On the Design of an European Unemployment Insurance Mechanism

Árpád Ábraháam João Brogueira de Sousa
Ramon Marimon* Lukas Mayr

European University Institute
* and Barcelona GSE - UPF, CEPR & NBER

ADEMU Galatina Workshop
Policies for Economic Stability:
Lessons and the Way Forward
August 28, 2017
Should there be EU Unemployment Insurance?
Should there be EU Unemployment Insurance?

- High unemployment + low deficit requirements: national UI is costly in recessions, resulting in pro-cyclical fiscal policies.

- Business cycles not perfectly correlated across EU: room for risk-sharing.

- Can strengthen European Labour Market Integration.
Should there be EU Unemployment Insurance?

- High unemployment + low deficit requirements: national UI is costly in recessions, resulting in pro-cyclical fiscal policies.

- Business cycles not perfectly correlated across EU: room for risk-sharing.

- Can strengthen European Labour Market Integration.

- Differences in U levels and flows: permanent cross-country transfers.

- Labour market differences: no agreement on a common design.

- Can violate the subsidiarity principle.
Answering the Policy Question

• Multi-region model with heterogenous labour markets: EU countries;
Answering the Policy Question

- Multi-region model with heterogeneous labour markets: EU countries;

- Individual risk: Unemployment insurance;
Answering the Policy Question

- Multi-region model with heterogeneous labour markets: EU countries;

- Individual risk: Unemployment insurance;

- Aggregate risk, not perfectly correlated across countries: Country risk sharing;
This Project: The Model

First structural model of EU labour markets to evaluate EU-UI policy reform (see Dolls et al. (2015) and Beblacy and Maselli (2014)).
This Project: The Model

First structural model of EU labour markets to evaluate EU-UI policy reform (see Dolls et al. (2015) and Beblacy and Maselli (2014)).

The model generates worker flows and distributions across three states: Employment, Unemployment, Inactivity, based on Krusell et al. (2011) and (2015).
This Project: The Model

First structural model of EU labour markets to evaluate EU-UI policy reform (see Dolls et al. (2015) and Beblacy and Maselli (2014)).

The model generates worker flows and distributions across three states: Employment, Unemployment, Inactivity, based on Krusell et al. (2011) and (2015).

- Long run differences between countries (LM institutions, UI systems, technology).

- Short run differences (similar economic fluctuations), in a parsimonious way.
This Project: The Model

First structural model of EU labour markets to evaluate EU-UI policy reform (see Dolls et al. (2015) and Beblacy and Maselli (2014)).

The model generates worker flows and distributions across three states: Employment, Unemployment, Inactivity, based on Krusell et al. (2011) and (2015).

- Long run differences between countries (LM institutions, UI systems, technology).
- Short run differences (similar economic fluctuations), in a parsimonious way.
- Calibration to EU countries, LM data from Lalé and Tarasonis (2017).
- Map of labour market institutions across Europe.
This project: answering the question with policy experiments in dynamic calibrated economies

- Exp. 1 - On UI risk-sharing: Country specific severe shocks

- Exp. 3 and 5 - On EU-UI: Steady state fluctuations
 - Exp. 3 - 'Average' UI policy resulting in permanent country transfers, that depend on country specific labour markets
 - Exp. 5 - 'Countries' Pareto improving' UI policy with zero permanent country transfers and differential tax rates
This project: answering the question with policy experiments in dynamic calibrated economies

- Exp. 1 - On UI risk-sharing: Country specific severe shocks
 - Compute ‘upper bound’ on EU-UI insurance gains: perfectly negatively correlated shocks, alternative to EU-UI is autarky (no access to debt markets).
This project: answering the question
with policy experiments in dynamic calibrated economies

- Exp. 1 - On UI risk-sharing: Country specific severe shocks
 - Compute ‘upper bound’ on EU-UI insurance gains: perfectly negatively correlated shocks, alternative to EU-UI is autarky (no access to debt markets).

- Exp. 3 and 5 - On EU-UI: Steady state fluctuations
This project: answering the question
with policy experiments in dynamic calibrated economies

- Exp. 1 - On UI risk-sharing: *Country specific severe shocks*
 - Compute ‘upper bound’ on EU-UI insurance gains: perfectly negatively correlated shocks, alternative to EU-UI is autarky (no access to debt markets).

