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Abstract

Several frictions restrict the government’s ability to tax assets. First, it is very costly

to monitor trades on international asset markets. Second, agents can resort to nonob-

servable low-return assets such as cash, gold or foreign currencies if taxes on observable

assets become too high. This paper shows that limitations in asset taxation have impor-

tant consequences for the taxation of labor income. We study a simple dynamic moral

hazard model of social insurance with observable and nonobservable saving decisions.

We find that optimal labor income taxes become less progressive when the ability to tax

savings is limited.

Keywords: Optimal Income Taxation, Capital Taxation, Progressivity.

JEL: D82, D86, E21, H21.

∗European University Institute, Florence. E-mail address: Arpad.Abraham@EUI.eu
†Corresponding author. Institute for International Economic Studies (IIES), Stockholm University, SE-10691

Stockholm, Sweden, Phone: +46 8 16 35 64, Fax: +46 8 16 14 43, E-mail address: sebastian.koehne@iies.su.se
‡Bocconi University, IGIER, IFS, and CEPR. E-mail address: nicola.pavoni@unibocconi.it



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

1 Introduction

The existence of international asset markets implies that taxation authorities do not have

perfect control over agents’ wealth and consumption. This creates an important obstacle for

tax policy:

“In a world of high and growing capital mobility there is a limit to the amount of

tax that can be levied without inducing investors to hide their wealth in foreign

tax havens.” (Mirrlees Review 2010, p.916)

According to a study by the Tax Justice Network, in 2010 more than $21 trillion of global

private financial wealth were invested in offshore accounts and not reported to the tax au-

thorities. These concerns motivated the recent legal steps by the most developed economies

to crack down on off-shore bank accounts and the traditional norms of bank secrecy. How-

ever, even when agents choose not to hide their wealth abroad, they have access to a number

of nonobservable storage technologies at home. For example, agents can accumulate cash,

gold, or durable goods. These assets bring lower returns, but nonetheless impose limits for

the collection of taxes on assets that are more easily observed.

Motivated by these considerations, this paper explores optimal tax systems in a frame-

work where assets are nonobservable. Our findings show that labor income taxes become

less progressive when the government’s ability to observe and tax assets is limited. Through-

out the paper, we measure the progressivity of labor income taxes based on the concavity

of the associated consumption allocation. Tax systems and allocations are closely related

in our framework because constrained efficient allocations can be implemented with non-

linear taxes on labor income and linear taxes on assets. Because of this relationship, our

measure of progressivity captures the slope of the marginal tax rate on labor income.1 We

obtain our results by contrasting two stylized environments. In the first, consumption and

assets are observable (and contractable) for the government. In the second environment,

these choices are private information. We compare the constrained efficient allocations of

the two scenarios. Assuming that absolute risk aversion is convex, we find that in the sce-

nario with nonobservable assets, optimal consumption moves in a less concave way with

labor income. In this sense, the optimal allocation becomes less progressive when assets are

nonobservable.

1For example, a constant marginal tax rate on labor income results in a linear relationship between income
and consumption. If the marginal tax rate increases with labor income, the relationship becomes concave. Ac-
cording to our definition, tax systems with rising marginal tax rates on labor income are, thus, more progressive
than systems with a constant marginal tax rate.
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We study a tractable dynamic model of social insurance. A continuum of ex ante iden-

tical agents influence their labor incomes by exerting effort. Labor income is subject to un-

certainty and effort is private information. This creates a moral hazard problem. The social

planner faces a trade-off between insuring agents against idiosyncratic income uncertainty

and the associated disincentive effects. In addition, agents have access to a risk-free asset,

which gives them a means for self-insurance.

In this model, the planner wants to manipulate agents’ asset decisions, because asset ac-

cumulation provides an insurance against the idiosyncratic income uncertainty and thereby

reduces the incentives to exert effort.2 When fully capable of doing so, the planner uses asset

taxation to deter the agent from accumulating assets and labor income taxation to balance

consumption insurance and effort incentives optimally. When asset taxation is limited, the

planner is forced to use labor income taxation also to reduce the agent’s incentive to save.

Efficiency requires that, for each income state, the costs of increasing the agent’s utility by

a marginal unit equal the benefits of doing so. A marginal increase in utility in a state with

consumption c reduces the agent’s marginal return to savings in that state by Ra(c), where

a(c) is the absolute risk aversion of the agent at consumption c in that state and R is the

asset return.3 Hence, under limited asset taxation, there is an additional social return to al-

locating utility to a given state and this return is proportional to the level of absolute risk

aversion of the agent. Therefore, unless absolute risk aversion is constant or linear, limits to

asset taxation have direct implications for the curvature of optimal consumption.4 In par-

ticular, whenever absolute risk aversion is convex, the planner finds it optimal to generate

an additional convexity (or reduced progressivity) of consumption when asset taxation is

limited.

The paper also illustrates the quantitative impact of asset taxation on optimal labor tax

progressivity. The calibration of the key parameters of our framework is not straightfor-

ward because the technology that determines how effort affects future income is not directly

observable. We use consumption and income data from the PSID (Panel Study of Income

Dynamics) as adapted by Blundell, Pistaferri and Preston (2008). In the calibration exer-

cise, we assume that the data is generated by a tax system where labor income taxes are set

2See Diamond and Mirrlees (1978), Rogerson (1985), and Golosov, Kocherlakota and Tsyvinski (2003).
3A marginal increase of utility in a state with consumption c reduces the agent’s marginal utility in that

state by −u′′(c)/u′(c). To increase u(c) by ε, indeed, c has to be increased by ε/u′(c). The first-order effect on
the agent’s marginal utility is therefore given by −εu′′(c)/u′(c).

4Naturally, the very same argument implies that both the level and slope of the optimal consumption allo-
cation might also be affected by the properties of absolute risk aversion.

2



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

optimally given the existing asset income tax rate.5 This calibration strategy has the advan-

tage that all fundamental parameters can be identified using only one cross-sectional joint

distribution of consumption and income.

Based on the calibrated parameters, we compare the optimal allocations of optimal asset

taxation (observable assets) and limited asset taxation (hidden assets). Under optimal asset

taxation, the progressivity of the optimal allocation increases sizeably. Our measure of the

curvature of consumption increases by 4% for log utility, and between 24% and 49% for

relative risk aversion levels of 2 and 3. The tax rates on asset income in the scenario with

observable assets are high and exceed 90% for all specifications. Although our numerical

simulations are only illustrative, they suggest that a limited capacity to tax assets can have

a substantial impact on the optimal progressivity of income taxes.

The paper proceeds as follows. Section 2 surveys the related literature. Section 3 de-

scribes the setup of the model. Section 4 presents the theoretical results of the paper. We

show that hidden asset accumulation leads to optimal consumption schemes that are less

progressive. Section 5 illustrates the quantitative implications of our results. Section 6 dis-

cusses model limitations and viable extensions. The appendix collects all proofs that are

omitted from the main text and provides further details on the calibration strategy for Sec-

tion 5.

2 Related literature

To the best of our knowledge, this is the first paper that explores optimal income taxa-

tion in a framework where assets are nonobservable. Recent work on dynamic Mirrleesian

economies analyzes optimal income taxes when assets are observable/taxable without fric-

tions; see Farhi and Werning (2013) and Golosov, Troshkin and Tsyvinski (2013). While the

Mirrlees (1971) framework focuses on redistribution in a population with heterogeneous

skills that are exogenously distributed, our approach highlights the social insurance aspect

of income taxation. In spirit, our model is therefore closer to the works by Varian (1980)

and Eaton and Rosen (1980). Kapicka and Neira (2015) also study optimal taxation in a

moral hazard model. Human capital is nonobservable (similar to the effort decision in our

framework) but consumption and savings are observable in their model.

With respect to the nonobservability of assets, our model is related to the contribution

by Golosov and Tsyvinski (2007) who analyze capital taxation in a dynamic Mirrleesian

5We set the asset income tax rate to 40%. This rate is in line with U.S. effective tax rates on capital income
calculated by Mendoza, Razin and Tesar (1994) and Domeij and Heathcote (2004).
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economy with private insurance markets and hidden asset trades. Our model provides a

systematic comparison between second best and third best allocations. In particular, we

analyze how the progressivity of optimal allocations depends on the observability of asset

holdings.

An entirely different link between labor income and capital income taxation is explored

by Conesa, Kitao and Krueger (2009). Using a life-cycle model with age-dependent labor

supply elasticities and borrowing constraints, they argue that capital income taxes and pro-

gressive labor income taxes are two alternative ways of providing age-dependent insurance

against idiosyncratic shocks. They use numerical methods to determine the efficient rela-

tion between the two instruments. Interestingly, capital taxes play an entirely different role

in the present environment and we obtain very different conclusions. While in the frame-

work of Conesa et al. (2009), capital income taxes and progressive labor income taxes are

substitutable instruments, in our model they are complements. Laroque (2011) analytically

derives a similar substitutability between labor income and capital income taxes, restricting

labor taxation to be nonlinear but homogenous across age groups. In both these cases, the

substitutability arises because exogenously restricted labor income taxes are, in general, im-

perfect instruments to perform redistribution. In our (fully-optimal taxation) environment,

labor income taxes can achieve any feasible redistributional target. The role of capital taxes

is to facilitate the use of such a redistributional instrument in the presence of informational

asymmetries. Hence, we obtain a complementarity between capital taxes and labor income

tax progressivity.

Our paper is also related to the literature on optimal tax progressivity in static models.

This literature highlights the roles of the skill distribution (Mirrlees, 1971), the welfare cri-

terion (Sadka, 1976) and earnings elasticities (Saez, 2001). For a recent survey on the issue,

see Diamond and Saez (2011). However, dynamic considerations and, in particular, asset

decisions are absent in those works.

3 Model

Consider a benevolent social planner (the principal) whose objective is to maximize the wel-

fare of its citizens. The economy consists of a continuum of ex ante identical agents who

live for two periods, t = 0, 1, and can influence their period-1 labor income realizations by

exerting effort. The planner designs an allocation to insure them against idiosyncratic risk

and provide them with appropriate incentives to exert effort. The planner’s budget must be

(intertemporally) balanced.
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Preferences. The agent derives utility from consumption ct ≥ c ≥ −∞ and effort et ≥ 0

according to u(ct, et), where u is a concave, twice continuously differentiable function which

is strictly increasing and strictly concave in ct, and strictly decreasing and (weakly) concave

in et. We assume that consumption and effort are complements: u′′
ec(ct, et) ≥ 0. This specifi-

cation of preferences includes both the additively separable case, u (c, e) = u (c)− v (e) , and

the case with monetary costs of effort, u(c − v (e)), assuming that v is strictly increasing and

convex. The agent’s discount factor is denoted by β > 0.

