b_0$  and  $\mu$ .
- Autarky: taxes increase in recessions and decrease in expansions (i.e. *pro-cyclical fiscal policy*):
  - fluctuations in consumption of the employed,
  - o distortions in labour supply (quits, job acceptance).
- UI System: smooths tax rates.
- Insurance is actuarially fair: government's intertemporal budget constraint is satisfied.


• Economy is in steady state at t = 0.

- Economy is in steady state at t = 0.
- At the end of t = 0, agents learn that in t = 1 the country will be hit either by a good or a bad persistent shock.

- Economy is in steady state at t = 0.
- At the end of t = 0, agents learn that in t = 1 the country will be hit either by a good or a bad persistent shock.
- Each shock has probability 1/2.
- After t=1 shock, economy returns to steady state. Agents have perfect foresight.

- Economy is in steady state at t = 0.
- At the end of t = 0, agents learn that in t = 1 the country will be hit either by a good or a bad persistent shock.
- Each shock has probability 1/2.
- After t=1 shock, economy returns to steady state. Agents have perfect foresight.
- Welfare measure (weighted E, U, I): compare ex-ante expected utility of going through the crisis/expansion in Autarky vs. with a constant tax.

### **Experiment 1: Country Specific Shock**



#### Policy Experiment 1: Welfare comparison

#### Experiment 1: National level UB policy, fixed national tax after the shock.

|             | Welfare gain** | Approval E* | Approval Ue* | Approval Une* | Approval I* | Approval Total* |
|-------------|----------------|-------------|--------------|---------------|-------------|-----------------|
| Germany     | 0.005%         | 91%         | 11%          | 10%           | 31%         | 85%             |
| Spain       | 0.007%         | 78%         | 4%           | 21%           | 1%          | 62%             |
| France      | 0.003%         | 86%         | 0%           | 17%           | 5%          | 74%             |
| Italy       | 0.002%         | 84%         | 14%          | 4%            | 7%          | 69%             |
| Netherlands | 0.006%         | 88%         | 2%           | 21%           | 1%          | 81%             |
| Sweden      | 0.002%         | 91%         | 9%           | 0%            | 0%          | 83%             |

<sup>\*\*</sup> consumption equivalent, % of autarky consumption

<sup>\* %</sup> population group/Total

- Introduce common UI policy: average  $b_0^U$  and duration  $d^U$ , financed jointly:  $\tau^U$ .
  - Transfers from countries with low to countries with high eligible unemployed (post reform).
  - The common UI system also affects job acceptance and search decisions.
  - Transfers and welfare gains need not have the opposite sign.
- We calculate these steady state transfers and the welfare gains/losses from the joint scheme.

#### Policy Experiment 3: National Policies

#### **Experiment 3: Common UB policy, common tax (joint budget)**

|             | E     | U     | 1     | τ (%) | b0   | d   |
|-------------|-------|-------|-------|-------|------|-----|
| Germany     | 84.4% | 6.6%  | 8.9%  | 2.1%  | 0.83 | 3.9 |
| Spain       | 72.9% | 14.0% | 13.1% | 4.2%  | 0.31 | 7.8 |
| France      | 86.3% | 8.2%  | 5.6%  | 2.0%  | 0.36 | 7.9 |
| Italy       | 74.3% | 9.5%  | 16.2% | 1.5%  | 0.43 | 2.6 |
| Netherlands | 87.5% | 5.0%  | 7.5%  | 2.3%  | 0.98 | 3.5 |
| Sweden      | 89.1% | 3.7%  | 7.2%  | 2.3%  | 0.64 | 4.5 |

### Policy Experiment 3: Policy Reform

#### Experiment 3: Common UB policy, common tax (joint budget)

|             | E     | U     | 1     | τ U (%) | b0 U | d U | Transfer*** | Welfare gain** |
|-------------|-------|-------|-------|---------|------|-----|-------------|----------------|
| Germany     | 84.3% | 6.8%  | 8.9%  | 2.9%    | 0.59 | 5.0 | 0.80        | -1.13          |
| Spain       | 72.6% | 14.1% | 13.3% | 2.9%    | 0.59 | 5.0 | -3.08       | 3.39           |
| France      | 84.5% | 8.0%  | 7.5%  | 2.9%    | 0.59 | 5.0 | 0.03        | 0.02           |
| Italy       | 78.8% | 10.7% | 10.5% | 2.9%    | 0.59 | 5.0 | -0.44       | 0.76           |
| Netherlands | 84.9% | 5.0%  | 10.0% | 2.9%    | 0.59 | 5.0 | 0.83        | -1.30          |
| Sweden      | 88.7% | 3.6%  | 7.7%  | 2.9%    | 0.59 | 5.0 | 0.54        | -0.69          |

<sup>\*\*\* %</sup> gdp

<sup>\*\*</sup> consumption variation, % of autarky consumption

### Policy Experiment 3: Approval rates

#### **Experiment 3: Common UB policy, common tax (joint budget)**

|             | Approval E* | Approval Ue* | App. Une* | Approval I* | Total* |
|-------------|-------------|--------------|-----------|-------------|--------|
| Germany     | 0%          | 0%           | 0%        | 0%          | 0%     |
| Spain       | 100%        | 100%         | 100%      | 100%        | 100%   |
| France      | 18%         | 100%         | 0%        | 65%         | 24%    |
| Italy       | 100%        | 100%         | 100%      | 100%        | 100%   |
| Netherlands | 0%          | 0%           | 0%        | 0%          | 0%     |
| Sweden      | 0%          | 0%           | 0%        | 0%          | 0%     |

<sup>\* %</sup> population group/Total

#### Policy Experiment 5: Optimal EU-UI

- Calculate the optimal  $(b_0, \mu)$  policy for union of 6 countries.
- For many countries an optimal EU system may be preferable to current national policies.
- Transfers are prevented by varying contribution payments (taxes) that depend on LM institutions. These transfers:
  - o can now be smooth: a risk-sharing effect not accounted for here;
  - $\circ\,$  are possibly the best statistic of the cost of having bad LM institutions,
  - creating an explicit incentive to improve them!