- Exp. 3 and 5 - On EU-UI: *Steady state fluctuations*
 - Exp. 3 - ‘Average’ UI policy resulting in permanent country transfers, that depend on country specific labour markets.
This project: answering the question
with policy experiments in dynamic calibrated economies

- Exp. 1 - On UI risk-sharing: **Country specific severe shocks**
 - Compute ‘upper bound’ on EU-UI insurance gains: perfectly negatively correlated shocks, alternative to EU-UI is autarky (no access to debt markets).

- Exp. 3 and 5 - On EU-UI: **Steady state fluctuations**
 - Exp. 3 - ‘Average’ UI policy resulting in permanent country transfers, that depend on country specific labour markets.
 - Exp. 5 - ‘Countries’ Pareto improving’ UI policy with *zero* permanent country transfers and differential tax rates.
Model: Main Elements

- A Bewley economy:
 - Continuum of agents, live forever: idiosyncratic labour productivity risk, save in a riskless asset with return $1 + r$.
Model: Main Elements

- A Bewley economy:
 - Continuum of agents, live forever: idiosyncratic labour productivity risk, save in a riskless asset with return $1 + r$.

- Closed competitive labour markets, subject to frictions: job separations, job findings.
Model: Main Elements

• A Bewley economy:
 ◦ Continuum of agents, live forever: idiosyncratic labour productivity risk, save in a riskless asset with return $1 + r$.

• Closed competitive labour markets, subject to frictions: job separations, job findings.

• Agents optimize whether to work or actively search for a job: Employed, Unemployed or Inactive.
Model: Main Elements

• A Bewley economy:
 ◦ Continuum of agents, live forever: idiosyncratic labour productivity risk, save in a riskless asset with return $1 + r$.

• Closed competitive labour markets, subject to frictions: job separations, job findings.

• Agents optimize whether to work or actively search for a job: Employed, Unemployed or Inactive.

• No labour mobility across countries!
Model: Dynamic labour markets

- Employed Labour income, utility cost α of work:
 - may quit (not eligible for UI);
 - or loose the job with probability σ (eligible for UI).
Model: Dynamic labour markets

- **Employed** Labour income, utility cost \(\alpha \) of work:
 - may **quit** (not eligible for UI);
 - or loose the job with probability \(\sigma \) (eligible for UI).

- **Unemployed** Costly search effort \(\gamma \):
 - receive job offers with probability \(\lambda_u \)
 - may **reject** offers.
 - if eligible, receive UI benefits. Lose eligibility with probability \(\mu \).
Model: Dynamic labour markets

- **Employed** Labour income, utility cost α of work:
 - may quit (not eligible for UI);
 - or loose the job with probability σ (eligible for UI).

- **Unemployed** Costly search effort γ:
 - receive job offers with probability λ_u
 - may reject offers.
 - if eligible, receive UI benefits. Lose eligibility with probability μ.

- **Inactive** Do not actively search
 - receive job offers at a lower rate: λ_n
 - may reject offers
 - not eligible for UI benefits
Model: Dynamic labour markets

- **Employed** Labour income, utility cost α of work:
 - may quit (not eligible for UI);
 - or loose the job with probability σ (eligible for UI).

- **Unemployed** Costly search effort γ:
 - receive job offers with probability λ_u
 - may reject offers.
 - if eligible, receive UI benefits. Lose eligibility with probability μ.

- **Inactive** Do not actively search
 - receive job offers at a lower rate: λ_n
 - may reject offers
 - not eligible for UI benefits

- UI financed with proportional tax τ on labour income: replacement rate b_0 and average duration $1/\mu$, conditional on search. Balanced budget.
Model: Value Functions

Decision with an employment opportunity:

\[V(a, z, \iota^b) = \max_{w \in \{0, 1\}} \left\{ wW(a, z) + (1 - w)J(a, z, \iota^b) \right\} \]

\(W \): value of working and \(J \): value of not working.
Model: Value Functions

Decision with an employment opportunity:

\[V(a, z, \iota^b) = \max_{w \in \{0, 1\}} \left\{ wW(a, z) + (1 - w)J(a, z, \iota^b) \right\} \]

\(W\): value of working and \(J\): value of not working.