Technology and endowments. The technological process can be interpreted as the produc-

tion of human capital through costly effort, where human capital represents any characteris-

tic that determines the agent’s labor income. At date t = 0, the agent has a fixed endowment

y0. At date t = 1, the agent has a stochastic income y ∈ Y := [y, y].6 The realization of y is

publicly observable, while the probability distribution over Y is affected by the agent’s un-

observable effort level e0 that is exerted at t = 0. The probability density of this distribution

is given by the smooth function f (y, e0). As in most of the the optimal contracting literature,

we assume full support, that is f (y, e0) > 0 for all y ∈ Y and all e0 ≥ 0. There is no production

or any other action at t ≥ 2. Since utility is strictly decreasing in effort, the agent exerts effort

e1 = 0 at date 1. In what follows, we therefore use the notation u1(c) := u(c, 0) for date-1

utility.

The agent has access to a linear savings technology that allows him to transfer qb0 units

of date-0 consumption into b0 units of date-1 consumption. The savings technology is ob-

servable to the planner.

Allocations. An allocation (c, e0) consists of a consumption scheme c = (c0, c(·)) and a

recommended effort level e0. The consumption scheme has two components: c0 denotes the

agent’s consumption in period t = 0 and c(y), y ∈ Y, denotes the agent’s consumption in

period t = 1 conditional on the realization y. An allocation (c0, c(·), e0) is called feasible if it

satisfies the planner’s budget constraint

y0 − c0 + q
∫ y

y
(y − c(y)) f (y, e0) dy − G ≥ 0, (1)

6Although for pure notational simplicity we consider the case with a continuum of income levels, we do not
discuss the technicalities related to the existence of solutions in infinite dimensional spaces. We can provide
details on this issue. Alternatively, the reader can interpret the model as a framework with a large but finite
number of output levels.
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where G denotes government consumption and q is the rate at which the planner and the

agent transfer resources over time.

3.1 Observable assets and second best allocations

As a benchmark case, we assume that the agent’s savings technology is observable (and

contractable) for the planner. In this case, we can assume without loss of generality that the

planner directly controls consumption.

Second best. A second best allocation is an allocation that maximizes ex-ante welfare

max
(c,e0)

u(c0, e0) + β
∫ y

y
u1(c(y)) f (y, e0) dy

subject to c0 ≥ c, c(y) ≥ c, e0 ≥ 0, the planner’s budget constraint

y0 − c0 + q
∫ y

y
(y − c(y)) f (y, e0) dy − G ≥ 0, (2)

and the incentive compatibility constraint for effort

e0 ∈ arg max
e

u(c0, e) + β
∫ y

y
u1(c(y)) f (y, e) dy. (3)

Any second best allocation can be generated as an equilibrium outcome of a competi-

tive environment where agents exert effort and save/borrow subject to appropriate taxes on

income and assets. To simplify the analysis, we assume throughout this paper that the first-

order approach (FOA) is valid. This enables us to characterize the agent’s choice of effort e0

and assets b0 based on the associated first-order conditions (in inequality or equality form).

When the FOA holds, second best allocations can be decentralized by imposing a linear tax

on assets, complemented by suitably defined nonlinear labor income taxes and transfers.

Proposition 1 (Decentralization). Suppose that the FOA is valid and let (c0, c(·), e0) be a second

best allocation that is interior: c0 > c, c(y) > c, y ∈ Y, e0 > 0. Then, there exists a tax system

6
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consisting of income transfers (τ0, τ(·)) and an after-tax asset price q̃ (> q) such that

c0 = y0 + τ0,

c(y) = y + τ(y), y ∈ Y,

(e0, 0) ∈ arg max
(e,b)

u(y0 + τ0 − q̃b, e) + β
∫ y

y
u1(y + τ(y) + b) f (y, e) dy. (4)

That is, there exists a tax system (τ0, τ(·), q̃) that decentralizes the allocation (c0, c(·), e0).

First, we note that an after-tax asset price q̃ is equivalent to a capital wedge τK (tax on

the gross return 1/q ) that is constant across agents, τK = 1 − q/q̃, or a linear capital income

tax at rate τK/(1 − q). Moreover, note that we have normalized the asset holdings to b0 = 0

in the above proposition. This is without loss of generality, since there is an indeterminacy

between τ0 and b0. The planner can generate the same allocation with a system (τ0, τ(·), q̃)

and b0 = 0 or with a system (τ0 − q̃ε, τ(·) + ε, q̃) and b0 = ε for any value of ε. This inde-

terminacy is not surprising, because the timing of tax collection is irrelevant by Ricardian

equivalence.

Proposition 1 is intuitive and the proof is omitted. It is efficient to tax the savings tech-

nology, because savings provide intertemporal insurance when the agent plans to shirk. The

reason why a linear tax on assets is sufficient to obtain the second best allocation becomes

apparent once we replace the incentive constraint (4) with the associated first-order condi-

tions:

u′
e(y0 + τ0, e0) + β

∫ y

y
u1(y + τ(y)) fe(y, e0) dy ≥ 0, (5)

q̃u′
c(y0 + τ0, e0)− β

∫ y

y
u′

1(y + τ(y)) f (y, e0) dy ≥ 0. (6)

The second first-order condition (6) determines the agent’s asset decision taking optimal

effort as given, while (5) is the optimality condition for the agent’s effort decision taking

optimal assets as given. In this sense, the planner can essentially ignore the problem of

“joint deviations” when taxing asset trades. That is the essence of the validity of the first-

order approach (FOA). It is now clear that by choosing a sufficiently large value for q̃, the

planner can circumvent the first-order condition for the asset decision and obtain the second

best allocation.

Sufficient conditions for the validity of the FOA in this setup are given in Abraham,

Koehne and Pavoni (2011). Specifically, the FOA is valid if the agent has nonincreasing
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absolute risk aversion (NIARA) and the cumulative distribution function of income is log-

convex in effort. As discussed by Abraham et al. (2011), both conditions have broad empir-

ical support. First, virtually all estimations of u reveal NIARA; see Guiso and Paiella (2008)

for example. The condition on the distribution function can be interpreted as a restriction on

the agent’s Frisch elasticity of labor supply. This restriction is satisfied as long as the Frisch

elasticity is smaller than unity. In fact, most empirical studies find values for this elasticity

between 0 and 0.5; see Domeij and Floden (2006), for instance.

Besides allowing for a very natural decentralization, the FOA also generates a sharp char-

acterization of second best consumption schemes. Assuming that consumption is interior,

the first-order conditions of the Lagrangian with respect to consumption are:7

λ

u′
c(c0, e0)

= 1 + µ
u′′

ec(c0, e0)
u′

c(c0, e0)
, (7)

λq

βu′
1(c(y))

= 1 + µ
fe(y, e0)
f (y, e0)

, y ∈ [y, y], (8)

where λ and µ are the (nonnegative) Lagrange multipliers associated with the budget con-

straint (2) and the first-order version of the incentive constraint (3), respectively.

3.2 Hidden assets and third best allocations

Savings technologies such as domestic bank accounts, pension funds or houses may be ob-

servable at moderate costs, but there are many alternative ways of transferring resources

over time that are more difficult to monitor. For instance, agents may open accounts at

foreign banks or they may accumulate cash, gold or durable goods. These technologies typ-

ically bring low returns (or involve transaction costs of various sorts), but are prohibitively

costly to observe for tax authorities. Hence, if the after-tax return of the observable sav-

ings technology, 1/q̃, becomes too low, agents have a strong incentive to use nonobservable

assets to run away from taxation.

Notice that, even though we describe a particular decentralization mechanism in this

paper, the above problem is general. Decentralizations with income-dependent asset taxes

(Kocherlakota 2005), for instance, make the savings technology unattractive by lowering the

after-tax return specifically in low-income states. In this case, the average asset tax can be

zero. However, agents would still prefer to save on a hidden asset market as long as the

7A sufficient condition for interiority is, for example, u′
e(c, 0) = 0 for all c > c in combination with the Inada

condition limc→c u′
c(c, 0) = ∞.
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return on this market is sufficiently close to the observable asset return, because the risk-

adjusted expected return of hidden assets dominates the risk-adjusted after-tax return of

observable assets.

This motivates the study of optimal allocations and decentralizations when agents have

access to a nonobservable savings technology. We assume that the nonobservable technol-

ogy is linear and transfers qn ≥ q units of date-0 consumption into one unit of date-1 con-

sumption.

Third best. Using the FOA, we define a third best allocation as an allocation (c0, c(·), e0)

that maximizes ex-ante welfare

max
(c,e0)

u(c0, e0) + β
∫ y

y
u1(c(y)) f (y, e0) dy

subject to c0 ≥ c, c(y) ≥ c, e0 ≥ 0, the planner’s budget constraint

y0 − c0 + q
∫ y

y
(y − c(y)) f (y, e0) dy − G ≥ 0 (9)

and the first-order incentive conditions for effort and nonobservable savings

u′
e(c0, e0) + β

∫ y

y
u1(c(y)) fe(y, e0) dy ≥ 0, (10)

qnu′
c(c0, e0)− β

∫ y

y
u′

1(c(y)) f (y, e0) dy ≥ 0. (11)

Obviously, in our terminology the notion second best refers to allocations that are con-

strained efficient given the nonobservability of effort, while the term third best refers to allo-

cations that are constrained efficient given the nonobservability of effort and assets/consumption.

Moreover, note that we have written the agent’s Euler equation (11) in inequality form.

Proposition 2 below shows that this inequality is binding as long as the nonobservable asset

is not too expensive as compared to the observable asset.

To decentralize a third best allocation (c0, c(·), e0), we define taxes/transfers (τ0, τ(·)) on

9
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labor income and an after-tax price q̃ of the observable asset as follows:

τ0 = c0 − y0,

τ(y) = c(y)− y, y ∈ Y,

q̃ = qn.

If agents face this tax system and have access to the nonobservable savings technologies at

the rate qn, the resulting allocation will obviously be (c0, c(·), e0).