# Preliminary exercise 5: Welfare improving EU-UI

#### **Experiment 5: Common UB policy reform, without transfers.**

|             | τ (%) | τ' (%) | b0   | b0  | d   | d  | Welfare gain* (%) |
|-------------|-------|--------|------|-----|-----|----|-------------------|
| Italy       | 1.5%  | 2.3%   | 0.43 | 0.2 | 2.6 | 00 | 1.49%             |
| Germany     | 2.1%  | 1.3%   | 0.83 | 0.2 | 3.9 | 8  | 0.60%             |
| Spain       | 4.2%  | 3.0%   | 0.31 | 0.2 | 7.8 | 00 | 1.46%             |
| France      | 2.0%  | 1.4%   | 0.36 | 0.2 | 7.9 | 00 | 0.45%             |
| Netherlands | 2.3%  | 1.0%   | 0.98 | 0.2 | 3.5 | 8  | 0.14%             |
| Sweden      | 2.3%  | 0.4%   | 0.64 | 0.2 | 4.5 | 00 | 0.01%             |

Baseline policy
Better EU policy

<sup>\*</sup> consumption variation, % of autarky consumption

### Preliminary exercise 5: Approval rates

#### Experiment 5: Common UB policy reform, without transfers.

|             | Approval E* | Approval Ue* | Approval Une* | Approval I* | Approval Total* |
|-------------|-------------|--------------|---------------|-------------|-----------------|
| Italy       | 100.0%      | 100.0%       | 100.0%        | 100.0%      | 100.0%          |
| Germany     | 100.0%      | 54.6%        | 100.0%        | 100.0%      | 99.0%           |
| Spain       | 100.0%      | 100.0%       | 100.0%        | 100.0%      | 100.0%          |
| France      | 100.0%      | 86.0%        | 100.0%        | 100.0%      | 99.3%           |
| Netherlands | 52.4%       | 17.5%        | 100.0%        | 100.0%      | 56.6%           |
| Sweden      | 31.1%       | 2.4%         | 81.5%         | 70.7%       | 33.3%           |

st % population group/Total

### Preliminary exercise 5: Aggregate variables

#### **Experiment 5: Aggregate variables**

|             | E *  | *    | γ*  | K *  | S *  | L Efficiency* | Welfare ** |
|-------------|------|------|-----|------|------|---------------|------------|
| Italy       | 4%   | -33% | 4%  | 0.1% | -25% | -0.48%        | 1.49%      |
| Germany     | 0.5% | -1%  | -1% | -4%  | -13% | 0.03%         | 0.60%      |
| Spain       | -6%  | 9%   | -9% | -12% | 17%  | 0.88%         | 1.46%      |
| France      | -5%  | 6%   | -7% | -10% | 15%  | 0.53%         | 0.45%      |
| Netherlands | -4%  | 4%   | -5% | -9%  | 8%   | 0.52%         | 0.14%      |
| Sweden      | -5%  | 7%   | -6% | -9%  | 40%  | 1.21%         | 0.01%      |

<sup>\* %</sup> change, relative to baseline policy

<sup>\*\*</sup> consumption variation, % of autarky consumption

• We provide a framework and the first structural analysis of EU-UI policy reforms.

- We provide a framework and the first structural analysis of EU-UI policy reforms.
- Results:
  - A new map of EU labour markets: LM institutions are key in explaining cross-country differences
  - Different LM institutions lead to different unemployment outcomes.

- We provide a framework and the first structural analysis of EU-UI policy reforms.
- Results:
  - A new map of EU labour markets: LM institutions are key in explaining cross-country differences
  - Different LM institutions lead to different unemployment outcomes.
  - $\circ$  Gains from insuring shocks at the country level are small.
  - Gains from reforming national systems in a similar way can be large (inactivity drastically reduced).

• We provide a framework and the first structural analysis of EU-UI policy reforms.

#### • Results:

- A new map of EU labour markets: LM institutions are key in explaining cross-country differences
- Different LM institutions lead to different unemployment outcomes.
- $\circ$  Gains from insuring shocks at the country level are small.
- Gains from reforming national systems in a similar way can be large (inactivity drastically reduced).
- There is room for agreement on an EU-UI system that smooths taxes and better integrates the EU labour market!

- We provide a framework and the first structural analysis of EU-UI policy reforms.
- Results:
  - A new map of EU labour markets: LM institutions are key in explaining cross-country differences
  - Different LM institutions lead to different unemployment outcomes.
  - Gains from insuring shocks at the country level are small.
  - Gains from reforming national systems in a similar way can be large (inactivity drastically reduced).
  - There is room for agreement on an EU-UI system that smooths taxes and better integrates the EU labour market!
- Work in progress: Include other EU countries and fine tuning on the 'Optimal EU-UI'

Thanks!