Decision without an employment opportunity:

\[J(a, z, \iota^b) = \max_{s \in \{0, 1\}} \left\{ sU(a, z, \iota^b) + (1 - s)N(a, z) \right\} \]

\(U\): value of searching (Unemployed) and \(N\): value of not searching (Inactive).
Model: Value Functions

Decision with an employment opportunity:

\[
V(a, z, \iota^b) = \max_{w \in \{0, 1\}} \left\{ wW(a, z) + (1 - w)J(a, z, \iota^b) \right\}
\]

\(W\): value of working and \(J\): value of not working.

Decision without an employment opportunity:

\[
J(a, z, \iota^b) = \max_{s \in \{0, 1\}} \left\{ sU(a, z, \iota^b) + (1 - s)N(a, z) \right\}
\]

\(U\): value of searching (Unemployed) and \(N\): value of not searching (Inactive).

\(a\): asset level; \(z\): productivity level; \(\iota^b\): eligibility for benefits; \(\gamma\): cost of search, i.i.d. with mean \(\bar{\gamma}\) and variance \(\sigma_{\gamma}^2\).
Model: Employed

Bellman equation of employed:

\[W(a, z) = \max_{(c, a') \in \mathcal{B}_t} \left\{ \log c - \alpha + \beta \mathbb{E}\left[(1 - \sigma) V(a', z', 0) \right. \right. \]
\[+ \sigma \left((1 - \lambda_u) J(a', z', 1) + \lambda_u V(a', z', 1) \right) \left. \right| z \right\}. \]

\(\alpha \): utility cost of working; \(\sigma \): separation rate; \(\lambda_u \): job finding rate while searching.
Model: Employed

Bellman equation of employed:

\[W(a, z) = \max_{(c, a') \in B_t} \left\{ \log c - \alpha + \beta \mathbb{E} \left[(1 - \sigma) V(a', z', 0) \right. \right. \]
\[+ \sigma \left((1 - \lambda_u) J(a', z', 1) + \lambda_u V(a', z', 1) \right) | z \left\} \right. \]

\(\alpha\): utility cost of working; \(\sigma\): separation rate; \(\lambda_u\): job finding rate while searching.

- Quitters are not entitled for unemployment benefits.
- Entitlement for unemployment benefits in 1st period of unemployment: with prob. 1 if after separation & with prob. 0 if after quitting.
- Budget constraint: \(c + a' = (1 + r)a + (1 - \tau)\omega z\).
Bellman equation of unemployed (searcher):

\[
U(a, z, \iota^b) = \max_{(c, a') \in \mathcal{B}_t} \left\{ \log c - \gamma + \beta \mathbb{E} \left[\lambda_u V(a', z', \iota^{b'}) \right] + (1 - \lambda_u) J(a', z', \iota^{b'}) | z \right\}
\]
Model: Unemployed

Bellman equation of unemployed (searcher):

\[
U(a, z, \iota^b) = \max_{(c, a') \in B_t} \left\{ \log c - \gamma + \beta \mathbb{E} \left[\lambda_u V(a', z', \iota^{b'}) \right] + (1 - \lambda_u) J(a', z', \iota^{b'}) | z \right\}
\]