Once more, we can use the FOA to characterize the consumption scheme. Assuming an

interior solution, the first-order conditions of the Lagrangian with respect to consumption

are now:

λ

u′
c(c0, e0)

= 1 + µ
u′′

ec(c0, e0)
u′

c(c0, e0)
+ ξqn u′′

cc(c0, e0)
u′

c(c0, e0)
, (12)

λq

βu′
1(c(y))

= 1 + µ
fe(y, e0)
f (y, e0)

+ ξa(c(y)), y ∈ [y, y], (13)

where a(c) := −u′′
1 (c)/u′

1(c) denotes absolute risk aversion, and λ, µ and ξ are the (nonnega-

tive) Lagrange multipliers associated with the budget constraint (9), the first-order condition

for effort (10), and the Euler equation (11), respectively.

Proposition 2. Suppose that the FOA is valid and let (c0, c(·), e0) be a third best allocation that is

interior. Then, there exists a number q̄ > q such that equations (12) and (13) characterizing

the consumption scheme are satisfied with ξ > 0 whenever qn
< q̄. That is, the Euler equation

is binding if the return on the nonobservable asset is not too low.

We provide the proof of Proposition 2, as well as all other omitted proofs, in Appendix

A. Proposition 2 states that if the return on the nonobservable savings technology 1/qn is

sufficiently high (although possibly lower than the return on observable savings), the agent’s

Euler equation will be binding in the planner’s problem. To simplify the exposition, we

set qn := q from now on, so that the returns of the nonobservable and observable savings

technologies coincide. All our results will be independent of this particular choice of qn and

only rely on the fact the Euler equation is binding for the planner in that case.

Comparing the characterization of third best consumption schemes, (12), (13), to the char-

acterization of second best consumption schemes, (7), (8), we notice that the difference be-

tween the two environments is closely related to the effect of the agent’s Euler equation

(11) and the associated Lagrange multiplier ξ. We discuss the implications of this finding in
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detail in the next section.

4 Theoretical results on progressivity

We are interested in the shape of second best and third best consumption schemes c(y). As

we saw above, this shape is related one-to-one to the curvature of labor income taxes in the

associated decentralization.

Definition 1. We say that an allocation (c0, c(·), e0) is progressive if c′(y) is decreasing in y.

We call the allocation regressive if c′(y) is increasing in y.

Recall that τ(y) = c(y) − y denotes the agent’s transfer in labor income state y; hence

the negative of τ(y) represents the labor income tax. Definition 1 implies that whenever

a consumption scheme is progressive (regressive), we have a tax system with increasing

(decreasing) marginal taxes −τ′(y) on labor income supporting it.

In a progressive system, taxes are increasing more quickly than income. At the same time,

for the states when the agent is receiving a transfer, transfers are increasing more slowly than

income is decreasing. The opposite happens when we have a regressive scheme. Intuitively,

if the scheme is progressive, incentives are provided more by imposing “penalties” for low

income realizations, since consumption decreases relatively quickly when income decreases.

Regressive schemes, in contrast, put more emphasis on “rewards” for high income levels

than “punishments” for low income levels.

We can find sufficient conditions for the progressivity or regressivity of optimal alloca-

tions by exploiting the optimality conditions for consumption. The curvature of consump-

tion in the second best allocation depends on the shape of the inverse marginal utility and

the likelihood ratio function, as shown by equation (8). The same forces are at work in the

third best allocation, as shown by equation (13), but the curvature of absolute risk aversion

becomes an additional factor. This allows us to establish the following sufficient conditions.

Proposition 3 (Sufficient conditions for progressivity). Suppose that the FOA is justified and

that second best allocations and third best allocations are interior.

(i) If the likelihood ratio function l (y, e) := fe(y,e)
f (y,e) is concave in y and 1

u′
1(c)

is convex in

c, second best allocations are progressive. If, in addition, absolute risk aversion a(c) is

decreasing and concave, third best allocations are progressive as well.

11
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(ii) On the other hand, if l (y, e) is convex in y and 1
u′

1(c)
is concave in c, second best alloca-

tions are regressive. If, in addition, absolute risk aversion a(c) is decreasing and convex,

third best allocations are regressive as well.

Note that in the previous proposition, consumption will be increasing in income if the

likelihood ratio function l (y, e) is increasing in y. Proposition 3 implies that CARA utilities

with concave likelihood ratios lead to progressive schemes, both in the second best and the

third best.8 In the second best, progressive schemes are also induced by concave likelihood

ratios and CRRA utilities with σ ≥ 1, since 1
u′

1(c)
= cσ is convex in this case. For logarithmic

utility with linear likelihood ratios, we obtain second best schemes that are proportional, since

1/u′
1(c) = c is both concave and convex. Interestingly, since absolute risk aversion a(c) =

1/c is convex, third best schemes are regressive in this case.9

4.1 Rankings of progressivity for linear likelihood ratios

Proposition 3 above studied the curvature of consumption in an absolute sense. However,

we are particularly interested in relative statements that compare the shape of consumption

between second best and third best allocations. The current and the next section will pro-

vide such comparisons. We will find a general pattern for all utility functions with convex

absolute risk aversion: when assets are observable (second best), the allocation has a more

concave relationship between labor income and consumption. In other words, observability

of assets calls for more progressivity in the labor income tax system.

In order to formalize this insight, we note that consumption patterns in moral hazard

models are generally obtained as functions of the likelihood ratio l(·, e), see e.g. Holmstrom

(1979). The most common way of measuring concavity/progressivity, however, is to study

how consumption changes as a function of income. If likelihood ratios are linear in income,

then the curvature of consumption as a function of the likelihood ratio (the natural outcome

of a moral hazard model) is identical to the curvature of consumption as a function of income

(the typical way of measuring progressivity in the applied literature). In other cases, the

curvatures are related monotonically, but they are not exactly identical. Linear likelihood

ratios are thus a natural starting point for studying progressivity in moral hazard models.

8Other cases where the progressivity/regressivity does not differ between second best and third best
emerge when a has the same shape as 1/u′

1 (quadratic utility) and when a is linear (and hence increasing).
9More precisely, consumption is characterized by λq

β c(y)− ξ 1
c(y) = 1 + µ l(y, e) in this case. Since the left-

hand side is concave in c and the right-hand side is linear in y, the consumption scheme c(y) must be convex
in y.
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Proposition 4 (Ranking of progressivity). Suppose that the FOA is justified and that second best

and third best allocations are interior. Suppose that u1 has convex absolute risk aversion and

that the likelihood ratio l (y, e) is increasing and linear in y. Under these conditions, if the

third best allocation is progressive, the second best allocation is progressive as well (but not vice

versa). On the other hand, if the second best allocation is regressive, the third best allocation is

regressive as well (but not vice versa).

Proof. Given the validity of the FOA, by equations (8) and (13), the second and third best

consumption schemes csb(y) and ctb(y) are characterized as follows:

gsb
(

csb(y)
)

= 1 + µsb l
(

y, esb
0

)

, where gsb (c) :=
λsbq

βu′
1(c)

, (14)

gtb
(

ctb(y)
)

= 1 + µtbl
(

y, etb
0

)

, where gtb (c) :=
λtbq

βu′
1(c)

− ξtba(c), with ξtb
> 0. (15)

Since l
(

y, etb
0

)

is linear in y by assumption, concavity of ctb is equivalent to convexity of

gtb. Moreover, since a(c) is convex in c by assumption, convexity of gtb implies convexity

of gsb =
(

gtb + ξtba
)

λsb/λtb (but not vice versa). Finally, notice that convexity of gsb is

equivalent to concavity of csb, since l
(

y, esb
0

)

is linear in y. This establishes the first part of

the proposition. The second part can be seen analogously. Q.E.D.

Many well-known probability distributions generate linear likelihood ratio functions as

assumed in Proposition 4. One example is the exponential distribution with mean ϕ(e) or,

more generally, the Gamma distribution with mean ϕ(e) for any shape parameter k > 0 and

any increasing function ϕ. Another example is the normal distribution with mean ϕ(e) and

fixed variance (truncated to the compact interval [y, y]).10 Moreover, we note that the linear

likelihood property is unrelated to the validity of the first-order approach, since the latter

imposes conditions on the curvature of ϕ or, equivalently, on the convexity of u(c, e) as a

function of effort e.

In order to obtain a clearer intuition of Proposition 4, we further examine the planner’s

first-order condition (13), namely

λq

βu′
1(c(y))

= 1 + µ
fe(y, e0)
f (y, e0)

+ ξa(c(y)).

This expression equates the discounted present value (normalized by f (y, e0)) of the costs

10An example for discrete output spaces is the Poisson distribution with mean e.
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and benefits of increasing the agent’s utility by one unit in state y. The increase in utility

costs the planner q
βu′

1(c(y))
units in consumption terms. Multiplied by the shadow price of

resources λ, we obtain the left-hand side of the above expression. In terms of benefits, first

there is a return of 1, since the agent’s utility is increased by one unit. Furthermore, increas-

ing the agent’s utility also relaxes the incentive constraint for effort, generating a return of

µ fe(y,e0)
f (y,e0)

.11 Finally, by increasing u1(c (y)), the planner alleviates the agent’s savings motive.

Since the return to one unit of saving in state y is given by u′
1(c (y)), the gain of a unit in-

crease in u1(c (y)) is measured by ξa(c (y)), where ξ is the multiplier of the agent’s Euler

equation and a(c) = −u′′
1 (c)/u′

1(c). That is, a(c) is the appropriate measure for the gains

of relaxing the Euler equation. In other words, the social gains of deterring the agent from

saving in a given state are proportional to the agent’s absolute risk aversion in that state.

The novel term ξa(·) in the planner’s first-order condition captures the impact of nonob-

servable savings. To gain some intuition, suppose that we hold all other parameters and the

multipliers λ and µ as fixed. Then, the impact of absolute risk aversion a(·) on the progres-

sivity of optimal consumption is immediately visible in the planner’s first-order condition.

For CARA utility, or generally whenever absolute risk aversion is linear, the relative reduc-

tion of the agent’s marginal utility per unit of utility, measured by a(c) = −u′′(c)/u′(c),

changes linearly with consumption. For CARA utility, hidden saving therefore affects the

level and slope, but not the curvature of consumption. For the widespread case of con-

vex absolute risk aversion, however, the first-order condition suggests that the convexity of

a(·) raises the convexity of optimal consumption. This intuition is confirmed by our formal

proof that accounts for the endogeneity of the Lagrange multipliers. For convex absolute

risk aversion, it cannot happen that the third best allocation is progressive while the sec-

ond best allocation is not (Proposition 4). This provides a clear sense in which second best

allocations are more progressive than third best allocations.

Another common approach to compare the progressivity/concavity of functions is to

explore concave transformations. Recall that a function f1 is a concave transformation of a

function f2 if there is an increasing and concave function v such that f1 = v ◦ f2. For the

case of logarithmic utility, we are able to rank the progressivity of the second and third best

allocation in the sense of concave transformations.12

11If the increase in consumption is done in a state with a negative likelihood ratio, this represents a cost since
the incentive constraint is, in fact, tightened.

12For NIARA utilities, we can more generally show that second best consumption is a quasi-concave transfor-
mation of third best consumption. Yet, since consumption is typically monotonic for both cases (Abraham et
al., 2011), such a result does not generate a meaningful ranking.

14



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

Proposition 5 (Logarithmic utility). Suppose (as in Proposition 4) that the FOA is justified, sec-

ond best and third best allocations are interior, and the likelihood ratio l(y, e) is increasing and

linear in y. In addition, suppose that u1 is logarithmic. Then, second best consumption is a

concave transformation of third best consumption.

Proof. For logarithmic utility, we have u′
1(c) = a(c) = 1/c. By equations (14) and (15), we

can link second best and third best consumption as follows:

λsbq

β
csb(y)− µsb l

(

y, esb
0

)

+ µtbl
(

y, etb
0

)

=
λtbq

β
ctb(y)−

ξtb

ctb(y)
. (16)

Since l (y, e0) is linear in y by assumption, equation (14) shows that csb(y) is linear in y. Thus,

all expressions on the left-hand side of (16) are linear in y and hence, linear in csb(y). Since

the right-hand side of (16) is concave in ctb(y), the result immediately follows. Q.E.D.

4.2 Rankings of progressivity for nonlinear likelihood ratios

For nonlinear likelihood ratios, two separate channels determine the contrast between con-

sumption allocations in the second best (observable assets) scenario and the third best (hid-

den assets) scenario. First, as pointed out in the analysis of the planner’s first-order con-

ditions for consumption, the efficient way of relaxing the agent’s Euler equation generates

state-dependent returns in the third best that are proportional to the coefficient of absolute

risk aversion. If absolute risk aversion is nonlinear, this has a direct influence on optimal

progressivity. Second, the implemented effort level may change from the second best to the

third best, which means that the role of income as an effort signal can differ between the

two scenarios. This can indirectly affect the progressivity. The remainder of this section will

mainly focus on the first channel. That is, in the spirit of Grossman and Hart (1983), we will

analyze how the implementation of a given effort level e0 depends on the economic environ-

ment. All propositions that follow describe how the curvature of the efficient allocation of

consumption changes in the presence of hidden savings for any given effort level that the

planner aims to implement in the two scenarios. Towards the end of the section, we discuss

how our results hold when we also take into account changes in the implemented effort

levels.

We denote the consumption allocation that optimally implements a given effort e0 > 0 by

(c̃sb
0 , c̃sb(·)) for the scenario with observable saving and by (c̃tb

0 , c̃tb(·)) for the case of hidden

saving. For nonlinear likelihood ratios, we can rank the progressivity of such allocations in
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a way that is very similar to Proposition 4. As usual, we maintain the assumption that the

FOA is justified and that second best and third best consumption levels are interior.

Proposition 6. Consider the problem of implementing a given effort level e0 under observable assets

and under hidden assets. Suppose that u1 has convex absolute risk aversion. If the optimal

implementation under hidden assets, c̃tb, is a concave transformation of the likelihood ratio

function l(·, e0), then the optimal implementation under observable assets, c̃sb, is a concave

transformation of l(·, e0). On the other hand, if c̃sb is a convex transformation of l(·, e0), then

c̃tb is a convex transformation of l(·, e0).

The previous result generates a sense in which the consumption scheme implementing

e0 in the case of observable assets is more progressive than the scheme in the case of hidden

assets. This result is analogous to Proposition 4 for the case of nonlinear likelihood ratios.

We can also derive an analogue to Proposition 5. To this end, let us consider the class of

HARA (or linear risk tolerance) utility functions, namely

u1 (c) = ρ

(

η +
c

γ

)1−γ

with ρ
1 − γ

γ
> 0 and η +

c

γ
> 0.

For this class, absolute risk aversion is a convex function given by a(c) =
(

η + c
γ

)−1
. Special

cases of the HARA class are CRRA functions, CARA functions, and quadratic utility.

Lemma 1. Given a strictly increasing, differentiable function u1 : [c, ∞) → R, consider the two

functions defined as follows:

gλ,µ (c) :=
λq

µβu′
1(c)

−
1

µ
,

gλ̂,µ̂,ξ̂ (c) :=
λ̂q

µ̂βu′
1(c)

−
1

µ̂
−

ξ̂

µ̂
a(c).

If u1 belongs to the HARA class with γ ≥ −1, then gλ̂,µ̂,ξ̂ is a concave transformation of gλ,µ

for all λ̂, ξ̂ ≥ 0, λ, µ, µ̂ > 0.

The restriction of γ ≥ −1 in the above result is innocuous to most applications, because

it allows for all HARA functions with nonincreasing absolute risk aversion (γ ≥ 0) as well

as quadratic utility (γ = −1), for instance. Lemma 1 enables us to rank the progressivity

of consumption in the sense of concave transformations. By the first-order conditions of the
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implementation problem, the consumption allocations that optimally implement a given

effort are characterized as follows:

gλ̃sb,µ̃sb

(

c̃sb(y)
)

= l (y, e0) , (17)

gλ̃tb,µ̃tb,ξ̃tb

(

c̃tb(y)
)

= l (y, e0) , (18)

where λ̃sb and µ̃sb represent the Lagrange multipliers (for the budget constraint and the first-

order condition for effort) in the implementation problem under observable assets, whereas

λ̃sb, µ̃sb and ξ̃tb are the Lagrange multipliers (for the budget constraint, the first-order con-

dition for effort, the Euler equation) in the implementation problem under hidden assets.

Because of the link between the optimal consumption schemes in equations (17) and (18),

Lemma 1 has the following consequence.

Proposition 7. Consider (as in Proposition 6) the problem of implementing a given effort level

e0 under observable assets and under hidden assets. Suppose that u1 belongs to the HARA

class with γ ≥ −1. Then, there exists a monotonic function g such that g ◦ c̃sb is a concave

transformation of g ◦ c̃tb. In particular, if u1 is logarithmic, c̃sb is a concave transformation of

c̃tb.

Proof. Let g(·) := gλ̃sb,µ̃sb(·) and note that g is an increasing function. By Lemma 1 and

equations (17) and (18), there exists a concave function h such that c̃sb and c̃tb are related as

follows:

g(c̃sb(y)) = h ◦ g(c̃tb(y)).

For logarithmic utility, g is an affine function, which implies that the composition g−1 ◦ h ◦ g

is concave whenever h is concave. Hence, for logarithmic utility, c̃sb = g−1 ◦ h ◦ g ◦ c̃tb is a

concave transformation of c̃tb. Q.E.D.

Proposition 7 shows that for HARA utilities, c̃sb is a concave transformation of c̃tb (after

a change of variables). In this sense, optimal consumption is more progressive in the case

of observable savings than in the case of hidden savings for any given effort level that the

planner aims to implement. Proposition 7 generalizes Proposition 5 to the class of non-

logarithmic HARA utilities and nonlinear likelihood ratios.13

All our results for nonlinear likelihood ratios generalize when we take into account

changes in the implemented effort levels provided that l
(

l−1
(

y, etb
0

)

, esb
0

)

is concave. The

13The same generalization of Proposition 5 exists for HARA utilities and linear likelihood ratios (allowing
for changes in effort).
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last condition is satisfied if the likelihood ratio in the third best is a convex transformation

of the likelihood ratio in the second best. In fact, a weaker condition is sufficient. As shown

by the line of proof of Proposition 7, it is sufficient that l
(

·, esb
0

)

◦ l−1
(

·, etb
0

)

◦ h is concave,

where h is a strictly concave function. This condition is satisfied whenever l
(

y, etb
0

)

is “not

too concave” relative to l
(

y, esb
0

)

. How much the curvature of the likelihood ratio differs be-

tween the two scenarios is impossible to predict without detailed knowledge of the density

function f (y, e). We illustrate the role of the density function in our quantitative exploration.

We find that the likelihood ratio induced by the effort for hidden assets is more convex (less

concave) than that for observable assets. Therefore, our theoretical insights on nonlinear

likelihood ratios are, in fact, further strengthened through the variation of effort between

the two allocations.

5 Quantitative exploration

In this section, we parametrize our model to illustrate the quantitative effects of limited asset

taxation. The quantitative exploration serves multiple purposes. First, we complement our

theoretical results. For example, recall that the theoretical results on nonlinear likelihood

ratios compare two allocations that implement the same effort level. In this section, we

allow effort to change between the two scenarios. The second target of this exercise is to

quantitatively explore how a limited possibility of taxing assets affects optimal allocations

and, consequently, optimal labor income taxes.

Third, we discuss and implement a calibration strategy to recover the fundamental pa-

rameters of our model. In dynamic private information models, the standard strategy is to

use cross-sectional and longitudinal income data to recover the underlying shock process

(see, for example, Farhi and Werning (2013) and Golosov et al. (2013)) assuming that agents

face a stylized form of the existing tax and transfer system. Given that the income process is

partially endogenous in our environment, this approach would not fully identify the deep

parameters. In particular, it would not provide sufficient information about the effect of

effort on the distribution of income.

For the calibration, we assume that the joint distribution of consumption and income is

generated by a constrained efficient allocation. The advantage of this approach is that a sin-

gle cross section of consumption and income (or consumption and income growth) suffices

to identify all fundamental parameters. Gayle and Miller (2009) use a similar identification

strategy to estimate dynamic moral hazard models of executive compensation. Following

this strategy, all key parameters are naturally identified based on the optimality conditions
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of the model.

Consider the following interpretation of our model: agents face income shocks, they exert

unobservable work effort and they can use a saving technology with a gross return given by

1/q̃, where q̃ is the after-tax asset price. In order to estimate the model parameters, we use

consumption and income data and postulate that the data is generated by a specification of

the model where capital income is taxed at an exogenous rate of 40%. Equivalently, the after-

tax asset price is given by q̃ = q
0.6+0.4q .14 Note that the capital income tax of 40% is in line

with U.S. effective tax rates on capital income as calculated by Mendoza et al. (1994) and

Domeij and Heathcote (2004). We estimate the key parameters of the model by matching

joint moments of consumption and income in an appropriately cleaned cross-sectional data.