- \(\text{Prob}(\iota^{b'} = 1 | \iota^b = 1) = \mu \) and non-eligibility is an absorbing state.
- Budget constraint: \(c + a' = (1 + r)a + \iota^b b(z) \).
- Unemployment benefits are given by \(b(z) = b_0 \omega z \).
Calibration: Common Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>Capital share of output</td>
<td>0.3</td>
</tr>
<tr>
<td>β</td>
<td>Discount factor</td>
<td>0.98</td>
</tr>
<tr>
<td>ρ_z</td>
<td>Persistence of productivity</td>
<td>0.89</td>
</tr>
<tr>
<td>σ_z</td>
<td>Standard deviation of prod. shock</td>
<td>0.1</td>
</tr>
<tr>
<td>α</td>
<td>Utility cost of labor</td>
<td>0.8</td>
</tr>
<tr>
<td>γ</td>
<td>Utility cost of search</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- Equilibrium interest rate $r \rightarrow$ clears capital market of 6 largest EU economies: Germany, France, Italy, Spain, Netherlands, Sweden. $r = 1.7\%$
Calibration: Country-Specific Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Related Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Total factor productivity</td>
<td>Average wage</td>
</tr>
<tr>
<td>σ</td>
<td>Job separation rate</td>
<td>Flow $E - U$</td>
</tr>
<tr>
<td>λ_u</td>
<td>Job arrival rate for searchers</td>
<td>Flow $U - E$</td>
</tr>
<tr>
<td>λ_n</td>
<td>Job arrival rate for inactive</td>
<td>Unemployment $U/(E + U)$</td>
</tr>
<tr>
<td>μ</td>
<td>Prob. of loosing UB eligibility</td>
<td>max duration</td>
</tr>
<tr>
<td>b_0</td>
<td>UB replacement rate</td>
<td>Benefits/GDP</td>
</tr>
<tr>
<td>τ</td>
<td>UI payroll tax rate</td>
<td>Budget clearing</td>
</tr>
</tbody>
</table>

- The first panel of parameters is related to a country’s labour market institutions.
- The second panel refers to unemployment policies.
Unemployment Rates in Europe (2004q1-2013q4)
Persistence of Empl. & Unempl. (2004q1-2013q4)
A new picture of EU labour markets: **LM Rigidity**
A new picture of EU labour markets: Job Arrival Rates
A new picture of EU labour markets: Job Arrival Rates
Policy Experiments
Policy Experiment 1

• The UI system insures country aggregate shocks.
• National benefit systems fixed: b_0 and μ.
Policy Experiment 1

• The UI system insures country aggregate shocks.

• National benefit systems fixed: b_0 and μ.

• Autarky: taxes increase in recessions and decrease in expansions (i.e. *pro-cyclical fiscal policy*):
 - fluctuations in consumption of the employed,
 - distortions in labour supply (quits, job acceptance).
Policy Experiment 1

- The UI system insures country aggregate shocks.
- National benefit systems fixed: b_0 and μ.
- Autarky: taxes increase in recessions and decrease in expansions (i.e. *pro-cyclical fiscal policy*):
 - fluctuations in consumption of the employed,
 - distortions in labour supply (quits, job acceptance).
- UI System: smooths tax rates.
Policy Experiment 1

- The UI system insures country aggregate shocks.
- National benefit systems fixed: b_0 and μ.
- Autarky: taxes increase in recessions and decrease in expansions (i.e. *pro-cyclical fiscal policy*):
 - fluctuations in consumption of the employed,
 - distortions in labour supply (quits, job acceptance).
- UI System: *smoothes tax rates*.
- Insurance is actuarially fair: government’s intertemporal budget constraint is satisfied.
Policy Experiment 1

- Economy is in steady state at $t = 0$.

...
Policy Experiment 1

- Economy is in steady state at $t = 0$.

- At the end of $t = 0$, agents learn that in $t = 1$ the country will be hit either by a good or a bad persistent shock.
Policy Experiment 1

- Economy is in steady state at $t = 0$.

- At the end of $t = 0$, agents learn that in $t = 1$ the country will be hit either by a good or a bad persistent shock.

- Each shock has probability 1/2.

- After $t = 1$ shock, economy returns to steady state. Agents have perfect foresight.
Policy Experiment 1

• Economy is in steady state at $t = 0$.

• At the end of $t = 0$, agents learn that in $t = 1$ the country will be hit either by a good or a bad persistent shock.

• Each shock has probability 1/2.

• After $t = 1$ shock, economy returns to steady state. Agents have perfect foresight.

• Welfare measure (weighted E, U, I): compare ex-ante expected utility of going through the crisis/expansion in Autarky vs. with a constant tax.
Experiment 1: Country Specific Shock
Policy Experiment 1: Welfare comparison

Experiment 1: National level UB policy, fixed national tax after the shock.