Then, we use the estimated parameters and solve the (counterfactual) model with optimal

capital taxes, assuming a full capacity to observe and tax capital. The final outcome is a

comparison of the optimal labor income taxes between the two scenarios, with a special

attention to the change in progressivity.

Data. We use PSID (Panel Study of Income Dynamics) data for 1992 as adapted by Blundell

et al. (2008). This data source contains consumption data and income data at the household

level. The consumption data is imputed using food consumption (measured at the PSID)

and household characteristics using the CEX (Survey of Consumption Expenditure) as a ba-

sis for the imputation procedure. Household data is useful for two reasons: (i) Consumption

can be credibly measured at the household level only; (ii) taxation is mostly determined at

the family level (which is typically equivalent to the household level) in the United States.

We use total consumption expenditure as the measure of consumption.15

In our model, we have ex ante identical individuals who face the same (partially endoge-

nous) process of income shocks. However, in the data, income is influenced by observable

factors such as age, education and race. We want to control for these characteristics in order

to make income shocks comparable across individuals. For this purpose, we postulate the

following process for income: yi = φ(Xi)ηi, where yi is household i’s income, Xi are observ-

able household characteristics (a constant, age, education and race of the household head),

and ηi is our measure of the cleaned income shock. In order to isolate ηi, we regress log(yi)

on Xi. The predicted residual η̂i of this regression is our estimate of the income shock.

14In line with our terminology from Section 3.2, the constrained efficient allocation with an after-tax asset
price of q̃ is defined as the third best allocation under the assumption that agents have access to a nonobservable
asset at the price qn = q̃.

15We performed a sensitivity analysis based on nondurable consumption data. The results were qualitatively
the same but the quantitative effects of optimal capital taxes were somewhat less pronounced.
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The next objective is to find the consumption function. To be able to relate it to the income

measure ηi, we postulate that the consumption function is also multiplicatively separable:

ci = g0(Zi)g1
(

φ(Xi)
)

c
(

ηi
)

, where Zi are household characteristics that affect consumption,

but (by assumption) do not affect income, such as the number of kids and beginning of

period household assets. Our target is to identify c (η), the pure response of consumption to

the income shock. To isolate this effect, we first run a separate regression of log(ci) on Xi and

Zi. The predicted residual of this regression is ε̂i. Then, we use a flexible functional form to

obtain c (·). In particular, we estimate the following regression: log(ε̂i) = ∑
4
j=0 γj

(

log(η̂i)
)j

.

Hence, in the notation of our model, the estimate of the consumption function is given by

ĉ (y) = exp
(

∑
4
j=0 γ̂j (log(y))j

)

.

Model specification. For the quantitative exploration of our model, we move to a formula-

tion with discrete income levels. We assume that we have N levels of second-period income,

denoted by ys, s = 1, . . . , N, with ys > ys−1. This implies that the density function of in-

come, f (y, e), is replaced by probability weights ps(e), with ∑
N
s=1 ps(e) = 1 for all e. For the

estimation of the parameters, we impose further structure. We assume

ps(e) = exp(−e)πl
s + (1 − exp(−e))πh

s ,

where πh and πl are probability distributions on the set {y1, . . . , yN}. In addition to tractabil-

ity, this formulation has the advantage that it satisfies the requirements for the applicability

of the first-order approach.16

In order to account for heterogeneity in the data, we allow for heterogeneity in the initial

endowments, specify a unit root process for income shocks, and choose preferences to be

homothetic. In particular, we assume:

u(c, e) =
c1−γ (1 − e)γ−σ

1 − γ
with σ > γ ≥ 1 and 1 > e > 0.

Here, γ measures the coefficient of risk aversion and the period utility is given by c1−γ

1−γ after

the initial period.17 The homothetic specification is useful for our empirical strategy for two

reasons. First, as demonstrated by Proposition 8 in Appendix B, we are entitled to use the

income and consumption residuals ε̂i and η̂i computed above as inputs for our calibration

16Note that we do not need to impose the monotone likelihood ratio (MLR) property, because the proof of
the validity of the first-order approach only requires consumption to be monotone (see Abraham et al. (2011)
for details).

17When γ = 1, we assume that preferences take a logarithmic form.
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procedure. The other key advantage of the homothetic model is that we can estimate the

probability distribution and all other parameters assuming that effort does not change across

agents. Hence, the first-order conditions and expectations are evaluated at the same level of

effort e∗0.

Calibration. As a first step, we fix some parameters. First, we set q = .96 to match a

yearly real interest rate of 4%, which is the historical average return on real assets in the

United States. We explore a range of coefficients of relative risk aversion for consumption,

with γ = 3 being our baseline case. This value is in line with estimation results based

both on survey data (e.g., Barsky, Juster, Kimball and Shapiro, 1997) and actual choices (e.g.,

Paravisini, Rappoport and Ravina, 2015). We also consider lower values of risk aversion

(e.g., Chetty, 2006).18 For the income process, we set N = 20 and choose the medians of

the 20 percentile groups of cleaned income for the income levels η1, ..., η20. The homothetic

model allows us to normalize income in the initial period.

Given the fixed parameters, we determine the preference parameters (β, σ) and the prob-

ability weights
{

πh
s , πl

s

}N

s=1 that determine the likelihood ratios. We estimate these param-

eters using a method of moments estimator to match specific empirical moments for con-

sumption and income in the data. The optimality conditions of the model give us a sufficient

number of restrictions to estimate all parameters. In particular, we use the planner’s opti-

mality conditions for first and second period consumption, the planner’s optimality condi-

tion for effort, and the agent’s optimality conditions for effort and assets. Finally, we obtain

the parameter G for government consumption as a residual of the estimation procedure im-

plied by the government’s budget constraint. Further details on the estimation strategy are

provided in Appendix B.1.

Simulation results. We use the preset and estimated parameters of the above model (ex-

ogenous capital taxes) to determine the allocation for the counterfactual scenario with opti-

mal capital taxes—assuming a full observability of capital. Figure 1a displays second-period

consumption for this scenario together with the second-period consumption function of the

benchmark. It is obvious from the picture that the level of second-period consumption is

18 There is little consensus on what is the most plausible value for the coefficient of relative risk aversion.
Barsky et al. (1997) use survey responses to hypothetical situations of participants in the Health and Retirement
Study and estimate a coefficient between 3 and 4 on average. Paravisini et al. (2015) use actual investment data
(in the ‘Lending Club’ platform in the U.S.) and find an average value slightly below 3. Chetty (2006) explores
evidence on labor supply responses and argues for a coefficient between 1 and 2. Cohen and Einav (2007) use
choice data on insurance contracts and estimate levels of (absolute) risk aversion that are higher than those
obtained by Chetty.
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Figure 1: Optimal consumption with optimal and limited capital taxation. Notes: Figure 1a displays
constrained efficient allocations in the calibrated models with limited capital taxes (capital income
tax rate of 40 percent) and optimal capital taxes (assuming a full observability of capital). Figure
1b shows the associated curvature of consumption, measured as the absolute value of c′′(y)/c′(y).
In both figures, the solid line represents the model with optimal capital taxes and the dashed line
represents the model with limited capital taxes.

higher in the case with limited/exogenous capital taxes (capital income tax rate of 40%).

This is not surprising because optimal capital taxes in general imply frontloaded consump-

tion (Rogerson 1985, Golosov et al. 2003). Note that optimal capital taxes are associated

with an inverse Euler equation, whereas the scenario with limited capital taxes is charac-

terized by a standard Euler equation. By inspecting the planner’s optimality condition for

consumption (13), we note that the Euler equation generates an additional positive return

on the right-hand side (ξa(·) > 0). Intuitively, holding the other multipliers and parameters

fixed, this term suggests that the marginal consumption utility in the second period is lower,

and consumption is thus higher, in the case with limited capital taxes.

We also observe that, since consumption is concave for the two scenarios, optimal labor

income taxes are progressive for both allocations. To compare the progressivity of the two

allocations, we use the concavity measure −c′′(y)/c′(y) to quantify the progressivity of con-

sumption.19 If this progressivity measure of an allocation is uniformly higher than that of

a second allocation, the first allocation is a concave transformation of the second (assuming

19In addition to the obvious analogy to absolute risk aversion, the advantage compared with the concavity
measure c′′(y) is that it makes functions with different slopes c′(y) more comparable.
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Risk aversion 1 2 3 4
Average measure of progressivity (−c′′(y)/c′(y))

Optimal capital taxes (endog. weights) 0.670 0.801 0.962 1.098
Optimal capital taxes (exog. weights) 0.671 0.805 0.977 1.135
Limited capital taxes 0.644 0.644 0.644 0.644

Welfare gain from optimal capital taxes (% of consumption)
0.061 0.294 1.303 3.351

Optimal capital wedge (%)
τK = 1 − q/q̃ 3.77 20.17 39.65 55.02

Table 1: Quantitative measures of progressivity, welfare gains and capital wedges. Notes: The table
summarizes some key statistics of constrained efficient allocations in the calibrated models with lim-
ited capital taxes (capital income tax rate of 40 percent) and with optimal capital taxes (assuming a
full observability of capital). For the model with optimal capital taxes, we calculate the average mea-
sure of progressivity using the associated income distribution (endogenous weights) and using the
income distribution from the model with limited capital taxes (exogenous weights). Welfare gains
from optimal capital taxes are expressed as consumption equivalent variation in percent.

that both allocations are monotonically increasing). In Figure 1b, we have plotted this mea-

sure of progressivity for the optimal consumption scheme when capital taxes are limited and

when they are optimal. The pattern is clear: the model with optimal capital taxes results in a

uniformly more concave (progressive) consumption scheme as compared to the case when

capital taxes are limited. The differences are particularly large for lower levels of income.

In Table 1, we have quantified the graphical observations from Figures 1a and 1b and

have checked the robustness to alternative levels of risk aversion. The figures are drawn

using a (baseline) coefficient of relative risk aversion equal to 3. Our results are qualita-

tively the same for all risk aversion levels, but there are significant quantitative differences.

In particular, the effect of capital taxation on progressivity is increasing in the level of risk

aversion.20 For logarithmic utility, our measure of progressivity increases by only 4% when

we switch from the allocation with limited capital taxes to that with optimal capital taxes.