<table>
<thead>
<tr>
<th></th>
<th>Welfare gain**</th>
<th>Approval E*</th>
<th>Approval Ue*</th>
<th>Approval Une*</th>
<th>Approval I*</th>
<th>Approval Total*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>0.005%</td>
<td>91%</td>
<td>11%</td>
<td>10%</td>
<td>31%</td>
<td>85%</td>
</tr>
<tr>
<td>Spain</td>
<td>0.007%</td>
<td>78%</td>
<td>4%</td>
<td>21%</td>
<td>1%</td>
<td>62%</td>
</tr>
<tr>
<td>France</td>
<td>0.003%</td>
<td>86%</td>
<td>0%</td>
<td>17%</td>
<td>5%</td>
<td>74%</td>
</tr>
<tr>
<td>Italy</td>
<td>0.002%</td>
<td>84%</td>
<td>14%</td>
<td>4%</td>
<td>7%</td>
<td>69%</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.006%</td>
<td>88%</td>
<td>2%</td>
<td>21%</td>
<td>1%</td>
<td>81%</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.002%</td>
<td>91%</td>
<td>9%</td>
<td>0%</td>
<td>0%</td>
<td>83%</td>
</tr>
</tbody>
</table>

** consumption equivalent, % of autarky consumption

* % population group/Total
Policy Experiment 3

- Introduce common UI policy: average b^U_0 and duration d^U, financed jointly: τ^U.

 - Transfers from countries with low to countries with high eligible unemployed (post reform).

 - The common UI system also affects job acceptance and search decisions.

 - Transfers and welfare gains need not have the opposite sign.

- We calculate these steady state transfers and the welfare gains/losses from the joint scheme.
Policy Experiment 3: National Policies

Experiment 3: Common UB policy, common tax (joint budget)

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>U</th>
<th>I</th>
<th>τ (%)</th>
<th>b0</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>84.4%</td>
<td>6.6%</td>
<td>8.9%</td>
<td>2.1%</td>
<td>0.83</td>
<td>3.9</td>
</tr>
<tr>
<td>Spain</td>
<td>72.9%</td>
<td>14.0%</td>
<td>13.1%</td>
<td>4.2%</td>
<td>0.31</td>
<td>7.8</td>
</tr>
<tr>
<td>France</td>
<td>86.3%</td>
<td>8.2%</td>
<td>5.6%</td>
<td>2.0%</td>
<td>0.36</td>
<td>7.9</td>
</tr>
<tr>
<td>Italy</td>
<td>74.3%</td>
<td>9.5%</td>
<td>16.2%</td>
<td>1.5%</td>
<td>0.43</td>
<td>2.6</td>
</tr>
<tr>
<td>Netherlands</td>
<td>87.5%</td>
<td>5.0%</td>
<td>7.5%</td>
<td>2.3%</td>
<td>0.98</td>
<td>3.5</td>
</tr>
<tr>
<td>Sweden</td>
<td>89.1%</td>
<td>3.7%</td>
<td>7.2%</td>
<td>2.3%</td>
<td>0.64</td>
<td>4.5</td>
</tr>
</tbody>
</table>
Policy Experiment 3: Policy Reform

Experiment 3: Common UB policy, common tax (joint budget)

<table>
<thead>
<tr>
<th>Country</th>
<th>E (%)</th>
<th>U (%)</th>
<th>I (%)</th>
<th>τ U (%)</th>
<th>b0 U</th>
<th>d U</th>
<th>Transfer***</th>
<th>Welfare gain**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>84.3%</td>
<td>6.8%</td>
<td>8.9%</td>
<td>2.9%</td>
<td>0.59</td>
<td>5.0</td>
<td>0.80</td>
<td>-1.13</td>
</tr>
<tr>
<td>Spain</td>
<td>72.6%</td>
<td>14.1%</td>
<td>13.3%</td>
<td>2.9%</td>
<td>0.59</td>
<td>5.0</td>
<td>-3.08</td>
<td>3.39</td>
</tr>
<tr>
<td>France</td>
<td>84.5%</td>
<td>8.0%</td>
<td>7.5%</td>
<td>2.9%</td>
<td>0.59</td>
<td>5.0</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>Italy</td>
<td>78.8%</td>
<td>10.7%</td>
<td>10.5%</td>
<td>2.9%</td>
<td>0.59</td>
<td>5.0</td>
<td>-0.44</td>
<td>0.76</td>
</tr>
<tr>
<td>Netherlands</td>
<td>84.9%</td>
<td>5.0%</td>
<td>10.0%</td>
<td>2.9%</td>
<td>0.59</td>
<td>5.0</td>
<td>0.83</td>
<td>-1.30</td>
</tr>
<tr>
<td>Sweden</td>
<td>88.7%</td>
<td>3.6%</td>
<td>7.7%</td>
<td>2.9%</td>
<td>0.59</td>
<td>5.0</td>
<td>0.54</td>
<td>-0.69</td>
</tr>
</tbody>
</table>

*** % gdp

** consumption variation, % of autarky consumption
Experiment 3: Common UB policy, common tax (joint budget)

<table>
<thead>
<tr>
<th></th>
<th>Approval E*</th>
<th>Approval Ue*</th>
<th>App. Une*</th>
<th>Approval I*</th>
<th>Total*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Spain</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>France</td>
<td>18%</td>
<td>100%</td>
<td>0%</td>
<td>65%</td>
<td>24%</td>
</tr>
<tr>
<td>Italy</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Sweden</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

* % population group/Total
Policy Experiment 5: Optimal EU-UI

- Calculate the optimal \((b_0, \mu)\) policy for union of 6 countries.

- For many countries an optimal EU system may be preferable to current national policies.

- Transfers are prevented by varying contribution payments (taxes) that depend on LM institutions. These transfers:
 - can now be smooth: a risk-sharing effect not accounted for here;
 - are possibly the best statistic of the cost of having bad LM institutions,
 - creating an explicit incentive to improve them!
Preliminary exercise 5: Welfare improving EU-UI

Experiment 5: Common UB policy reform, without transfers.

<table>
<thead>
<tr>
<th>Country</th>
<th>τ (%)</th>
<th>τ' (%)</th>
<th>b_0</th>
<th>b_0</th>
<th>d</th>
<th>d</th>
<th>Welfare gain* (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italy</td>
<td>1.5%</td>
<td>2.3%</td>
<td>0.43</td>
<td>0.2</td>
<td>2.6</td>
<td>∞</td>
<td>1.49%</td>
</tr>
<tr>
<td>Germany</td>
<td>2.1%</td>
<td>1.3%</td>
<td>0.83</td>
<td>0.2</td>
<td>3.9</td>
<td>∞</td>
<td>0.60%</td>
</tr>
<tr>
<td>Spain</td>
<td>4.2%</td>
<td>3.0%</td>
<td>0.31</td>
<td>0.2</td>
<td>7.8</td>
<td>∞</td>
<td>1.46%</td>
</tr>
<tr>
<td>France</td>
<td>2.0%</td>
<td>1.4%</td>
<td>0.36</td>
<td>0.2</td>
<td>7.9</td>
<td>∞</td>
<td>0.45%</td>
</tr>
<tr>
<td>Netherlands</td>
<td>2.3%</td>
<td>1.0%</td>
<td>0.98</td>
<td>0.2</td>
<td>3.5</td>
<td>∞</td>
<td>0.14%</td>
</tr>
<tr>
<td>Sweden</td>
<td>2.3%</td>
<td>0.4%</td>
<td>0.64</td>
<td>0.2</td>
<td>4.5</td>
<td>∞</td>
<td>0.01%</td>
</tr>
</tbody>
</table>

Baseline policy
Better EU policy

* consumption variation, % of autarky consumption
Preliminary exercise 5: Approval rates

Experiment 5: Common UB policy reform, without transfers.

<table>
<thead>
<tr>
<th></th>
<th>Approval E*</th>
<th>Approval Ue*</th>
<th>Approval Une*</th>
<th>Approval I*</th>
<th>Approval Total*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italy</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Germany</td>
<td>100.0%</td>
<td>54.6%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>99.0%</td>
</tr>
<tr>
<td>Spain</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>France</td>
<td>100.0%</td>
<td>86.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>99.3%</td>
</tr>
<tr>
<td>Netherlands</td>
<td>52.4%</td>
<td>17.5%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>56.6%</td>
</tr>
<tr>
<td>Sweden</td>
<td>31.1%</td>
<td>2.4%</td>
<td>81.5%</td>
<td>70.7%</td>
<td>33.3%</td>
</tr>
</tbody>
</table>