For coefficients of relative risk aversion of 2 and 3, the progressivity of income taxes in-

creases by 24 and 49 percent, respectively. Note that the change in measured progressivity

comes from two sources. First, as shown by Figure 1a, the concavity of the optimal con-

sumption function c(y) changes. Second, the distribution of income changes, as effort is

different under optimal capital taxes as compared to the benchmark case. For this reason,

we calculate the measure of progressivity both with and without this second effect (endoge-

20See Appendix B.2 for an extended discussion of the role of relative risk aversion in our model.
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nous versus exogenous weights). Comparing the third and fourth rows of Table 1, we notice

that the changing effort mitigates the increase in progressivity in a non-negligible way only

for higher risk aversion levels. This also implies that effort is indeed higher when optimal

capital taxes are levied. In turn, higher effort implies a higher weight on high income re-

alizations where the progressivity differences are lower (see Figure 1b). In any case, this

second indirect effect through effort is small and, hence, the difference in the progressivity

measure is still increasing in risk aversion.

We obtain a similar message if we consider the welfare gains from optimal capital taxa-

tion in consumption equivalent terms (presented in row 7 of Table 1). The gains are small

for the logarithmic case, sizeable for the intermediate cases of relative risk aversion of 2 and

3, and considerable for high values of risk aversion. We have also displayed the implied

capital wedges, calculated as τK = 1 − q/q̃, where q̃ is the after-tax asset price in the op-

timal capital tax scenario. Notice that τK is indeed the tax rate on the gross return, not on

capital income. The 40 percent tax on capital income in the benchmark model is equiva-

lent to a capital wedge of 1.6 percent.21 It turns out that the capital wedges in the scenario

with observable assets are much higher than this number for all risk aversion levels. Even

for logarithmic utility, the capital wedges imply a tax rate on capital income of around 90

percent.22

Finally, we examine the role of endogenous effort for the change in progressivity. Fig-

ure 2 plots the likelihood ratio function implied by the estimated parameters. We note that

the likelihood ratio function becomes more concave for higher effort levels. Moreover, ef-

fort in the second best allocation (0.48) is higher than in the case with limited capital taxes

(0.33). Hence, the change of the likelihood ratio contributes to the lower degree of progres-

sivity in the third best. Note that this effect goes in the same direction as our insights on

the convex cross-sectional returns of relaxing the Euler equation. Therefore, the change in

effort between the second best and third best reinforces our theoretical results concerning

the progressivity of the consumption allocations.

21Recall that the capital wedge τK is equivalent to a tax rate on capital income given by t = τK/(1 − q).
22 Admittedly, our model is very stylized. Golosov et al. (2013), however, study a dynamic Mirrlees model

with logarithmic utility and a full observability of assets. The capital wedges (and the associated capital income
taxes) are similar to those we find for the logarithmic case. Farhi and Werning (2013) study a similar Mirrlees
model with logarithmic utility and obtain tax rates on capital income that are smaller than ours. In their
calibration, the private information friction seems to be less severe.
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Figure 2: Likelihood ratio function in the calibrated model. Notes: The likelihood ratio function is
evaluated at four different effort levels: a low effort benchmark (dotted line), effort in the constrained
efficient allocation with limited capital taxes (dashed line), effort in the constrained efficient allocation
with optimal capital taxes (solid line), and a high effort benchmark (dash-dotted line).

6 Discussion of model limitations and extensions

This paper analyzed how limitations to asset taxation change the optimal tax code on labor

income. Assuming preferences with convex absolute risk aversion, we found that optimal

consumption moves in a more convex way with labor income when asset accumulation

cannot be perfectly controlled by the planner. In terms of our decentralization, this implies

that taxes on labor income become less progressive when limitations to asset taxation are

binding. We complemented our theoretical results with a quantitative illustration based on

individual level U.S. data on consumption and income. The results suggest that the effect

of imperfect asset taxation on the curvature of the optimal income tax can be sizable, and is

very sensitive to the coefficient of relative risk aversion.

In this section, we discuss some of the key assumptions of the analysis and present some

possible directions for future research.

General equilibrium. First, we comment on the partial equilibrium nature of our model.

In the scenario with optimal capital taxes, the planner modifies the intertemporal consump-

tion profile by increasing consumption in the initial period and reducing it in the second

period (relative to the third best allocation). A change of this type is less beneficial in a gen-

eral equilibrium framework because consumption frontloading becomes more costly when
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the equilibrium interest rate rises. In order to approximate potential (general equilibrium)

limitations in the choice of the intertemporal consumption profile, in Appendix B.3 we con-

sider a version of our model where the planner is constrained by a period-by-period budget

constraint. In that framework, when moving from the third best to the second best alloca-

tion, the price q adjusts downwards (the interest rate increases) so that borrowing becomes

unattractive for the planner. Hence, any intertemporal modification of consumption be-

tween the two allocations is prevented by construction. The resulting consumption function

in period 1 is graphically represented in Figure 3a in Appendix B.3. The optimal degree of

progressivity falls slightly (from 0.962 to 0.874) as compared to the case with a constant q,

but remains significantly larger than in the third best allocation (see Figure 3b in Appendix

B.3).

Both our partial and general equilibrium frameworks assume that the intertemporal al-

location of resources by the planner and by the agents takes place through financial as-

sets and not through investment in productive capital. Now, we discuss that, qualitatively,

this is without loss of generality. In order to see this, recall that the population has a mea-

sure of one and hours are supplied inelastically. Let N0 = y0 and N1(e) =
∫ y

y y f (y, e)dy

be the total supply of labor in the two periods (in efficiency units). Then, total produc-

tion in period t equals F(Kt, Nt), where K0 is given. Resource feasibility at t = 0 im-

plies K1 = (1 − δ)K0 + F(K0, N0)− c0 − G0, where G0 represents government consumption

in the initial period. In this general framework, labor income in period-1 state y equals

ỹ(y, w1) = w1y, where w1 = FN(K1, N1). Recall that our implementation exercise defines

taxes as τ(ỹ(y)) = ỹ(y)− c̃(ỹ(y)) = w1y − c̃(w1y). Hence, it is immediate that the linearity

of ỹ in y implies that the curvature properties of c(y) carry over to the newly defined con-

sumption function c̃(ỹ). Therefore, we expect to retain all our qualitative results regarding

the progressivity of allocations for this extension as well.23

Finally, note that the motivation for asset taxation is the same independently of whether

we consider partial or general equilibrium or whether we consider financial assets or pro-

ductive capital. To see this, note that savings taxes in our model have a Pigouvian nature

and are set in order to internalize a negative ‘informational externality’ generated by capi-

tal accumulation by the private sector. In other words, without the tax on savings, agents

23Whenever the production function is strictly concave with respect to capital, the allocation in the general
production economy will be an intermediate outcome between the case with fixed q considered in the main
text (which corresponds to a linear production function F(K, N) = K/q + N) and the case with flexible q but
no intertemporal reallocation described in Appendix B.3. Similar to the latter case, the intertemporal price
adjusts in this case. However, similar to the baseline case, an intertemporal reallocation of resources is possible
through investing in productive capital, mitigating the change in the interest rate as compared to the case
described in Appendix B.3.
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would save too much and the society would accumulate too much capital. As discussed,

for example, by Golosov et al. (2003), this reasoning applies irrespective of whether savings

take the form of productive capital or a simple storage technology. In particular, the spirit of

capital taxation in our model is very different from classical Ramsey taxation. Taxes are not

motivated in order to finance government spending—they actually improve efficiency.

Standard intensive margin. The model we presented here is one of action moral hazard,

similar to that of Varian (1980) and Eaton and Rosen (1980). This framework has the im-

portant advantage of tractability. Although a common interpretation of this model is that

of insurance, we believe that it conveys a number of general principles for optimal taxation

that also apply to models of redistribution under asymmetric information on productivity.

In our model, the periodic income y is the result of previously supplied effort and is subject

to some uncertainty. Natural interpretations of the outcome y include the result of job search

activities and the monetary consequences of a promotion or a demotion, i.e., of a better or

worse match (within the same firm or into a new firm). For self-employed individuals, y can

be seen as the earnings from entrepreneurial activity. It would not be difficult to include a

standard intensive margin of labor supply in our model at t = 1. Suppose, for simplicity,

that the utility function takes an additively separable form u1 (c) − v (n) , where n repre-

sents hours of work. If we now interpret y as productivity, total income becomes I = yn.

Clearly, our analysis would not change at all if both y and I (or n) were observable. The case

where the government can only observe I is that of Mirrlees (1971). In the latter case, the

intensive-margin incentive constraints would take the familiar form:

dc (y)
dy

u′
1 (c (y)) =

v′ (n (y))
y

dI (y)
dy

.

The analysis of the intensive margin is standard. If we assume no bunching, the validity

of the FOA for effort, and use the envelope theorem, we obtain the formula for third best

allocations as:
qλ

βu′ (c (y))
= 1 + µl (y; e) + ξa (c (y))−

dφ (y)/dy

β f (y; e)
,

where the multiplier φ (y) associated with the intensive-margin incentive constraint is re-

lated to the Spence-Mirrlees condition and the labor supply distortion, and satisfies φ
(

y
)

=

φ (y) = 0. The comparison between restricted and unrestricted asset taxation once more

amounts to considering the cases with ξ > 0 and ξ = 0, respectively. Although the forces

at play are the same as above, analytic results with an intensive margin (and private infor-
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mation on y) are complicated by the fact that the schedule of multipliers φ changes when

allocations are compared.

Longer time horizons. In general, it seems difficult to conjecture to what extent our results

will generalize to multi-period settings. For example, the cost of funds λ and the shadow

cost of incentives µ and savings ξ are complicated objects that depend on many details of

the environment. To a large extent, these prices are the key determinants of the curvature

of consumption and progressivity. Hence, extending our model to multiple periods will

be an important task for future research. However, there are two challenges with this en-

deavor. First, we already observed the technical complications associated with extending

the first-order approach to more general environments (Abraham et al., 2011). Second, while

a numerical verification of the first-order approach is possible in multi-period settings, the

computation of such models is very difficult in practice because the domain of the problem

becomes notoriously ill-behaved when nonobservable assets are present. For this reason, ex-

isting numerical approaches relied on binary outcomes (Abraham and Pavoni, 2008), which

precludes a discussion of progressivity.

A simple way of studying long-run dynamics is to embed our model in an overlapping

generations framework with dynastic preferences through “warm glow” motives for be-

quests. Assume that preferences in the last period are u1
(

cθw1−θ
)

, with θ ∈ (0, 1). Here, c is

consumption as above, while w represents wealth transfers to future generations (bequests).

Given the net income y + τ (y) in the last period, the agent solves:24

max
w,c≥0

u1

(

cθw1−θ
)

s.t. c + w = y + τ (y) .

The chosen functional form implies that expenditures on c and w will be fixed proportions

of the disposable income: ĉ (y) = θ(y + τ (y)) and ŵ (y) = (1 − θ)(y + τ (y)). Hence,

this model with bequests is equivalent to our original model with a utility function ũ(c) =

u1(αc), where u1 is our original utility function and α = θθ(1 − θ)1−θ is a constant. Clearly,

none of our theoretical results will change, since the convexity of absolute risk aversion is

invariant to this modification. It is relatively straightforward to embed such model into a

fully dynastic framework. When y is observed, w is easily computable as a (deterministic)

function of y + τ, since the warm glow mechanics do not leave space for strategic consider-

ations in the inter-generational transfer of wealth. Then, w would play the role of the initial

24Note that there are no reasons to impose capital taxes at t = 1 in order to alleviate incentives.
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endowment y0 for the next generation. Naturally, this framework generates heterogeneity

in the initial endowments. However, the link between initial consumption c0 and the en-

dowment y0 would be dictated by distributional motives alone (i.e., no incentive constraint

for effort would play any role here), similar to the role of heterogeneity in our quantitative

exploration (see Proposition 8 in Appendix B).
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Appendices

A Proofs omitted from the main text

Proof of Proposition 2. Fix qn. From the Kuhn-Tucker theorem, we have ξ ≥ 0. If ξ > 0, we

are done. If ξ = 0, the first-order conditions of the Lagrangian read

λ

u′
c(c0, e0)

= 1 + µ
u′′

ec(c0, e0)
u′

c(c0, e0)
,

λq

βu′
1(c(y))

= 1 + µ
fe(y, e0)
f (y, e0)

, y ∈ [y, y].

Since f (y, e) is a density, integration of the last line yields

∫ y

y

λq

βu′
1(c(y))

f (y, e0) dy = 1.

Using µ ≥ 0 and the assumption u′′
ec ≥ 0, we obtain

λ

u′
c(c0, e0)

≥ 1 =
∫ y

y

λq

βu′
1(c(y))

f (y, e0) dy ≥
λq

β
∫ y

y u′
1(c(y)) f (y, e0) dy

,

where the last inequality follows from Jensen’s inequality. This inequality is, in fact, strict,

because the agent cannot be fully insured when effort is interior. Since we have λ > 0 from

the previous condition, we conclude

β
∫ y

y
u′

1(c(y)) f (y, e0) dy > qu′
c(c0, e0). (19)

Clearly, exactly the same allocation delivering condition (19) is obtainable for all qn by ig-

noring the agent’s Euler equation. If we now define q̄ > q such that

β
∫ y

y
u′

1(c(y)) f (y, e0) dy = q̄u′
c(c0, e0),

it is immediate to see that whenever qn
< q̄, the allocation we obtained above ignoring the

agent’s Euler equation is, in fact, incompatible with (11); hence we must have ξ > 0. Q.E.D.
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Proof of Proposition 3. We only show (i), since statement (ii) can be seen analogously.

Define

g(c) :=
λq

βu′
1(c)

− ξa(c).

By the concavity of u, the function 1
u′

1(·)
is increasing. Therefore, if 1

u′
1(·)

is convex and ξ = 0

(or ξ > 0 and a(·) decreasing and concave), then g(·) is increasing and convex. Given the

validity of the FOA, equation (8) (or equation (13), respectively) shows that second best

(third best) consumption schemes are characterized as follows:

g (c(y)) = 1 + µ l (y, e0) ,

where, by assumption, the right-hand side is a positive affine transformation of a concave

function. By applying the inverse function of g(·) to both sides, we see that c (·) is concave

because it is an increasing and concave transformation of a concave function. Q.E.D.

Proof of Proposition 6. Using the Lagrange multipliers of the implementation problem, we

define the functions

g̃sb (c) :=
λ̃sbq

βu′
1(c)

, g̃tb (c) :=
λ̃tbq

βu′
1(c)

− ξ̃tba(c),

where ξ̃tb
> 0 represents the Lagrange multiplier associated with the Euler equation in the

problem with hidden assets. The first-order conditions for consumption are analogous to

(14) and (15) and imply

g̃sb
(

c̃sb(y)
)

= 1 + µ̃sb l (y, e0) , (20)

g̃tb
(

c̃tb(y)
)

= 1 + µ̃tbl (y, e0) . (21)

First, suppose that c̃tb is a concave transformation of l (y, e0) . Since the right-hand side of

(21) is a positive affine transformation of l (y, e0), this is equivalent to the condition that g̃tb

is convex. Now, since a(c) is convex by assumption, convexity of g̃tb is sufficient (but not

necessary) for g̃sb (c) =
(

g̃tb(c) + ξ̃tba(c)
)

λ̃sb/λ̃tb being convex as well. Finally, using (20)

we note that g̃sb is convex if and only if c̃sb is a concave transformation of l (y, e0).

The second part of the proposition follows from similar arguments by exploiting the

fact that concavity of g̃sb is sufficient (but not necessary) for concavity of g̃tb if absolute risk

aversion is convex. Q.E.D.
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Proof of Lemma 1. After some simple algebra, we obtain

gλ̂,µ̂,ξ̂(c) =
µλ̂

λµ̂
gλ,µ(c) +

1

µ
−

1

µ̂
−

ξ̂

µ̂
a(c).

If u belongs to the HARA class, we have

a(c) =

(

qγλ

β(1 − γ)ρ(1 + µgλ,µ(c))

)1/γ

.

Defining κ := (qγ)1/γ(β(1 − γ)ρ)−1/γ
> 0, this implies

gλ̂,µ̂,ξ̂(c) =
µλ̂

λµ̂
gλ,µ(c) +

1

µ
−

1

µ̂
−

ξ̂

µ̂
λ1/γκ(1 + µgλ,µ(c))

−1/γ.

Equivalently, we have gλ̂,µ̂,ξ̂(c) = h
(

gλ,µ(c)
)

, where the function h is defined as

h (g) =
µλ̂

λµ̂
g +

1

µ
−

1

µ̂
−

ξ̂

µ̂
λ1/γκ(1 + µg)−1/γ.

The second derivative of h with respect to g equals −ξ̂(1 + γ)κλ1/γµ2µ̂−1γ−2(1 + µg)2−1/γ,

which is negative whenever γ ≥ −1. Q.E.D.

B Appendix to the quantitative exploration

First, we derive the implications of the homothetic utility function and the unit root process

for income.

Proposition 8. Consider the following family of homothetic models with heterogeneous agents:

max
ci

0,ci
s,ei

0

∑
i

ψi

{

(

ci
0

)1−γ (

1 − ei
0

)γ−σ

1 − γ
+ β ∑

s
ps

(

ei
0

)

(

ci
s

)1−γ

1 − γ

}
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s.t. ∑
i

(

yi
0 − ci

0

)

+ q ∑
i

∑
s

ps

(

ei
0

) [

yi
s − ci

s

]

≥ G;

(σ − γ)

(

ci
0

)1−γ (

1 − ei
0

)γ−σ−1

1 − γ
= β ∑

s
p′s

(

ei
0

)

(

ci
s

)1−γ

1 − γ
;

q̃
(

ci
0

)−γ (

1 − ei
0

)γ−σ
= β ∑

s
ps

(

ei
0

) (

ci
s

)−γ
;

with β ∈ (0, 1) , and q̃, q > 0. Moreover, assume that income follows: yi
s = yi

0ηs. For each

given vector of income levels in period zero
(

yi
0

)

i > 0 and any scalar κ > 0, let the Pareto

weights (ψi)i be such that the solution to the above problem delivers period zero consumption

c∗i
0 = κyi

0 for all i. Then, there exists t∗ ∈ R and individual specific transfers ti = t∗yi
0 such

that G = ∑i ti and the solution to the above problem is

c∗i
0 = κyi

0 for all i;

e∗i
0 = e∗0 for all i;

c∗i
s = c∗i

0 ε∗s for all i;

where e∗0 and ε∗s are a solution to the following normalized problem:

max
εs,e0

(1 − e0)
γ−σ

1 − γ
+ β ∑

s
ps (e0)

(εs)
1−γ

1 − γ
;

s.t.
1

κ
− 1 + q ∑

s
ps (e0)

[ηs

κ
− εs

]

≥ t∗;

(σ − γ)
(1 − e0)

γ−σ−1

1 − γ
= β ∑

s
p′s (e0)

(εs)
1−γ

1 − γ
;

q̃ (1 − e0)
γ−σ = β ∑

s
ps (e0) (εs)

−γ .

Proof. The linear separability of the planner’s problem implies that, given individual trans-

fers ti, the optimal allocation must solve the following individual contracting problem:

Vi = max
ci

0,ci
s,ei

0

ψi

{

(

ci
0

)1−γ (

1 − ei
0

)γ−σ

1 − γ
+ β ∑

s
ps

(

ei
0

)

(

ci
s

)1−γ

1 − γ

}
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s.t. yi
0 − ci

0 + q ∑
s

ps

(

ei
0

) [

yi
0ηs − ci

s

]

≥ ti;

(σ − γ)

(

ci
0

)1−γ (

1 − ei
0

)γ−σ−1

1 − γ
= β ∑

s
p′s

(

ei
0

)

(

ci
s

)1−γ

1 − γ
;

q̃
(

ci
0

)−γ (

1 − ei
0

)γ−σ
= β ∑

s
ps

(

ei
0

) (

ci
s

)−γ
;

with ψi
> 0. Because preferences are homothetic, the incentive constraints only depend on

εi
s = ci

s/ci
0 and ei

0. Hence, we can change the choice variables and rewrite the individual

contracting problem as

Vi = max
ci

0,εi
s,ei

0

ψi
(

ci
0

)1−γ
{

(

1 − ei
0

)γ−σ

1 − γ
+ β ∑

s
ps

(

ei
0

)

(

εi
s

)1−γ

1 − γ

}

s.t. yi
0 − ci

0 + q ∑
s

ps

(

ei
0

) [

yi
0ηs − ci

0εi
s

]

≥ ti;

(σ − γ)

(

1 − ei
0

)γ−σ−1

1 − γ
= β ∑

s
p′s

(

ei
0

)

(

εi
s

)1−γ

1 − γ
;

q̃
(

1 − ei
0

)γ−σ
= β ∑

s
ps

(

ei
0

) (

εi
s

)−γ
.