* % population group/Total
Preliminary exercise 5: Aggregate variables

Experiment 5: Aggregate variables

<table>
<thead>
<tr>
<th></th>
<th>E *</th>
<th>I *</th>
<th>Y *</th>
<th>K *</th>
<th>S *</th>
<th>L Efficiency*</th>
<th>Welfare **</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italy</td>
<td>4%</td>
<td>-33%</td>
<td>4%</td>
<td>0.1%</td>
<td>-25%</td>
<td>-0.48%</td>
<td>1.49%</td>
</tr>
<tr>
<td>Germany</td>
<td>0.5%</td>
<td>-1%</td>
<td>-1%</td>
<td>-4%</td>
<td>-13%</td>
<td>0.03%</td>
<td>0.60%</td>
</tr>
<tr>
<td>Spain</td>
<td>-6%</td>
<td>9%</td>
<td>-9%</td>
<td>-12%</td>
<td>17%</td>
<td>0.88%</td>
<td>1.46%</td>
</tr>
<tr>
<td>France</td>
<td>-5%</td>
<td>6%</td>
<td>-7%</td>
<td>-10%</td>
<td>15%</td>
<td>0.53%</td>
<td>0.45%</td>
</tr>
<tr>
<td>Netherlands</td>
<td>-4%</td>
<td>4%</td>
<td>-5%</td>
<td>-9%</td>
<td>8%</td>
<td>0.52%</td>
<td>0.14%</td>
</tr>
<tr>
<td>Sweden</td>
<td>-5%</td>
<td>7%</td>
<td>-6%</td>
<td>-9%</td>
<td>40%</td>
<td>1.21%</td>
<td>0.01%</td>
</tr>
</tbody>
</table>

* % change, relative to baseline policy

** consumption variation, % of autarky consumption
Conclusions

- We provide a framework and the first structural analysis of EU-UI policy reforms.

- Results:
 - A new map of EU labour markets: LM institutions are key in explaining cross-country differences.
 - Different LM institutions lead to different unemployment outcomes.
 - Gains from insuring shocks at the country level are small.
 - Gains from reforming national systems in a similar way can be large (inactivity drastically reduced).
 - There is room for agreement on an EU-UI system that smooths taxes and better integrates the EU labour market!
Conclusions

• We provide a framework and the first structural analysis of EU-UI policy reforms.

• Results:
 ○ A new map of EU labour markets: LM institutions are key in explaining cross-country differences
 ○ Different LM institutions lead to different unemployment outcomes.

• Work in progress: Include other EU countries and fine tuning on the 'Optimal EU-UI'
Conclusions

• We provide a framework and the first structural analysis of EU-UI policy reforms.

• Results:
 ○ A new map of EU labour markets: LM institutions are key in explaining cross-country differences
 ○ Different LM institutions lead to different unemployment outcomes.
 ○ Gains from insuring shocks at the country level are small.
 ○ Gains from reforming national systems in a similar way can be large (inactivity drastically reduced).
Conclusions

• We provide a framework and the first structural analysis of EU-UI policy reforms.

• Results:
 ◦ A new map of EU labour markets: LM institutions are key in explaining cross-country differences
 ◦ Different LM institutions lead to different unemployment outcomes.
 ◦ Gains from insuring shocks at the country level are small.
 ◦ Gains from reforming national systems in a similar way can be large (inactivity drastically reduced).
 ◦ There is room for agreement on an EU-UI system that smooths taxes and better integrates the EU labour market!
Conclusions

• We provide a framework and the first structural analysis of EU-UI policy reforms.

• Results:
 ◦ A new map of EU labour markets: LM institutions are key in explaining cross-country differences
 ◦ Different LM institutions lead to different unemployment outcomes.
 ◦ Gains from insuring shocks at the country level are small.
 ◦ Gains from reforming national systems in a similar way can be large (inactivity drastically reduced).
 ◦ There is room for agreement on an EU-UI system that smooths taxes and better integrates the EU labour market!

• Work in progress: Include other EU countries and fine tuning on the ‘Optimal EU-UI’
Thanks!