Now fix some individual j. By continuity we can find a transfer tj such that the solution
(

c
j∗
0 , e

j∗
0 , ε

j∗
s

)

of the associated individual problem satisfies c
j∗
0 = κy

j
0. By the non-satiation of

preferences, tj is given by

tj = y
j
0 − κy

j
0 + qy

j
0 ∑

s
ps

(

e
j∗
0

) [

ηs − ε
j∗
s κ

]

=: y
j
0t∗.

We claim that transfers defined as ti := yi
0t∗ imply that for all i the contract

ci∗
0 = κyi

0,

ei∗
0 = e

j∗
0 ,

εi∗
s = ε

j∗
s ,

solves the individual contracting problem. Suppose that the claim is false for some i. By the

construction of transfers, the contract
(

κyi
0, e

j∗
0 , ε

j∗
s

)

is incentive-feasible. Hence, if the claim
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is false, the value Vi must be strictly higher than the one generated by
(

κyi
0, e

j∗
0 , ε

j∗
s

)

.

This implies

Vi
> ψi

(

κyi
0

)1−γ











(

1 − e
j∗
0

)γ−σ

1 − γ
+ β ∑

s
ps

(

e
j∗
0

)

(

ε
j∗
s

)1−γ

1 − γ











=
ψi

(

κyi
0

)1−γ

ψj
(

κy
j
0

)1−γ
Vj.

On the other hand, the contract
(

ci∗
0 y

j
0/yi

0, ei∗
0 , εi∗

s

)

is incentive-feasible for the individual

contracting problem Vj. Hence, we obtain

Vj ≥ ψj

(

ci∗
0 y

j
0

yi
0

)1−γ {

(

1 − ei∗
0

)γ−σ

1 − γ
+ β ∑

s
ps

(

ei∗
0

)

(

εi∗
s

)1−γ

1 − γ

}

=
ψj

(

y
j
0

)1−γ

ψi
(

yi
0

)1−γ
Vi.

Taken together, the two inequalities imply Vi
> Vi, which is a contradiction. Q.E.D.

A few remarks are now in order. It should typically be possible to find a vector of Pareto

weights (ψi)i such that the postulated individual-specific transfers ti = t∗y0 are indeed op-

timal. However, because of potential non-concavitites in the Pareto frontier, it is difficult to

formally establish such a result. We abstract from this subtlety and simply take the existence

of such Pareto weights as given for our analysis. Intuitively, the Pareto weights ψi are de-

termined by income at time 0. This dependence can be seen as coming from past incentive

constraints or from type-dependent participation constraints in period zero.

Proposition 8 demonstrates that we can use the consumption and income residuals ε̂i

and η̂i as inputs for our calibration procedure. In principle, we could go even further and

use residual income and consumption growth in our analysis to identify shocks. We have

decided not to follow that approach for two reasons. First, it requires imposing further struc-

ture on the consumption functions and the income process. Second, and more importantly,

measurement error is known to be large for both income and consumption. This problem

would be exacerbated by taking growth rates.
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B.1 Estimation

In line with the homothetic specification, we normalize c∗0 = 1 and set y0 = 1/κ, where κ

is the ratio of consumption to income in the data. Given the fixed parameters (γ, q, q̃) and

income levels η1, ..., η20, the remaining parameters of the model are the preference parame-

ters (σ, β) and the probability weights
{

πh
s , πl

s

}N

s=1. Since the probabilities πl
s and πh

s each

sum up to one, we have N − 1 parameters each. Hence, in total, there are 2N remaining

parameters.

Our target moments from the data are ps(e∗0) = 1/20 for all s, where e∗0 is the optimal

effort, and ε∗s = ĉ (ηs) , where ε∗s is the optimal consumption innovation in the model with

an exogenous capital income tax rate of 40 percent, i.e., with q̃ = q
0.6+0.4q . From the definition

of probabilities and the optimality conditions for second-period consumption, we obtain the

following 2N − 1 model restrictions:

ps(e
∗
0) = exp(−e∗0)π

l
s + (1 − exp(−e∗0))π

h
s for s = 1, ..., N − 1, (22)

q

β
λ∗(ε∗s)

γ = 1 + µ∗ exp(−e∗0)
(

πh
s − πl

s

)

ps(e∗0)
+ ξ∗

γ

ε∗s
for s = 1, ..., N. (23)

Notice that these equations also include the endogenous variables e∗0, λ∗, µ∗ and ξ∗. We si-

multaneously solve for these endogenous variables and all unknown parameters by adding

the following four model restrictions to the system of equations given by (22) and (23). First,

we have the Euler equation:

q̃ (1 − e∗0)
γ−σ = β

N

∑
s=1

ps (e
∗
0) (ε

∗
s)

−γ . (24)

Then, we can use the first-order incentive compatibility constraint for effort,

σ − γ

1 − γ
(1 − e∗0)

γ−σ−1 = β exp(−e∗0)
N

∑
s=1

(

πh
s − πl

s

) (ε∗s)
1−γ

1 − γ
, (25)

the (normalized) first-order condition for c∗0,

λ∗

(

1 − e∗0
)γ−σ = 1 + µ∗ σ − γ

(1 − e∗0)
− ξ∗q̃γ, (26)
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and the planner’s first-order optimality condition for effort,

0 = qλ∗ ∑
s

p′s (e
∗
0)

(ηs

κ
− ε∗s

)

− ξ∗
(

q̃(γ − σ) (1 − e∗0)
γ−σ−1 + β ∑

i

p′s(e
∗
0)ε

−γ
s

)

+ µ∗

(

β ∑
s

p′′s (e
∗
0)
(ε∗s)

1−γ

1 − γ
−

(γ − σ)(γ − σ − 1)
1 − γ

(1 − e∗0)
γ−σ−2

)

.

(27)

Moreover, we note that the average fraction of working time over total disposable time in the

United States is approximately one-third. Using this observation as a further data moment,

we obtain exactly as many moments as the number of unknown variables.

Finally, from the government’s budget constraint, we obtain the implied present value of

total government consumption as

G =
1

κ
− 1 + q

N

∑
s=1

ps(e
∗
0)

(ηs

κ
− ε∗s

)

, (28)

where we have used the unit root process of income and Proposition 8.

B.2 The role of relative risk aversion

As documented by Table 1 in the main text, the discrepancy between second best and third

best allocations depends on the coefficient of relative risk aversion. We can get some in-

tuition for why the differences increase in the coefficient of relative risk aversion γ by ex-

amining the optimality condition for third best consumption (Eq. 23) for our specification:

q

β
λ∗(ε∗s)

γ − ξ∗
γ

ε∗s
= 1 + µ∗ρ

exp(−ρe∗0)
(

πh
s − πl

s

)

ps(e∗0)
for i = 1, ..., N.

The direct effect of limited capital taxation is driven by ξ∗a(ε∗s). Note that the higher is γ,

the higher is the discrepancy between the Euler equation characterizing the limited capital

taxation case and the inverse Euler characterizing the optimal capital taxation case. This will

imply that ξ∗ is increasing with γ. Moreover, absolute risk aversion is given by a(ε∗s) = γ/ε∗s ,

which is also increasing in γ. Hence, the effect of hidden asset accumulation (or limited

capital taxes) is increasing in risk aversion for both these reasons. The larger discrepancy

between the Euler and inverse Euler equations also explains that the capital taxes must rise

with risk aversion in order to make these two optimality conditions compatible. The same

argument explains why the welfare costs of limited capital taxation are increasing in risk
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aversion.

B.3 General equilibrium (flexible interest rate)

In this subsection, we explore the sensitivity of our results on progressivity to the assump-

tion of a fixed interest rate (partial equilibrium). To relax this assumption, we first decom-

pose the present value of government consumption (28) into separate components for each

period:

G = G0 + qG1 where G0 =
1

κ
− 1 and G1 =

N

∑
s=1

ps(e
∗
0)

(ηs

κ
− ε∗s

)

. (29)

This timing of government consumption implies that the scenario with limited capital taxes

can be interpreted as a general equilibrium setup, since the aggregate resource constraints

are satisfied period by period. Put differently, q is a market clearing price for intertemporal

assets such that no intertemporal trade occurs in equilibrium.

In the counterfactual exercise of the main text where we consider optimal capital taxation

and observable assets, we impose an intertemporal budget constraint and we keep the price q

fixed. This implies that the government budget constraints are not satisfied on a period-by-

period basis and consumption is frontloaded. In other words, the economy is borrowing in

the first period. In this subsection, we abandon the assumption of a fixed price q and we let

the intertemporal price adjust such that the resource constraints are satisfied with equality

in each period. Given that the planner has an incentive to frontload consumption, it is easy

to see that the intertemporal price q needs to decrease (i.e., the interest rate needs to increase)

to make borrowing more costly when capital taxation is not limited.

In Figure 3, we plot optimal consumption and the corresponding measure of progressiv-

ity for all three specifications (optimal capital taxation with fixed q, flexible q, and limited

capital taxation). Given the above arguments, it should not be surprising that the level of

consumption has increased as compared to the fixed price case, and is very similar to the

consumption level in the scenario with limited capital taxation. However, this change does

not affect our results regarding the progressivity of the allocation with optimal capital taxes

in a significant way. Although the flexible price case displays somewhat less progressivity

than the fixed price case, the allocation with optimal capital taxes and flexible prices is clearly

more progressive than the allocation with limited capital taxes for all levels of income. In

fact, for the majority of income levels, the progressivity of the allocation with optimal capi-

tal taxes is very similar for fixed intertemporal prices and flexible intertemporal prices. The
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Figure 3: Optimal consumption with optimal and limited capital taxation. Notes: Figure 3a displays
constrained efficient allocations in the calibrated models with limited capital taxes (capital income tax
rate of 40 percent) and optimal capital taxes (assuming a full observability of capital). Figure 3b shows
the associated curvature of consumption, measured as the absolute value of c′′(y)/c′(y). In both
figures, the solid line displays the model with optimal capital taxes and a fixed intertemporal price,
the dash-dotted line represents the model with optimal capital taxes and a flexible intertemporal
price, and the dashed line represents the model with limited capital taxes.

average degree of progressivity falls somewhat (from 0.962 to 0.874) when the intertemporal

price is flexible, but remains significantly larger than in the allocation with limited capital

taxation (0.644).
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Research highlights

• We study optimal labor income taxes when capital income taxation is limited

• We use a dynamic moral hazard model with observable and nonobservable assets

• Limited observability of assets reduces the possibility to tax capital

• Optimal labor income taxes become less progressive when tax on capital is limited

• We illustrate the quantitative impact of capital taxation on labor tax progressivity


